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Part I: Motivation 



Motivation: performance/$ 
 Multi-core CPUs 

 
 Expensive memory 

 

fast 

slower 

⇒  Memory optimization is more and more important!  



Processes vs. threads 

 Processes are separate instances of running 
computer programs that have their exclusive 
execution context, memory and other system 
resources. 

 Threads are parallel “independent” executions 
within a process. They share the same 
memory space and system resources (of the 
process).  
 



Concept for multi-thread … 
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… vs. parallelisation 
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 Each node 
hosts a 
complete 
simulation 

 Many copies 
of geometry 
and physics 
tables 

 More memory-
thristy 



Situation of Monte Carlo sims 

 Single-particle simulation is trivially parallelizable! 
 Each event can be simulated independently 

 not too much per-event state 
 not too much memory necessary for computation 

 A lot of “static” data 
 complicated geometries (+ their optimization) 
 physics tables (cross-section data) 
 electromagnetic fields (if present) 
 ⇒  We can benefit a lot from efficient memory sharing! 



Solutions: threads 

Advantages: 
 memory & resource effectivity (sharing) 
 in-process synchronization 

Disadvantages: 
 difficult to write properly 
 difficult to debug (indeterministic behaviour) 
 race conditions / dead-locks 
 thread synchronization costs 

 



Memory in MT applications 

(C) A. Dotti 



Performance in MT mode 

Real physical cores No further gain  



Part II: Multi-threading in 
Geant4 



Execution modes in Geant4 
 Sequential mode 

 everything run in one thread only 
 accepts both user actions and action initialization to 

support old code (Geant4 < 10.0) 
 Multithreaded mode 

 “master” thread for the application  
 events simulated in multiple “worker” threads 
 accepts only action initialization 
 Recently supported also in Windows OS  

 Starting from Geant4 10.5 
 

Good news: The same code may support  both modes! 
 



Multithreading in Geant4 
Main thread ("master") 
 initialization of geometry and physics 
 user interface 
 start worker threads 
 distribute events 
 merge results 
Worker threads 
 event simulation  
 partial results 
 user actions 

SPLIT 
RESPONSIBILITIES 



Event processing 
Master thread Worker 1 Worker 2 Worker 3 

G4Run (100 evts) 

G4Run (33 evts) G4Run (33 evts) G4Run (34 evts) 

G4Run::Merge() 

Event 0 Event 33 Event 67 

Event 32 Event 66 Event 99 

... ... ... 

Results Results Results 

Results 

Note: The diagram is simplifying a bit: events are distributed  
in seemingly random (though optimized) chunks, 
not split among workers one-by-one or in equal parts. 



G4MTRunManager 

 Substitute for sequential G4RunManager 
 inherits from it 
 disables the SetUserAction() methods 

 Additional responsibilities 
 start worker threads 
 distribute events among the workers 
 take care about merging of runs 
 



Run manager relations 



G4UserRunAction in MT 
mode 

This action (unlike the rest) can apply in both worker 
and master threads: 

 To distinguish where you are, use IsMaster() method 
 If you have behaviour for master, register the instance 

in G4VUserActionInitialization::BuildForMaster() 
 

void MyActionInitialization::Build() const { 
    SetUserAction(new MyRunAction());     
    // ...other actions 
} 
 
void MyActionInitialization::BuildForMaster() const { 
    SetUserAction(new MyRunAction()); 
    // Only run action 
} 

Note: This, in principle, can be a different class 



Merging of runs 
 Usually tricky 
 Geant4-native tools automatically 

 command-based scoring 
 g4analysis (histograms summed, trees in separate 

files) 
 Custom data require manual approach 

 in G4Run::Merge() (of your custom “MyRun”) 
 in G4RunEventAction::EndOfRunAction() 

 
void MyRunAction::EndOfRunAction(const G4Run* run) { 
    // ... 
    // Merge accumulables 
    G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance(); 
    accumulableManager->Merge(); 
    // ... 



main() for both modes 
 CMake setting 

-DGEANT4_BUILD_MULTITHREADED=ON/OFF 
 Preprocessor macro G4MULTITHREADED 

 #include <G4MTRunManager.hh> 
#include <G4RunManager.hh> 
 
int main() { 
    #ifdef G4MULTITHREADED 
        G4MTRunManager* runManager = new G4MTRunManager; 
    #else 
        G4RunManager* runManager = new G4RunManager; 
    #endif 
    // .. 
} 



Set the number of threads 
 Default number of threads: 2 
 Change this using 

 UI command: 
 /run/numberOfThreads 6 
 /run/useMaximumLogicalCores 

 C++ code: 
runManager->SetNumberOfThreads(4) 

 Environment variable  (highest priority): 
G4FORCENUMBEROFTHREADS=4  

 G4Threading::G4GetNumberOfCores() tells the 
actual number of logical cores 

 Further tweaking options available (advanced) 
 Note: Must be done in pre-initialize stage 



Multithreaded G4cout 
 If you use G4cout for output, it’s relatively 

synchronized and each message is prepended with 
the thread number 
 Note: this does not work with std::cout 

(another reason not to use it!)  
 
### Run 0 starts. 
G4WT1 > EventAction: absorber energy/time scorer ID: 0 
G4WT1 > EventAction: scintillator energy/time scorer ID: 1 
G4WT0 > EventAction: absorber energy/time scorer ID: 0 
G4WT0 > EventAction: scintillator energy/time scorer ID: 1 
 Run terminated. 
Run Summary 
  Number of events processed : 10000 
  User=21s Real=11.36s Sys=1.59s 



Multithreaded G4cout 
 To buffer the output from each thread at a time, 

so that the output of each thread is grouped and 
printed at the end of the job 

/control/cout/useBuffer true|false 

 To limit the output from threads to one selected 
thread only: 
/control/cout/ignoreThreadsExcept 0 

 To redirect the output from threads in a file: 
/control/cout/setCoutFile coutFileName 
/control/cout/setCerrFile cerrFileName 
 



Part III: Thread-aware coding 



Good news! 
You don’t have to care (too much) about threading issues, 
provided that you: 
 Don’t manually open external files  
 Use g4analysis / command-based scoring for output 
 Avoid static variables and fields (especially in user actions) 
 Correctly merge runs if using accumulables or hits 
 Use the G4(MT)RunManager trick in main() (see above) 
 Use G4VUserActionInitialization 
 Don’t experiment with Geant4 kernel 

(especially not in user actions) 
 

If you don’t meet these conditions, you must write thread-
aware code. 

 



Writing thread-safe code 
 Find out which variables are modified inside the worker 

threads: 
 these must not be static! 
 use G4ThreadLocal if possible 
 split the classes if necessary 

 Variable “locality”: 
 don’t use global variables 
 don’t use static class fields 
 prefer local variables to class fields 

 Be careful about deleting pointers 
 Use mutexes & locks when you access a shared 

resource 
 



Shared resources and 
mutex'es 

 Mutex is an object variable that can be locked 
so that only one thread can use it at the same 
time. 

 Lock is an act of locking the mutex: 
 locking an open mutex succeeds immediately 
 locking a locked mutex blocks and waits until it 

is available again 
 Manipulation with shared resources should 

be encapsulated by locking/unlocking a 
particular mutex  



Mutex'es and locks in Geant4 
 Mutex is best created as static object inside an 

anonymous namespace (class G4Mutex) 
 
 

 G4AutoLock is a “clever” implementation of the 
locking mechanism: 
 you just create it with mutex address as parameter 
 when the object is destroyed (end of function or block), 

the mutex is automatically freed 
 

namespace { G4Mutex myMutex = G4MUTEX_INITIALIZER; } 

{ 
    G4AutoLock(&myMutex); 
    // ... (do something) 
}   // Now, the mutex is freed. 



Drawbacks and caveats of 
locking 

 Synchronization & locking is not CPU costly  
 Using multiple locks can lead to a dead-lock: 

 Threads need mutexes A and B to proceed 
 Thread1 has locked mutex A 
 Thread2 has locked mutex B 
 No thread can acquire the second lock!!! 

 
Alternatives: 
 There are more sophisticated threading tools 
 Avoid using shared resources as much as possible 

 



G4AutoDelete 

 If you don’t know when to properly delete an 
object in threads (typical case!), you can 
register it with G4AutoDelete 
 
 
 

 This will ensure that the object is deleted when 
the worker thread ends. 
 

#include "G4AutoDelete.hh" 
// ... 
G4AutoDelete::Register(aPointer); 
// ... 



Thread-safe I/O 
 Geant4’s scoring and g4analysis are thread-safe 
 Custom output (alternatives): 

 Have one file per thread (or per each instance of user 
action class) 

 Have only one file and guard the procedure by 
mutex, add some caching mechanism 

 Custom input: 
 Read everything in master thread and share the data 

as read-only 
 Reading on demand – protect by mutex, add some 

caching mechanism 
 



Ex
am
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namespace { G4Mutex myMutex = G4MUTEX_INITIALIZER; } 
MyFileReader* MyPrimaryGenAction::fileReader = nullptr; 
  
MyPrimaryGenAction::MyPrimaryGenAction(G4String fileName) { 
 G4AutoLock lock(&myMutex); 
 if (!fileReader) fileReader = new MyFileReader(fileName); 
 particleGun = new G4ParticleGun(1); 
 // ...Define particle properties 
} 
  
MyPrimaryGenAction::~MyLowEPrimaryGenAction() { 
 G4AutoLock lock(&myMutex); 
 if (fileReader) { delete fileReader; fileReader = 0; } 
} 
  
void MyPrimaryGenAction::GeneratePrimaries(G4Event* anEvent) { 
 G4ThreeVector momDirection; 
 G4AutoLock lock(&myMutex); 
 momDirection = fileReader->GetAnEvent(); 
 particleGun->SetParticleMomentumDirection(momDirection); 
 // ...Set other particle properties 
} 



Conclusion 

 Geant4 offers an optimized multithreaded mode 
(optional) 

 Multithreading is powerful but a complex and 
potentially dangerous tool 

 



Hands-on session 
 Task 4 

 Task4e: Try to run in sequential and MT 
 
 http://202.122.35.42/task4 
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