
MultiThreading in Geant4
Luciano Pandola

INFN – Laboratori Nazionali del Sud

A lot of material by J. Pipek

pandola@lns.infn.it

The 2nd Geant4 School in China, Shandong University,
Qingdao, March 25th- 29th, 2019

Part I: Motivation

Motivation: performance/$
 Multi-core CPUs

 Expensive memory

fast

slower

⇒ Memory optimization is more and more important!

Processes vs. threads

 Processes are separate instances of running
computer programs that have their exclusive
execution context, memory and other system
resources.

 Threads are parallel “independent” executions
within a process. They share the same
memory space and system resources (of the
process).

Concept for multi-thread …
Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

… vs. parallelisation

Geometry

Physics

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Geometry

Physics

Geometry

Physics

Nodes

 Each node
hosts a
complete
simulation

 Many copies
of geometry
and physics
tables

 More memory-
thristy

Situation of Monte Carlo sims

 Single-particle simulation is trivially parallelizable!
 Each event can be simulated independently

 not too much per-event state
 not too much memory necessary for computation

 A lot of “static” data
 complicated geometries (+ their optimization)
 physics tables (cross-section data)
 electromagnetic fields (if present)
 ⇒ We can benefit a lot from efficient memory sharing!

Solutions: threads

Advantages:
 memory & resource effectivity (sharing)
 in-process synchronization

Disadvantages:
 difficult to write properly
 difficult to debug (indeterministic behaviour)
 race conditions / dead-locks
 thread synchronization costs

Memory in MT applications

(C) A. Dotti

Performance in MT mode

Real physical cores No further gain 

Part II: Multi-threading in
Geant4

Execution modes in Geant4
 Sequential mode

 everything run in one thread only
 accepts both user actions and action initialization to

support old code (Geant4 < 10.0)
 Multithreaded mode

 “master” thread for the application
 events simulated in multiple “worker” threads
 accepts only action initialization
 Recently supported also in Windows OS

 Starting from Geant4 10.5

Good news: The same code may support both modes!

Multithreading in Geant4
Main thread ("master")
 initialization of geometry and physics
 user interface
 start worker threads
 distribute events
 merge results
Worker threads
 event simulation
 partial results
 user actions

SPLIT
RESPONSIBILITIES

Event processing
Master thread Worker 1 Worker 2 Worker 3

G4Run (100 evts)

G4Run (33 evts) G4Run (33 evts) G4Run (34 evts)

G4Run::Merge()

Event 0 Event 33 Event 67

Event 32 Event 66 Event 99

...

Results Results Results

Results

Note: The diagram is simplifying a bit: events are distributed
in seemingly random (though optimized) chunks,
not split among workers one-by-one or in equal parts.

G4MTRunManager

 Substitute for sequential G4RunManager
 inherits from it
 disables the SetUserAction() methods

 Additional responsibilities
 start worker threads
 distribute events among the workers
 take care about merging of runs

Run manager relations

G4UserRunAction in MT
mode

This action (unlike the rest) can apply in both worker
and master threads:

 To distinguish where you are, use IsMaster() method
 If you have behaviour for master, register the instance

in G4VUserActionInitialization::BuildForMaster()

void MyActionInitialization::Build() const {
 SetUserAction(new MyRunAction());
 // ...other actions
}

void MyActionInitialization::BuildForMaster() const {
 SetUserAction(new MyRunAction());
 // Only run action
}

Note: This, in principle, can be a different class

Merging of runs
 Usually tricky
 Geant4-native tools automatically

 command-based scoring
 g4analysis (histograms summed, trees in separate

files)
 Custom data require manual approach

 in G4Run::Merge() (of your custom “MyRun”)
 in G4RunEventAction::EndOfRunAction()

void MyRunAction::EndOfRunAction(const G4Run* run) {
 // ...
 // Merge accumulables
 G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance();
 accumulableManager->Merge();
 // ...

main() for both modes
 CMake setting

-DGEANT4_BUILD_MULTITHREADED=ON/OFF
 Preprocessor macro G4MULTITHREADED

 #include <G4MTRunManager.hh>
#include <G4RunManager.hh>

int main() {
 #ifdef G4MULTITHREADED
 G4MTRunManager* runManager = new G4MTRunManager;
 #else
 G4RunManager* runManager = new G4RunManager;
 #endif
 // ..
}

Set the number of threads
 Default number of threads: 2
 Change this using

 UI command:
 /run/numberOfThreads 6
 /run/useMaximumLogicalCores

 C++ code:
runManager->SetNumberOfThreads(4)

 Environment variable (highest priority):
G4FORCENUMBEROFTHREADS=4

 G4Threading::G4GetNumberOfCores() tells the
actual number of logical cores

 Further tweaking options available (advanced)
 Note: Must be done in pre-initialize stage

Multithreaded G4cout
 If you use G4cout for output, it’s relatively

synchronized and each message is prepended with
the thread number
 Note: this does not work with std::cout

(another reason not to use it!)

Run 0 starts.
G4WT1 > EventAction: absorber energy/time scorer ID: 0
G4WT1 > EventAction: scintillator energy/time scorer ID: 1
G4WT0 > EventAction: absorber energy/time scorer ID: 0
G4WT0 > EventAction: scintillator energy/time scorer ID: 1
 Run terminated.
Run Summary
 Number of events processed : 10000
 User=21s Real=11.36s Sys=1.59s

Multithreaded G4cout
 To buffer the output from each thread at a time,

so that the output of each thread is grouped and
printed at the end of the job

/control/cout/useBuffer true|false

 To limit the output from threads to one selected
thread only:
/control/cout/ignoreThreadsExcept 0

 To redirect the output from threads in a file:
/control/cout/setCoutFile coutFileName
/control/cout/setCerrFile cerrFileName

Part III: Thread-aware coding

Good news!
You don’t have to care (too much) about threading issues,
provided that you:
 Don’t manually open external files
 Use g4analysis / command-based scoring for output
 Avoid static variables and fields (especially in user actions)
 Correctly merge runs if using accumulables or hits
 Use the G4(MT)RunManager trick in main() (see above)
 Use G4VUserActionInitialization
 Don’t experiment with Geant4 kernel

(especially not in user actions)

If you don’t meet these conditions, you must write thread-
aware code.

Writing thread-safe code
 Find out which variables are modified inside the worker

threads:
 these must not be static!
 use G4ThreadLocal if possible
 split the classes if necessary

 Variable “locality”:
 don’t use global variables
 don’t use static class fields
 prefer local variables to class fields

 Be careful about deleting pointers
 Use mutexes & locks when you access a shared

resource

Shared resources and
mutex'es

 Mutex is an object variable that can be locked
so that only one thread can use it at the same
time.

 Lock is an act of locking the mutex:
 locking an open mutex succeeds immediately
 locking a locked mutex blocks and waits until it

is available again
 Manipulation with shared resources should

be encapsulated by locking/unlocking a
particular mutex

Mutex'es and locks in Geant4
 Mutex is best created as static object inside an

anonymous namespace (class G4Mutex)

 G4AutoLock is a “clever” implementation of the
locking mechanism:
 you just create it with mutex address as parameter
 when the object is destroyed (end of function or block),

the mutex is automatically freed

namespace { G4Mutex myMutex = G4MUTEX_INITIALIZER; }

{
 G4AutoLock(&myMutex);
 // ... (do something)
} // Now, the mutex is freed.

Drawbacks and caveats of
locking

 Synchronization & locking is not CPU costly
 Using multiple locks can lead to a dead-lock:

 Threads need mutexes A and B to proceed
 Thread1 has locked mutex A
 Thread2 has locked mutex B
 No thread can acquire the second lock!!!

Alternatives:
 There are more sophisticated threading tools
 Avoid using shared resources as much as possible

G4AutoDelete

 If you don’t know when to properly delete an
object in threads (typical case!), you can
register it with G4AutoDelete

 This will ensure that the object is deleted when
the worker thread ends.

#include "G4AutoDelete.hh"
// ...
G4AutoDelete::Register(aPointer);
// ...

Thread-safe I/O
 Geant4’s scoring and g4analysis are thread-safe
 Custom output (alternatives):

 Have one file per thread (or per each instance of user
action class)

 Have only one file and guard the procedure by
mutex, add some caching mechanism

 Custom input:
 Read everything in master thread and share the data

as read-only
 Reading on demand – protect by mutex, add some

caching mechanism

Ex
am

pl
e:

 re
ad

pa

rti
cle

s
namespace { G4Mutex myMutex = G4MUTEX_INITIALIZER; }
MyFileReader* MyPrimaryGenAction::fileReader = nullptr;

MyPrimaryGenAction::MyPrimaryGenAction(G4String fileName) {
 G4AutoLock lock(&myMutex);
 if (!fileReader) fileReader = new MyFileReader(fileName);
 particleGun = new G4ParticleGun(1);
 // ...Define particle properties
}

MyPrimaryGenAction::~MyLowEPrimaryGenAction() {
 G4AutoLock lock(&myMutex);
 if (fileReader) { delete fileReader; fileReader = 0; }
}

void MyPrimaryGenAction::GeneratePrimaries(G4Event* anEvent) {
 G4ThreeVector momDirection;
 G4AutoLock lock(&myMutex);
 momDirection = fileReader->GetAnEvent();
 particleGun->SetParticleMomentumDirection(momDirection);
 // ...Set other particle properties
}

Conclusion

 Geant4 offers an optimized multithreaded mode
(optional)

 Multithreading is powerful but a complex and
potentially dangerous tool

Hands-on session
 Task 4

 Task4e: Try to run in sequential and MT

 http://202.122.35.42/task4

	MultiThreading in Geant4
	Part I: Motivation
	Motivation: performance/$
	Processes vs. threads
	Concept for multi-thread …
	… vs. parallelisation
	Situation of Monte Carlo sims
	Solutions: threads
	Memory in MT applications
	Performance in MT mode
	Part II: Multi-threading in Geant4
	Execution modes in Geant4
	Multithreading in Geant4
	Event processing
	G4MTRunManager
	Run manager relations
	G4UserRunAction in MT mode
	Merging of runs
	main() for both modes
	Set the number of threads
	Multithreaded G4cout
	Multithreaded G4cout
	Part III: Thread-aware coding
	Good news!
	Writing thread-safe code
	Shared resources and mutex'es
	Mutex'es and locks in Geant4
	Drawbacks and caveats of locking
	G4AutoDelete
	Thread-safe I/O
	Example: read particles
	Conclusion
	Hands-on session

