
Interaction with the Geant4
kernel – part 2

Luciano Pandola
INFN – Laboratori Nazionali del Sud

The 2nd Geant4 School in China,
Shandong University, Qingdao,

 March 25th- 29th, 2019

pandola@lns.infn.it

Part I: Sensitive Detectors

Sensitive Detector (SD)
 A logical volume becomes sensitive if it has a pointer

to a sensitive detector (G4VSensitiveDetector)
 A sensitive detector can be instantiated several times,

where the instances are assigned to different logical
volumes
 Note that SD objects must have unique detector names
 A logical volume can only have one SD object attached (But

you can implement your detector to have many functionalities)
 Two possibilities to make use of the SD functionality:

 Create your own sensitive detector (using class
inheritance)
 Highly customizable

 Use Geant4 built-in tools: Primitive scorers

Adding sensitivity to a logical
volume

 Create an instance of a sensitive detector and register it to the
SensitiveDetector Manager

 Assign the pointer of your SD to the logical volume of your
detector geometry

 Must be done in ConstructSDandField() of the user geometry
class
 create

instance

assign to logical
volume

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="/MyDetector");

G4SDManager* sdMan =G4SDManager::GetSDMpointer();
sdMan->AddNewDetector(mySensitive);

SetSensitiveDetector("LVname",mySensitive);

Register to
the SD

manager

Name of the logical volume

Adding sensitivity to a logical
volume - variant

 Create an instance of a sensitive detector and register it to the
SensitiveDetector Manager

 Assign the pointer of your SD to the logical volume of your
detector geometry

 Must be done in ConstructSDandField() of the user geometry
class
 create

instance

assign to logical
volume

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="/MyDetector");

G4SDManager* sdMan =G4SDManager::GetSDMpointer();
sdMan->AddNewDetector(mySensitive);

logicVol->SetSensitiveDetector(mySensitive);

Register to
the SD

manager

Pointer of the logical volume

Part II: Native Geant4
scoring

Extract useful information
 Geant4 provides a number of primitive scorers,

each one accumulating one physics quantity (e.g.
total dose) for an event

 This is alternative to the customized sensitive
detectors (not shown in this course), which can be
used with full flexibility to gain complete control

 It is convenient to use primitive scorers instead of
user-defined sensitive detectors when:
 you are not interested in recording each individual

step, but accumulating physical quantities for an
event or a run

 you have not too many scorers

G4MultiFunctionalDetector
 G4MultiFunctionalDetector is a concrete class

derived from G4VSensitiveDetector
 It should be assigned to a logical volume as a kind of

(ready-for-the-use) sensitive detector
 It takes an arbitrary number of G4VPrimitiveScorer

classes, to define the scoring quantities that you need
 Each G4VPrimitiveScorer accumulates one physics

quantity for each physical volume
 E.g. G4PSDoseScorer (a concrete class of
G4VPrimitiveScorer provided by Geant4) accumulates
dose for each cell

 By using this approach, no need to implement
sensitive detector and hit classes!

G4VPrimitiveScorer
 Primitive scorers (classes derived from G4VPrimitiveScorer)

have to be registered to the G4MultiFunctionalDetector
 ->RegisterPrimitive(),
 ->RemovePrimitive()

 They are designed to score one kind of quantity (surface flux,
total dose) and to generate one hit collection per event
 automatically named as

 <MultiFunctionalDetectorName>/<PrimitiveScorerName>
 hit collections can be retrieved in the EventAction or RunAction

(as those generated by sensitive detectors)
 do not share the same primitive scorer object among multiple

G4MultiFunctionalDetector objects (results may mix up!)
 Create as many instances of the scorer as needed

MyDetectorConstruction::ConstructSDandField()

{

 G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveScorer* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveScorer* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);

}

instantiate multi-
functional detector

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

attach to volume

For example ...
myCellScorer/TotalSurfFlux
myCellScorer/TotalDose

 Concrete Primitive Scorers (Application Developers Guide 4.4.5)
 Track length

 G4PSTrackLength, G4PSPassageTrackLength
 Deposited energy

 G4PSEnergyDepsit, G4PSDoseDeposit
 Current/Flux

 G4PSFlatSurfaceCurrent,
G4PSSphereSurfaceCurrent,G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

 Others
 G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep,

G4PSCellCharge

Some primitive scorers that
you may find useful

angle

V : Volume

L : Total step length in the cell

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

SurfaceFlux :
Sum up
1/cos(angle) of
injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical
cell.

V : Volume

A closer look at some scorers

 A G4VSDFilter can be attached to G4VPrimitiveScorer
to define which kind of tracks have to be scored (e.g. one
wants to know surface flux of protons only)
 G4SDChargeFilter (accepts only charged particles)
 G4SDNeutralFilter (accepts only neutral particles)
 G4SDKineticEnergyFilter (accepts tracks in a defined

range of kinetic energy)
 G4SDParticleFilter (accepts tracks of a given particle type)
 G4VSDFilter (base class to create user-customized filters)

G4VSDFilter

MyDetectorConstruction::ConstructSDandField()

{

 G4VPrimitiveScorer* protonSurfFlux

 = new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

 G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

For example ...

How to retrieve information -
part 1

 At the end of the day, one wants to retrieve the
information from the scorers
 True also for the customized hits collection

 Each scorer creates a hit collection, which is
attached to the G4Event object
 Can be retrieved and read at the end of the event,

using an integer ID
 Hits collections mapped as
G4THitsMap<G4double>* so can loop on the
individual entries

 Operator += provided which automatically sums up
all hits (no need to loop manually)

How to retrieve information -
part 2

Event#1

Scorer 1 Scorer 2

(0, 5.32) (0, 1.43)
(2, 7.41)

copyNb (key) Quantity to be scored by the
scorer (e.g. energy) HCofThisEvent

Event#2 (1, 1.12) (0, 1.11)

Event#3 empty empty

Event#N (0,7.12)
(1,1.15)

(0, 2.0)
… … …

How to retrieve information –
recipe

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

Get ID for the
collection (given

the name)

Get all HC
available in this

event

How to retrieve information –
recipe

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

Get ID for the
collection (given

the name)

Get all HC
available in this

event
Get the HC with the

given ID (need a cast)

How to retrieve information –
recipe

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

for (auto pair : *(evtMap->GetMap())) {
 G4double flux = *(pair.second);
 G4int copyNb = *(pair.first);
}

Get ID for the
collection (given

the name)

Get all HC
available in this

event
Get the HC with the

given ID (need a cast)

Loop over the
individual entries of
the HC: the key of the

map is the copyNb,
the other field is the

real content

How to retrieve information –
recipe

*(pair.first) *(pair.second)

Loop1: copyNb = 0, value = 1.43
Loop2: copyNb = 2, value = 7.41

for (auto pair : *(evtMap->GetMap())) {
 G4double flux = *(pair.second);
 G4int copyNb = *(pair.first);
}

Hands-on session
 Task4

 Task4c: Native scoring
 Task5 (Optional)

 Very similar to 4c, but on medical physics

 http://202.122.35.42/task4
 http://202.122.35.42/task5

Backup

How to retrieve information –
recipe

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

for (auto pair : *(evtMap->GetMap())) {
 G4double flux = *(pair.second);
 G4int copyNb = *(pair.first);
}

Get ID for the
collection (given

the name)

Get all HC
available in this

event
Get the HC with the

given ID (need a cast)

Loop over the
individual entries of
the HC: the key of the

map is the copyNb,
the other field is the

real content

	Interaction with the Geant4 kernel – part 2
	Part I: Sensitive Detectors
	Sensitive Detector (SD)
	Adding sensitivity to a logical volume
	Adding sensitivity to a logical volume - variant
	Part II: Native Geant4 scoring
	Extract useful information
	G4MultiFunctionalDetector
	G4VPrimitiveScorer
	For example ...
	Some primitive scorers that you may find useful
	A closer look at some scorers
	G4VSDFilter
	For example ...
	How to retrieve information - part 1
	How to retrieve information - part 2
	How to retrieve information – recipe
	How to retrieve information – recipe
	How to retrieve information – recipe
	How to retrieve information – recipe
	Hands-on session
	Backup
	How to retrieve information – recipe

