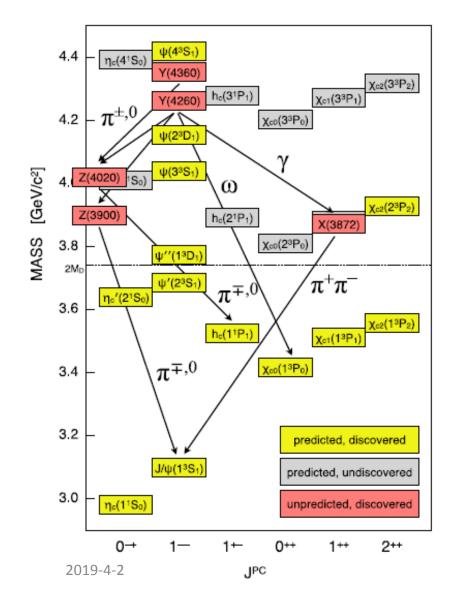
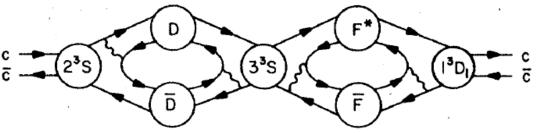
An overview of e⁺e⁻ cross sections and the Y states


Kai ZHU

Institute of High Energy Physics, Beijing BESIII/JPAC meeting, April 2-4, Beijing

Outline

- Recent BESIII results of e^+e^- cross sections and Y states
- Some properties of Y(4260)
- Problems in interpretation of the experimental results
- Summary


From 4.0 to 4.6 GeV, only four 1⁻⁻ states predicted by potential model

ABOVE open charm threshold BELOW

Coupled channel effect

E. Eichten, etc., PRD 17 (1978) 11, PRD 21 (1980) 1

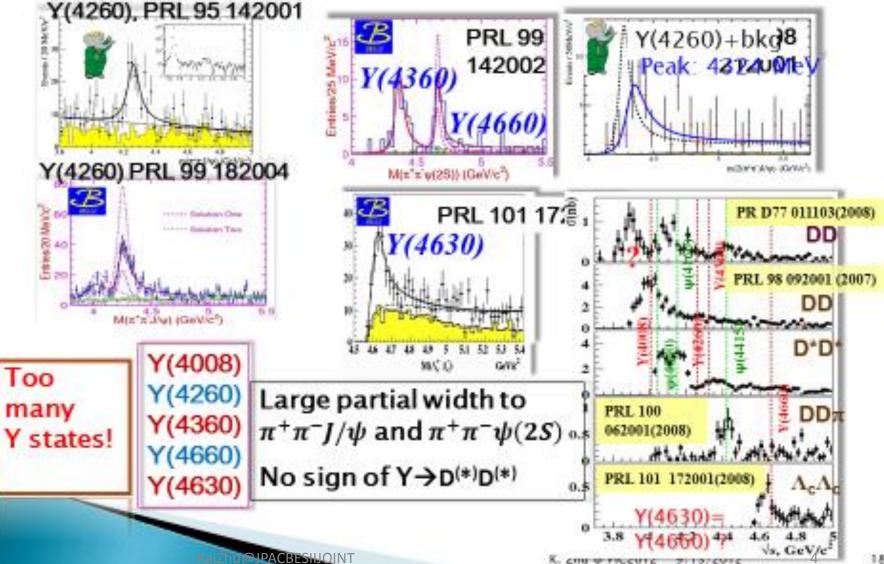
- New results due to updated parameters (mass shift)
- States mixing is usual due to coupled channel effect

$$|\psi'\rangle = \sum_{n} a_{n} |n^{3}S(c\overline{c})\rangle + \sum_{n} b_{n} |n^{3}D_{1}(c\overline{c})\rangle$$

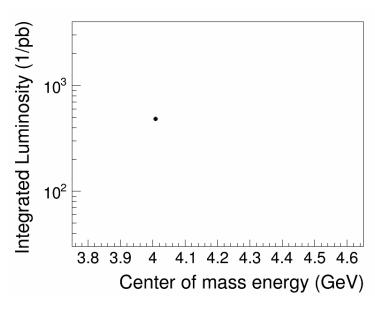
$$+ \alpha |D\overline{D}; p \text{-wave}\rangle + \beta |D^*\overline{D}^*; f \text{-wave}\rangle + \cdots$$

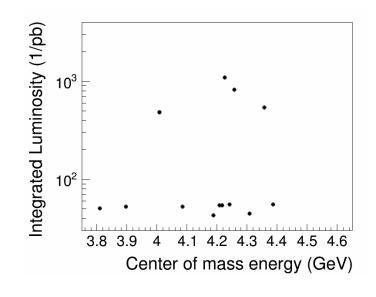
KaiZhu@JPACBESIIJOINT

Exotics in Leptonic **Machines**


Kai Zhu Institute of High Energy Physics, Beijing 25-30 May 2014, FPCP, Marseille

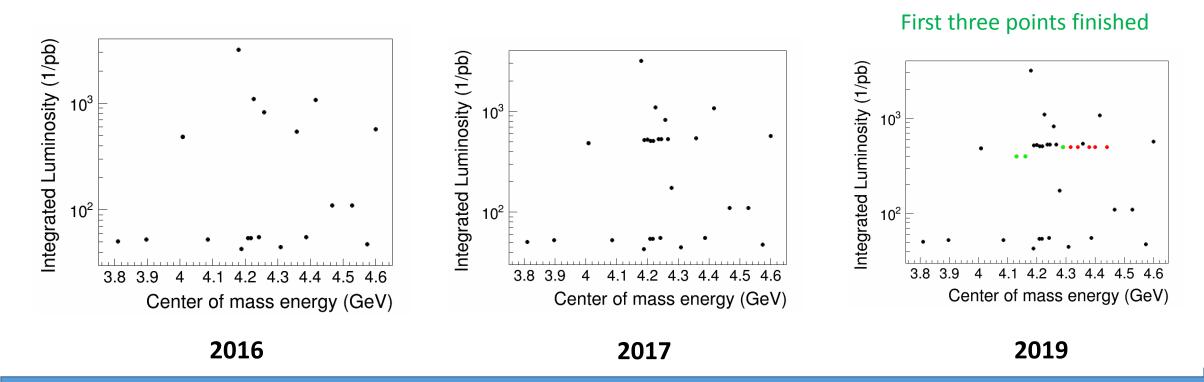
A slide in 2014


- No evidence in the inclusive e^+e^- cross section, which only present $\psi(3770), \psi(4040), \psi(4160)$ $\psi(4415)$ [PLB 660,315]
- Most results from BaBar & Belle
- Much progress since then, many contributions from **BESIII**, update information


Y states: 1 -- states from ISR

Study e^+e^- annihilation line-shape above open charm threshold at BESIII

XYZ data sets at BESIII

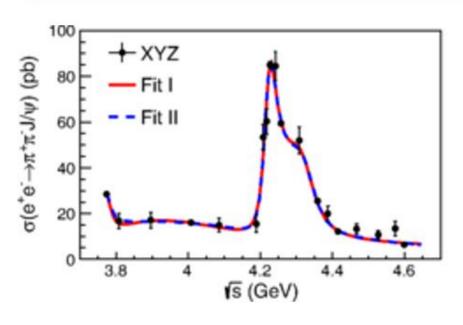


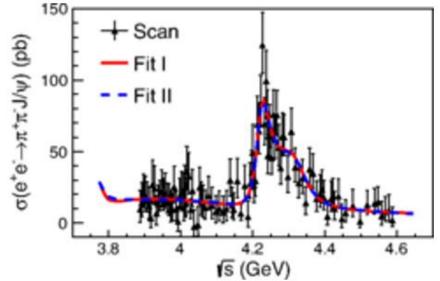
2011 2013

2014

Study e^+e^- annihilation line-shape above open charm threshold at BESIII

XYZ data sets at BESIII


Systematic studies of the e^+e^- annihilation lineshape above open charm threshold at BESIII


Hidden charm

Open charm

Light hadrons

Y(4260) and Y(4360) are observed in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Y(4008) is not confirmed PRL 118, 092001 (2017)

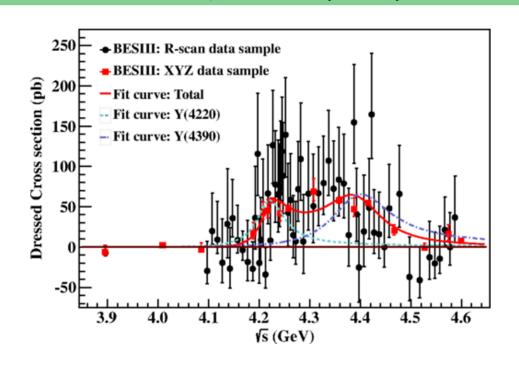
Y(4220) [in MeV]

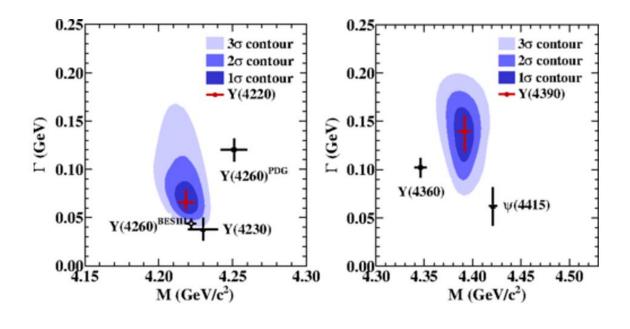
Mass: $4222.0 \pm 3.1 \pm 1.4$

Width: $44.1 \pm 4.3 \pm 2.0$

Y(4320) [in MeV]

Mass: $4320.0 \pm 10.4 \pm 7.0$


width: $101.4^{+25.3}_{-19.7} \pm 102$


 7.5σ

Observed first time in this channel, consistent with Y(4360) observed in BaBar and Belle

Observation of Y(4390) in $e^+e^- \rightarrow \pi^+\pi^-h_c$ PRL 118, 092002 (2017)

Observation of Y(4390) in $e^+e^- \to \pi^+\pi^-h_c$ PRL 118, 092002 (2017)

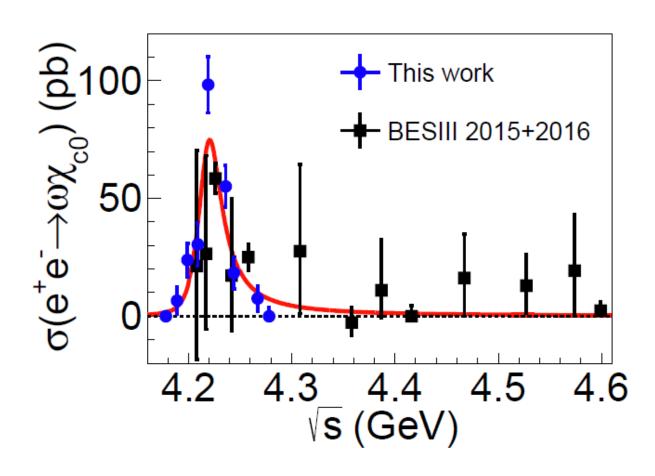
Y(4220) in [MeV]

Mass: $4218.4^{+5.5}_{-4.5} \pm 0.9$

Width: $66.0^{+12.3}_{-8.3} \pm 0.4$

 $\Gamma_{ee}B = 4.6^{+2.9}_{-1.4} \pm 0.8 \text{ eV}$

Y(4390) in [MeV]


Mass: $4391.5^{+6.3}_{-6.8} \pm 1.0$

Width: $139.5^{+16.2}_{-20.6} \pm 0.6^{+12.3}_{-8.3}$

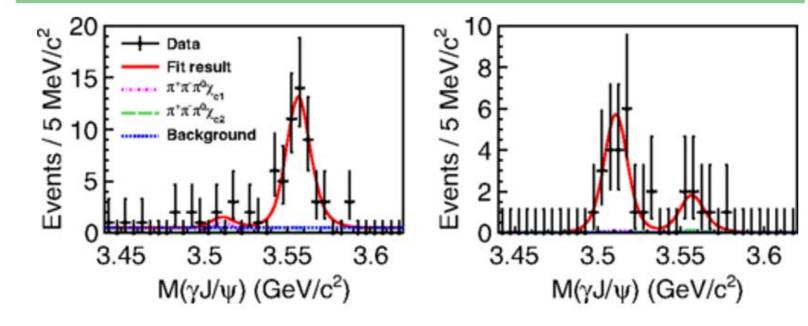
 $\Gamma_{ee}B = 11.6^{+5.0}_{4.4} \pm 1.9 \text{ eV}$

Total: 10σ

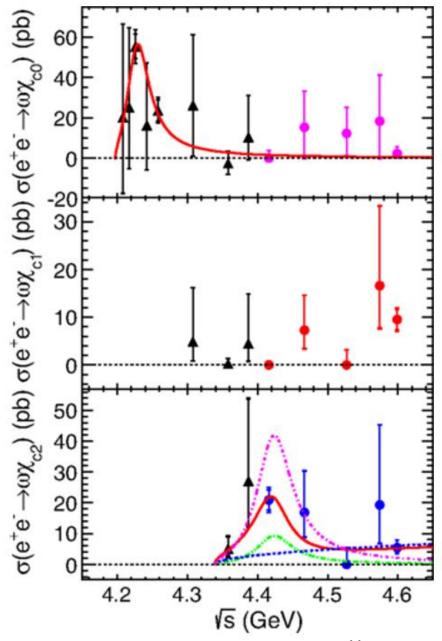
arXiv:1903.02359, update of PRL 114, 092003(2015)

 $\chi_{c0} \rightarrow KK/\pi\pi$ Y(4220) [in MeV]

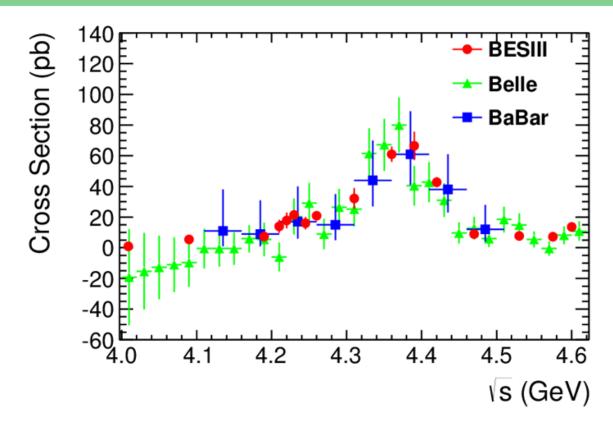
Mass: $4218.5 \pm 1.6 \pm 4.0$


Width: $28.2 \pm 3.9 \pm 1.6$

 $\Gamma_{ee}B = 2.5 \pm 0.2 \pm 0.3 \text{ eV}$


 $\alpha = -0.30 \pm 0.18 \pm 0.05$

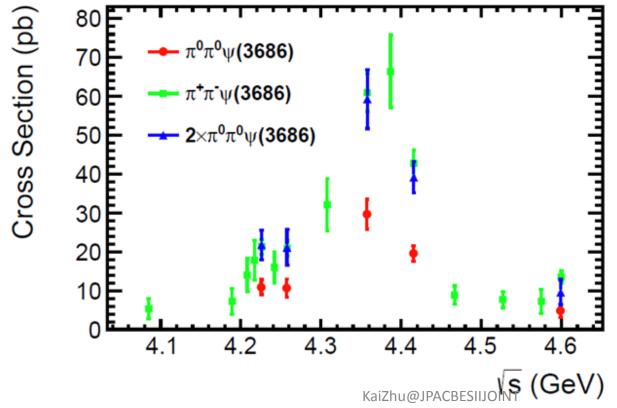
Combination of S and D waves


Clear signals of $e^+e^-\omega\chi_{c1,2}$ are observed at $\sqrt{s}>4.4$ GeV PRD 93, 011102(R) (2016)

- Enhancement of $\omega \chi_{c2}$ around 4.42 GeV, $B(\psi(4415) \rightarrow \omega \chi_{c2})$ in the order of 10^{-3}
- $\omega \chi_{c1}$ seems rising at 4.6 Gev

Cross section of $e^+e^- \rightarrow \pi^+\pi^-\psi'$ Phys. Rev. D 96, 032004 (2017)

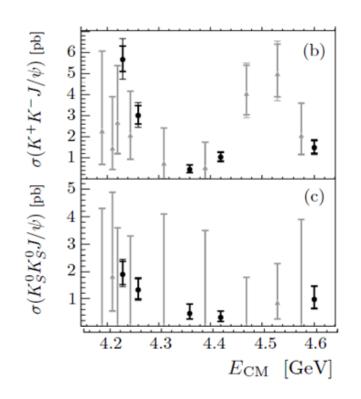
PRD 99, 019903 (E) (2019)

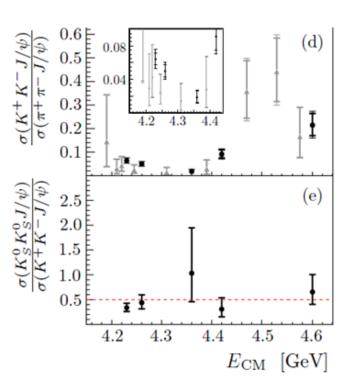

Y(4220) [in MeV] Mass: $4209.5 \pm 7.4 \pm 1.6$ Width: $80.1 \pm 24.6 \pm 2.9$ $\Gamma_{ee}B = 1.61 \pm 1.27$ eV

or $1.80 \pm 1.41 \text{ eV}$

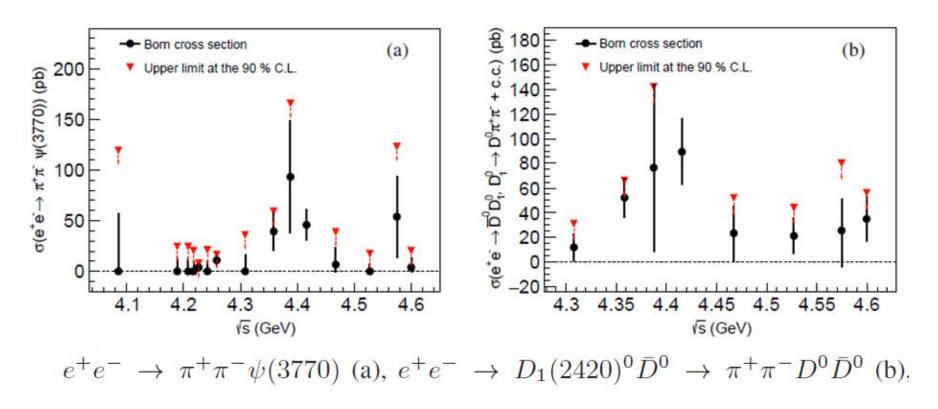
Y(4390) [in MeV] Mass: $4383.8 \pm \pm$ Width: $84.2 \pm 12.5 \pm 2.1$ $\Gamma_{ee}B = 7.25 \pm 2.8$ eV or 10.96 ± 3.8 eV

Note: two solutions


Cross sections and neutral structure in $e^+e^- \to \pi^0\pi^0\psi(3686)$ Phys. Rev. D 97, 052001 (2018)



Cross sections are half of the charged mode.

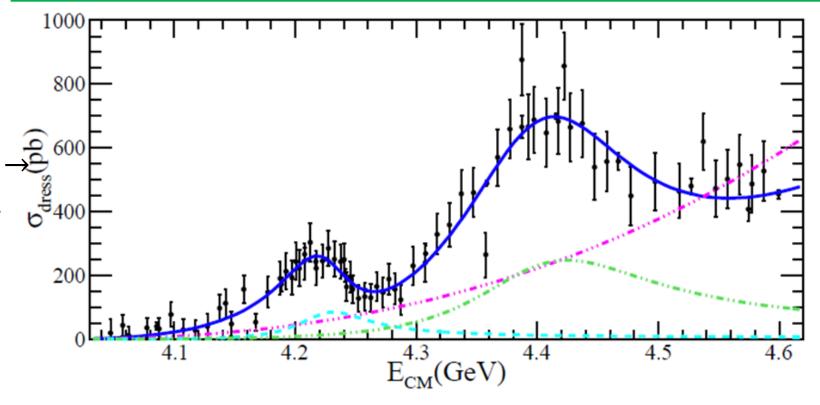

2019-4-2 13

Structures in the line-shape of $e^+e^- \rightarrow KKJ/\psi$ Phys. Rev. D 97, 071101(R) (2018)

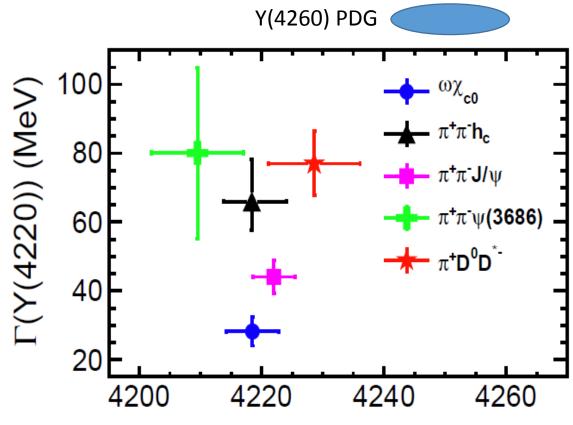
Observation of $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$ and $D_1(2420)^0\overline{D}^0+\text{c.c.}$ arXiv:1903.08126, submitted to PRD

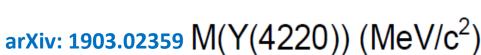
Observation at 4.42 GeV, evidence at 4.26 and 4.36 GeV

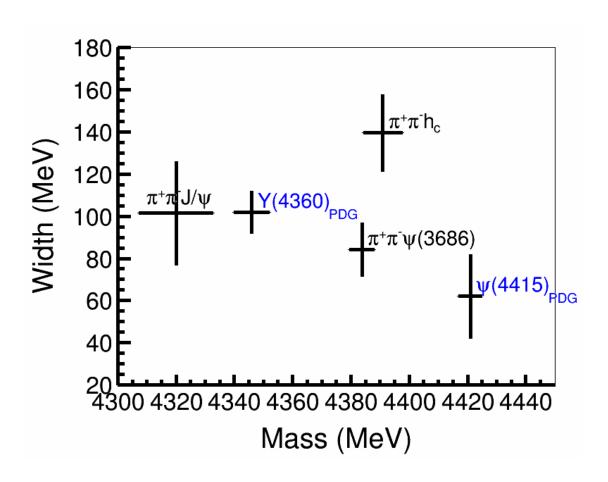
Y(4220) [in MeV]


Mass: $4228.6 \pm 4.1 \pm 5.9$

Width: $77.1 \pm 6.8 \pm 6.9$

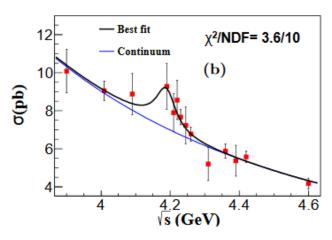

First open charm evidence of Y(4220) decay


Belle has observed $\psi(4415)$ $\rightarrow \overline{D}_2^*(2460)$ PRL 100, 062001 But a single $\psi(4415)$ cannot describe the enhancement around 4.4 GeV

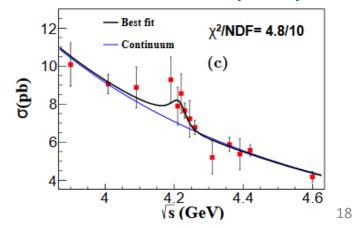

Observation of Y(4220) in $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ cross sections Phys. Rev. Lett. 122, 102002 (2019)

Mass shift from Y(4260) to Y(4220) Y(4320)/Y(4360)/Y(4390)?

No observations of light hadron final states

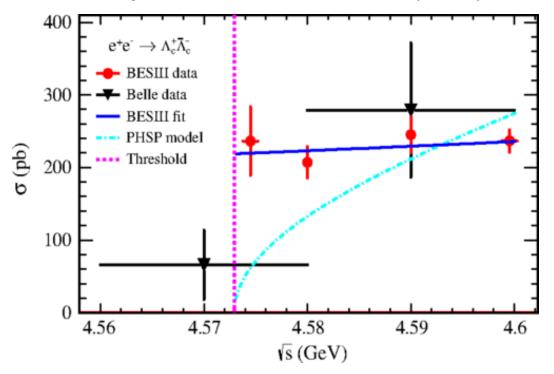

$$e^+e^- \rightarrow K_S K^{\pm}K^{\mp}\pi^0$$

product $\Gamma_{e^+e^-}\mathcal{B}$ $(Y(4260) \to K_S^0 K^{\pm} \pi^{\mp} \pi^0)$ at 90% C.L. are estimated to be less than 0.05 eV and that of $\Gamma_{e^+e^-}\mathcal{B}(Y(4260) \to K_S^0 K^{\pm} \pi^{\mp} \eta)$ is estimated to be smaller than 0.19 eV. Reference [9] reported four solutions of the product $\Gamma_{e^+e^-}\mathcal{B}(Y(4260) \to \pi^+\pi^- J/\psi)$, in which the maximum is 13.3 ± 1.4 eV and the minimum is 1.5 ± 0.3 eV.


PHYSICAL REVIEW D **99**, 012003 (2019)

	ψ ((4160)	Y(4220)		
				Solution II	
$\overline{\Gamma_{ee} \times B_{K_S^0 K^+ \pi^-}} \text{ (eV)}$	2.71 ± 0.13	0.0118 ± 0.0098	2.03 ± 0.05	0.0038 ± 0.0029	
$\phi \; ({ m rad})$	-1.60 ± 0.03	1.71 ± 0.38	-1.61 ± 0.02	2.11 ± 0.43	
Significance		2.8σ	2.6σ		

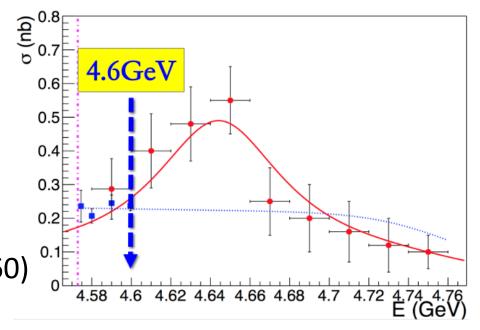
$$e^+e^- \rightarrow K_S K^{\pm}K^{\mp}\pi^0$$



arXiv: 1808.08733, Accepted by PRD

$e^+e^- o \Lambda_c^+ \overline{\Lambda}_c^-$ near threshold

Phys. Rev. Lett. 120, 132001 (2018)



Will update BEPCII this summer to 4.9 GeV Cross sections measurement of Λ_c pair Check consistence with BELLE and search for Y(4660)

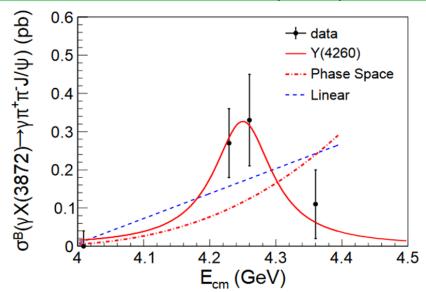
√s=**4574.5**, 4580.0, 4590.0 and **4599.5** MeV

 $|G_E/G_M|$: 1. 14 \pm 0. 14 \pm 0. 07

 $1.23 \pm 0.05 \pm 0.03$

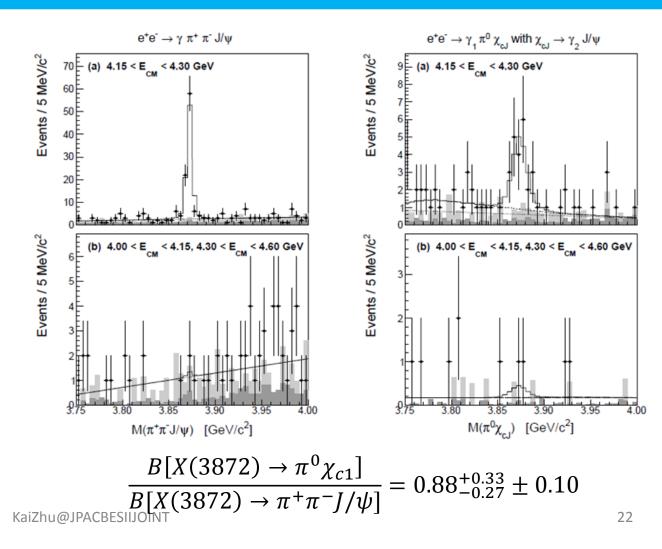
$e^+e^- o \pi^+\pi^-\pi^0\eta_c$, new Z_c (3900) decay mode

TABLE II: Born cross sections of $e^+e^- \to \pi^{\mp}Z_c(3900/4020)^{\pm} \to \pi^{\mp}\rho^{\pm}\eta_c$ (numbers for $Z_c(4020)^{\pm}$ are in brackets). The parameters are defined in the same way as those in Table I.

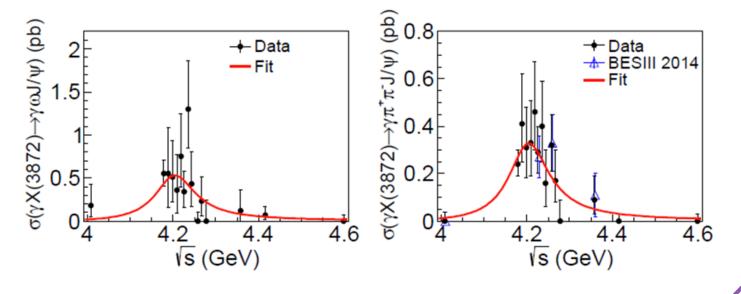

\sqrt{s} (MeV)	\mathcal{L} (pb ⁻¹)	$N_{ m obs}$	$(1+\delta)$	$\tfrac{1}{ 1-\Pi ^2}$	$\sum \varepsilon_i \mathcal{B}_i$ (%)	$\sigma^{\mathrm{B}}\left(\mathrm{pb}\right)$	$\sigma_{\mathrm{U.L.}}^{\mathrm{B}}$ (pb)	$\mathcal{S}\left(\sigma\right)$
4226.3	1091.7	$240 \pm 56 \ (21 \pm 13)$	0.74	1.056	0.60 (0.49)	$47 \pm 11 \pm 11$	< 75 (16) 4	.3 (1.0)
4258.0	825.7	$92 \pm 47 \ (0 \pm 15)$	0.76	1.054	0.44 (0.51)	$32\pm16\pm9$	< 71 (9) 2	2.0 ()
4358.3	539.8	$12 \pm 38 \ (0 \pm 5)$	1.03	1.051	0.46 (0.54)	$5\pm14\pm2$	< 34 (11) (0.3 ()
4415.6	1073.6	$101 \pm 46 \ (6 \pm 16)$	1.15	1.053	0.69 (0.58)	$11\pm5\pm3$	< 23 (7) 2	2.2 ()
4599.5	566.9	$0 \pm 5 \ (0 \pm 10)$	1.32	1.055	0.26 (0.24)	$0\pm3\pm2$	< 12 (18)	

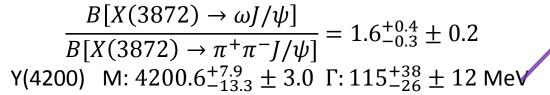
Relations between different channels @ Y(4220)

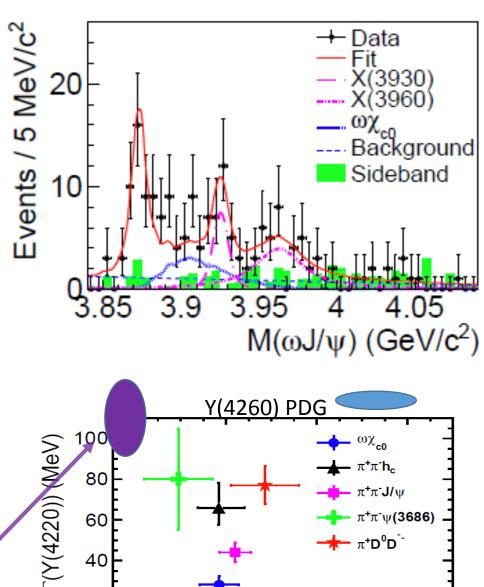
Channels	$\Gamma_{ee}B(eV)$	Note
$\pi^+\pi^-J/\psi$	1.6~13.3	Four solutions
$\pi^+\pi^-h_c$	$4.6^{+2.9}_{-1.4} \pm 0.8$	
$\omega\chi_{c0}$	$2.5 \pm 0.2 \pm 0.3$	
$\pi^{+}\pi^{-}\psi(3686)$	$1.61 \pm 1.27 (1.80 \pm 1.41)$	Two solutions
K^+K^-J/ψ	$R \approx 0.1$	Cross section
$\pi^+\pi^-\pi^0\eta_c$	$R = 2.1 \pm 0.8$	ratio to $\pi^+\pi^-J/\psi$
$\pi^{+}D^{0}D^{*-}$	$> \sum (hidden\ charm)$	
Light hadrons	< 0.1	Not observed


Connect between Y(4220) and X(3872)

$\sigma^{B}(e^{+}e^{-} \rightarrow \gamma X(3872) \rightarrow \gamma \pi^{+}\pi^{-}J/\psi$ PRL 112, 092001 (2014)



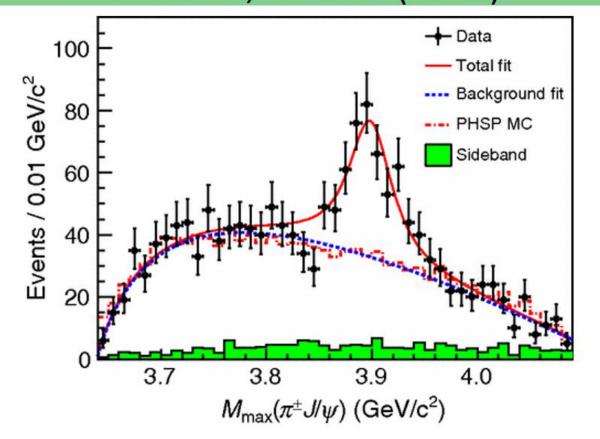

$$\frac{B[Y(4260) \to \gamma X(3872)]}{B[Y(4260) \to \pi^+\pi^-J/\psi]} = 0.1$$
 assuming $B[X(3872) \to \pi^+\pi^-J/\psi] = 5\%$


$e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^0 \chi_{c1}$ arXiv:1901.03992, submitted to PRL

$e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$ arXiv:1903.04695, submitted to PRL

arXiv: 1903.02359(4220)) (MeV/c²)

4220


4240

4260

4200

$$\frac{\sigma(e^{+}e^{-} \to \pi^{\mp}Z_{c}(3900)^{\pm} \to \pi^{+}\pi^{-}J/\psi)}{\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}J/\psi)} = (21.3 \pm 3.3 \pm 7.5)\%$$

Discovery of the $Z_c(3900)$ in $\pi^+\pi^-J/\psi$ PRL 110, 252001 (2013)

$\frac{B[Y(4260) \to \pi^{\mp} Z_c(3900)^{\pm}]}{B[Y(4260) \to \pi^{+} \pi^{-} J/\psi]} = 2.4$ assuming $B[Z_c(3900)^{\pm} \to \pi^{\pm} I/\psi] = 9\%$

Combined wit previous results

$$\frac{B[Y(4260) \to \gamma X(3872)]}{B[Y(4260) \to \pi^+\pi^-J/\psi]} = 0.1$$
assuming $B[X(3872) \to \pi^+\pi^-J/\psi] = 5\%$

$$\frac{B[Y(4260)\to\gamma X(3872)]}{B[Y(4260)\to\pi^{\mp}Z_c(3900)^{\pm}]}\approx 0.04$$

Possible help from theorist side

- Predictions of the cross sections of production/decay
 - Suggestions of the search/measurement direction
- Selection of the physics solution
 - Interference cause multiple solutions
- Parameterization of resonance/process
 - BW is suitable when the width is large? Near threshold?
 - Good formula for amplitude analysis. Description of light hadrons/effects such as final state interaction (FSI), form factor, cusp effect, threshold enhancement, etc.

•

Summary

- After Belle and BaBar via ISR, interesting vector structures have been observed in the electron-position annihilation at BESIII
- BESIII has made a systematic study of these states, many analyses are on-going, with more data in this region more exciting experimental results are expected
- Cooperation between experimentalists and theorists to understand the nature of these exotic states

Other search XYZ in light hadrons

```
M. Ablikim et al. (BESIII Collaboration), Search for Z_c(3900)^{\pm} \to \omega \pi^{\pm}[J]. Phys. Rev. D, 2015, 92(3): 032009.
```

M. Ablikim et al. (BESIII Collaboration), Measurements of cross section of $e^+e^- \to p\bar{p}\pi^0$ at center-of-mass energies between 4.008 and 4.600 GeV[J]. Phys. Lett. B, 2017, 771: 45-51. M. Ablikim et al. (BESIII Collaboration), Measurement of cross sections of the interactions $e^+e^- \to \phi\phi\omega$ and $e^+e^- \to \phi\phi\phi$ at center-of-mass energies from 4.008 to 4.600 GeV[J]. Phys. Lett. B, 2017, 774: 78-86.