[« GEANT

Structure of a Geant4
application

Giada Petringa
Laboratori Nazionali del Sud (LNS-INFN)

The 2nd Geant4 School in China, Shandong University, Qingdao 1

Contents

1) Geant4 design principles

2) Your application: the first step

The 2nd Geant4 School in China, Shandong University, Qingdao

Part I:
Geant4 design principles

The 2nd Geant4 School in China, Shandong University, Quingdao

How to work with Geant4

sk Your model = “normal” application written in C++
* Geant4 = “normal” external library which you compile

and link

= You have to:
 create an empty C++ application

* initialize Geant4 in the application main ()

* describe the geometry, primary particles, physics and other
functionality in terms of Geant4 classes

e compile the code with Geant4

* run your application

The 2nd Geant4 School in China, Shandong University, Qingdao

Modular architecture

Geant4 consists of a lot of modules:

—Run: management of the runs
—Event: management of events
—Tracking: particle tracks in the geometry

—Processes: physics attached to particles ‘"“f '
—Particle: elementary and other particles =] ==
—Geometry: description of the detector NE 174 |
—Material: all material properties =
—Interfaces: communication with user =
—Visualization: graphical representation]

of geometry & tracks =i
—...and others m}j\m

The 2nd Geant4 School in China, Shandong University, Qingdao

Part Il:
Your application

The 2nd Geant4 School in China, Shandong University, Quingdao

Application source structur

Note: Recommended, not enforced!

Application source structure

Official basic/B1 example: The text file CMakeLists.txt is the
CMake script containing commands
2,4K 4 Dic 14:48 ((MakeLists.txt- -~~~ Which describe how to build the
475B 4 Dic 14:48 GNUmakefile e
2,8K 4 Dic 14:48 HiStory | contains main() for
7,5K 4 Dic 14:48 README the application
4,0K 4 Dic 14:48 exampleBl.cc---7° _
226B 4 Dic 14:48 exampleBl.in Header files
35K 4 Dic 14:48 exampleBl.out " | 2,2k 4 Dic 14:48 BlActionInitialization.hh
: . : -7 2,4K 4 Dic 14:48 BlDetectorConstruction.hh
2728 4 D}c 14:49 }nglud(.e 2,4K 4 Dic 14:48 BlEventAction.hh
338B 4 Dic 14:48 1init_vis.mac 2,7K 4 Dic 14:48 BlPrimaryGeneratorAction.hh
553B 4 Dic 14:48 runl.mac 2,5K 4 Dic 14:48 B1RunAction.hh
. 2,4K 4 Dic 14:48 B1St ingAction. hh
4488 4 Dic 14:48 run2.mac = SPPINRCEION
272B 4 Dic 14:49 src - _____ Source files
3,8K 4 Dic 14:48 vis.mac 2,9K 4 Dic 14:48 BlActionInitialization.cc
_ o 7,7 4 Dic 14:48 BlDetectorConstruction.cc
Macro file containing the 2,6K 4 Dic 14:48 BlEventAction.cc
commands 4,3K 4 Dic 14:48 BlPrimaryGeneratorAction.cc
5,8K 4 Dic 14:48 B1RunAction.cc
3,2K 4 Dic 14:48 Bl1SteppingAction.cc

The 2nd Geant4 School in China, Shandong University, Qingdao

How to add a new class

1) Select a class to inherit from (if applicable)
2) Find a good name for your class (no abbreviations,
confusing words, otherwise inadequate)
3) Create a header file in include/
— name it using the class name, with .hh extension

— define the class (inheriting from the base)
— declare the methods to override and other methods

4) Create a source file in src/
— name it using the class name, with .cc extension
— #include the header file
— add definition for the class methods

Whenever you want to use it, include the header!

The 2nd Geant4 School in China, Shandong University, Qingdao

Typical header file

MyDetectorConstruction.hh Header protection (against multiple
#ifndef MYDETECTORCONSTRUCTION HH ..—— | | inclusions)
#define MYDETECTORCONSTRUCTION_HH Include other header files (the base class +
P
#include <GAVUserDetectorConstruction.hh$)
1 New class definition (corresponding to the file name!b
class MyDetector‘Constr‘uction/
: public G4VUserDetectorConstruction <= Inherit from a base class
{
public: —{ Constructor (optional)
MyDetectorConstruction(); 4///
~MyDetectorConstruction(); « Virtual destructor (optional)
G4VPhysicalVolume* Construct() override; G4VUserDetectorConstruction.hh |
void ConstructSDandField() override; | /] ...
class G4VUserDetectorConstruction
private: { o
G4lLogicalVolume* fLogVolume { nullptr| }; Ll ,
}. G4VUserDetectorConstruction();
#’ dif / virtual ~G4VUserDetectorConstruction();
endi
/ public:
Override virtual G4VPhysicalVolume* Construct() = 0;
f;'\T(]jember virtual virtual void ConstructSDandField();
e :
functions) 7 ee

The 2nd Geant4 School in China, Shandong University, Qingdao

Typical source file

Including the associated header file

MyDetectorConstruction.cc

#include "MyDetectorConstruction.hh"

Include other

#include <G4Box.hh> <

. . headers
#include <G4LogicalVolume.hh> MyDetectorConstruction.hh
#include <G4PVPlacement.hh>

class MyDetectorConstruction
: public G4VUserDetectorConstruction

MyDetectorConstruction: :MyDetectorConstruction() { {
// - ’\Ublic:
} MyDetectorConstruction();

~MyDetectorConstruction();

~MyDetectorConstruction::MyDetectorConstruction()~[4””/,””

/.. G4VPhysicalVolume* Construct() override;
} void ConstructSDandField() override;
private:
G4VPhysicalVolume* MyDetectorConstruction::Construct() { G4LogicalVolume* fLogVolume;
G4Box* box = // ... }s
B e
fLogVolume =

return new G4PVPlacement(nullptr, {}, fLogVolume, "world", nullptr, @, 0);

void MyDetectorConstruction::ConstructSDandField() { «
(T

The 2nd Geant4 School in China, Shandong University, Qingdao

Mandatory user classes

Initialization classes Action classes
G4VUserDetectorConstruction G4VUserPrimaryGeneratorAction
G4VUserPhysicslList

G4VUserActionInitialization

The 2nd Geant4 School in China, Shandong University, Quingdao

Primary generator action

» Define the source of simulated particles

— particle type
— Kinematic properties
— additional information

...more on that in
a separate talk...

G4VUserPrimaryGeneratorAction.hh

/l ...

class G4VUserPrimaryGeneratorAction

{
public:

G4VUserPrimaryGeneratorAction();
virtual ~G4VUserPrimaryGeneratorAction();
public:
virtual void GeneratePrimaries(G4Event* anEvent) = 0;
[l ««.
}

The 2nd Geant4 School in China, Shandong University, Qingdao

Physics list

» Define all necessary particles

» Define all necessary processes and assign
them to proper particles

» Define particles production threshold (in terms

; G4VUserPhysicsList.hh }_
[[oes
class G4VUserPhysicslList
{
- public:
...more on that in eavliserphysicsList();
virtual ~G4VUserPhysicsList();
2 separate talks... ke

virtual void ConstructParticle() = 0;
virtual void ConstructProcess() = 0;
virtual void SetCuts();
[l «..

}

The 2nd Geant4 School in China, Shandong University, Qingdao

Detector construction

» Define the geometry of your model
— All materials

— All volumes & placements

* (Optionally) add fields

* (Optionally) define volumes for read-out
(sensitive detectors)

} G4VUserDetectorConstruction.hh }_

W Ao
class G4VUserDetectorConstruction
{
3 public:
"'more on that In G4VUserDetectorConstruction();
virtual ~G4VUserDetectorConstruction();
3 separate talks...

public:
virtual G4VPhysicalVolume* Construct() = 0;
virtual void ConstructSDandField();
[/ ...
}

The 2nd Geant4 School in China, Shandong University, Qingdao

User interaction

Communicate with your application at three
levels:

* hard-coded application with no interaction
» batch mode controlled by macro files

* interactive mode with real-time user response
—various terminal user interfaces

. . . |
— various graphical us“‘ef;—'\qtgrfaces/\\ -
& // _ |
\\\. B /“
< ..moreonthatin P———
~_~ 2separatetalks... =

LA / \\ \\

IN
/ \
/ \ / ~
/ = \ | g \
g y ~
~~ \‘ / ‘\\\\
\ | -
| y l‘
k‘ y - ‘l
\ N
\
“‘ / \‘

The 2nd Geant4 School in China, Shandong University, Qingdao

other user interaction

» Optional actions as hooks for
situations:
— G4UserRunAction
— G4UserEventAction
— G4UserStackingAction
— G4UserTrackingAction
— G4UserSteppingAction

different

* Bind them all in G4VUserActionlnitialization

! G4VUserActionInitialization.hh

cl
- {
...more on that in

a separate talk...

}

/l ...

ass G4VUserActionInitialization

public:

G4VUserActionInitialization ();

virtual ~G4VUserActionInitialization ();
public:

virtual void Build() const = 9;

virtual void BuildForMaster() const;

/l ...

The 2nd Geant4 School in China, Shandong University, Qingdao

Visualization

* View and debug your geometry

* View and study the tracks

* Produce (almost) publication-ready graphics
» Export events and geometry to text files

All of that is enabled in various “drivi's\”-/

> ..more on that %
X in exercises..

/w\/w

The 2nd Geant4 School in China, Shandong University, Qingdao

main() function

Geant4 does not provide main entry to your
application, but any (C++) executable needs it!

Define it:

1) Create a source (.cc) file in the root directory of
the application (name is not important)

2) Define a main function:

—int main() or int main(int argc, char** argv)
3) Inside it:

— initialize the run manager

— initialize all your initialization classes
— Initialize user interface and/or visualization

The 2nd Geant4 School in China, Shandong University, Qingdao

Example: simple(st) main()

myApplication.hh

#include <G4RunManager.hh> -
#include <G4UIExecutive.hh>

Include Geant4 class

#include <G4VisExecutive.hh> neaders
#include "MyDetectorConstruction.hh”
#include "MyPhysicsList.hh"" Include your class
#include "MyActionInitialization.hh" headers
Prepare Geant4 kernel
int main(int argc, char** argv) { x/////
G4RunManager* runManager = new G4RunManager;
runManager->SetUserInitialization(new MyDetectorConstruction); S?FUP3@“"
runManager->SetUserInitialization(new MyPhysicsList); 4-”””ijj7:"ﬂhahzahoncﬂasses

runManager->SetUserInitialization(new MyActionInitialization);
G4VisManager* visManager = new G4VisExecutive;
visManager->Initialize() ;<

G4UIExecutive* ui = new G4UIExecutive(argc, argv);<~‘~\‘~\‘~\‘~\
Enable user

ui->SessionStart();
O~ Interact with user interface

delete ui;
delete visM;;;EEF?f::::::::§§~
delete runManager; . Final clean-up

Enable visualization

The 2nd Geant4 School in China, Shandong University, Quingdao

General recipe: application

1) Design your application... (what is supposed to do?)

2) Implement the mandatory user classes
— detector construction
— physics list
— primary generator action
— action initialization

3) Implement (optional) user action classes

— run action, event action, stacking action, tracking action, stepping
action

4) Write the main() function

— create a run manager instance
— register user initialization classes with the run manager

— optionally initialize user interface and/or visualization

do more!

The 2nd Geant4 School in China, Shandong University, Qingdao

The 2nd Geant4 School in China, Shandong University, Qingdao

