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Part I:
Geant4 design principles
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How to work with Geant4

sk Your model = “normal” application written in C++
* Geant4 = “normal” external library which you compile

and link

= You have to:
 create an empty C++ application

* initialize Geant4 in the application main ()

* describe the geometry, primary particles, physics and other
functionality in terms of Geant4 classes

e compile the code with Geant4

* run your application
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Modular architecture

Geant4 consists of a lot of modules:

—Run: management of the runs
—Event: management of events
—Tracking: particle tracks in the geometry

—Processes: physics attached to particles ‘"“f '
—Particle: elementary and other particles =] ==
—Geometry: description of the detector NE 174 |
—Material: all material properties =
—Interfaces: communication with user =
—Visualization: graphical representation ]

of geometry & tracks =i
—...and others m}j\m
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Part Il:
Your application
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Application source structur

Note: Recommended, not enforced!

Application source structure

Official basic/B1 example: The text file CMakeLists.txt is the
CMake script containing commands
2,4K 4 Dic 14:48 ((MakeLists.txt- -~~~ Which describe how to build the
475B 4 Dic 14:48 GNUmakefile e
2,8K 4 Dic 14:48 HiStory | contains main() for
7,5K 4 Dic 14:48 README the application
4,0K 4 Dic 14:48 exampleBl.cc---7° _
226B 4 Dic 14:48 exampleBl.in Header files
35K 4 Dic 14:48 exampleBl.out " | 2,2k 4 Dic 14:48 BlActionInitialization.hh
: . : -7 2,4K 4 Dic 14:48 BlDetectorConstruction.hh
2728 4 D}c 14:49 }nglud(.e 2,4K 4 Dic 14:48 BlEventAction.hh
338B 4 Dic 14:48 1init_vis.mac 2,7K 4 Dic 14:48 BlPrimaryGeneratorAction.hh
553B 4 Dic 14:48 runl.mac 2,5K 4 Dic 14:48 B1RunAction.hh
. 2,4K 4 Dic 14:48 B1St ingAction. hh
4488 4 Dic 14:48 run2.mac = SPPINRCEION
272B 4 Dic 14:49 src - _____ Source files
3,8K 4 Dic 14:48 vis.mac 2,9K 4 Dic 14:48 BlActionInitialization.cc
_ o 7,7 4 Dic 14:48 BlDetectorConstruction.cc
Macro file containing the 2,6K 4 Dic 14:48 BlEventAction.cc
commands 4,3K 4 Dic 14:48 BlPrimaryGeneratorAction.cc
5,8K 4 Dic 14:48 B1RunAction.cc
3,2K 4 Dic 14:48 Bl1SteppingAction.cc
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How to add a new class

1) Select a class to inherit from (if applicable)
2) Find a good name for your class (no abbreviations,
confusing words, otherwise inadequate)
3) Create a header file in include/
— name it using the class name, with .hh extension

— define the class (inheriting from the base)
— declare the methods to override and other methods

4) Create a source file in src/
— name it using the class name, with .cc extension
— #include the header file
— add definition for the class methods

Whenever you want to use it, include the header!
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Typical header file

MyDetectorConstruction.hh Header protection (against multiple
#ifndef MYDETECTORCONSTRUCTION HH ..—— | | inclusions)
#define MYDETECTORCONSTRUCTION_HH Include other header files (the base class +
P
#include <GAVUserDetectorConstruction.hh$ )
1 New class definition (corresponding to the file name!b
class MyDetector‘Constr‘uction/
: public G4VUserDetectorConstruction <= Inherit from a base class
{
public: —{ Constructor (optional)
MyDetectorConstruction(); 4///
~MyDetectorConstruction(); « Virtual destructor (optional)
G4VPhysicalVolume* Construct() override; G4VUserDetectorConstruction.hh |
void ConstructSDandField() override; | /] ...
class G4VUserDetectorConstruction
private: { o
G4lLogicalVolume* fLogVolume { nullptr| }; Ll ,
}. G4VUserDetectorConstruction();
#’ dif / virtual ~G4VUserDetectorConstruction();
endi
/ public:
Override virtual G4VPhysicalVolume* Construct() = 0;
f;'\T(]jember virtual virtual void ConstructSDandField();
e :
functions ) 7 ee
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Typical source file

Including the associated header file

MyDetectorConstruction.cc

#include "MyDetectorConstruction.hh"

Include other

#include <G4Box.hh> <

. . headers
#include <G4LogicalVolume.hh> MyDetectorConstruction.hh
#include <G4PVPlacement.hh>

class MyDetectorConstruction
: public G4VUserDetectorConstruction

MyDetectorConstruction: :MyDetectorConstruction() { {
// - ’\Ublic:
} MyDetectorConstruction();

~MyDetectorConstruction();

~MyDetectorConstruction::MyDetectorConstruction()~[4””/,””

/.. G4VPhysicalVolume* Construct() override;
} void ConstructSDandField() override;
private:
G4VPhysicalVolume* MyDetectorConstruction::Construct() { G4LogicalVolume* fLogVolume;
G4Box* box = // ... }s
B e
fLogVolume =

return new G4PVPlacement(nullptr, {}, fLogVolume, "world", nullptr, @, 0);

void MyDetectorConstruction::ConstructSDandField() { «
(T

The 2nd Geant4 School in China, Shandong University, Qingdao



Mandatory user classes

Initialization classes Action classes
G4VUserDetectorConstruction G4VUserPrimaryGeneratorAction
G4VUserPhysicslList

G4VUserActionInitialization
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Primary generator action

» Define the source of simulated particles

— particle type
— Kinematic properties
— additional information

...more on that in
a separate talk...

G4VUserPrimaryGeneratorAction.hh

/l ...

class G4VUserPrimaryGeneratorAction

{
public:

G4VUserPrimaryGeneratorAction();
virtual ~G4VUserPrimaryGeneratorAction();
public:
virtual void GeneratePrimaries(G4Event* anEvent) = 0;
[l ««.
}
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Physics list

» Define all necessary particles

» Define all necessary processes and assign
them to proper particles

» Define particles production threshold (in terms

; G4VUserPhysicsList.hh }_
[[ oes
class G4VUserPhysicslList
{
- public:
...more on that in eavliserphysicsList();
virtual ~G4VUserPhysicsList();
2 separate talks... ke

virtual void ConstructParticle() = 0;
virtual void ConstructProcess() = 0;
virtual void SetCuts();
[l «..

}
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Detector construction

» Define the geometry of your model
— All materials

— All volumes & placements

* (Optionally) add fields

* (Optionally) define volumes for read-out
(sensitive detectors)

} G4VUserDetectorConstruction.hh }_

W Ao
class G4VUserDetectorConstruction
{
3 public:
"'more on that In G4VUserDetectorConstruction();
virtual ~G4VUserDetectorConstruction();
3 separate talks...

public:
virtual G4VPhysicalVolume* Construct() = 0;
virtual void ConstructSDandField();
[/ ...
}
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User interaction

Communicate with your application at three
levels:

* hard-coded application with no interaction
» batch mode controlled by macro files

* interactive mode with real-time user response
—various terminal user interfaces

. . . |
— various graphical us“‘ef;—'\qtgrfaces/\\ -
& // _ |
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other user interaction

» Optional actions as hooks for
situations:
— G4UserRunAction
— G4UserEventAction
— G4UserStackingAction
— G4UserTrackingAction
— G4UserSteppingAction

different

* Bind them all in G4VUserActionlnitialization

! G4VUserActionInitialization.hh

cl
- {
...more on that in

a separate talk...

}

/l ...

ass G4VUserActionInitialization

public:

G4VUserActionInitialization ();

virtual ~G4VUserActionInitialization ();
public:

virtual void Build() const = 9;

virtual void BuildForMaster() const;

/l ...
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Visualization

* View and debug your geometry

* View and study the tracks

* Produce (almost) publication-ready graphics
» Export events and geometry to text files

All of that is enabled in various “drivi's\”-/

> ..more on that %
X in exercises..

/w\/w

The 2nd Geant4 School in China, Shandong University, Qingdao



main() function

Geant4 does not provide main entry to your
application, but any (C++) executable needs it!

Define it:

1) Create a source (.cc) file in the root directory of
the application (name is not important)

2) Define a main function:

—int main() or int main(int argc, char** argv)
3) Inside it:

— initialize the run manager

— initialize all your initialization classes
— Initialize user interface and/or visualization
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Example: simple(st) main()

myApplication.hh

#include <G4RunManager.hh> -
#include <G4UIExecutive.hh>

Include Geant4 class

#include <G4VisExecutive.hh> neaders
#include "MyDetectorConstruction.hh”
#include "MyPhysicsList.hh"" Include your class
#include "MyActionInitialization.hh" headers
Prepare Geant4 kernel
int main(int argc, char** argv) { x/////
G4RunManager* runManager = new G4RunManager;
runManager->SetUserInitialization(new MyDetectorConstruction); S?FUP3@“"
runManager->SetUserInitialization(new MyPhysicsList); 4-”””ijj7:"ﬂhahzahoncﬂasses

runManager->SetUserInitialization(new MyActionInitialization);
G4VisManager* visManager = new G4VisExecutive;
visManager->Initialize() ;<

G4UIExecutive* ui = new G4UIExecutive(argc, argv);<~‘~\‘~\‘~\‘~\
Enable user

ui->SessionStart();
O~ Interact with user interface

delete ui;
delete visM;;;EEF?f::::::::§§~
delete runManager; . Final clean-up

Enable visualization
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General recipe: application

1) Design your application... (what is supposed to do?)

2) Implement the mandatory user classes
— detector construction
— physics list
— primary generator action
— action initialization

3) Implement (optional) user action classes

— run action, event action, stacking action, tracking action, stepping
action

4) Write the main() function

— create a run manager instance
— register user initialization classes with the run manager

— optionally initialize user interface and/or visualization

do more!
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