Observation for large-scale anisotropy of cosmic rays with partial array of LHAASO

W. GAO, SHANDONG UNIVERSITY

COLLABORATORS: S.Z. CHEN, W.L.LI, C.G. ZHU, P.P. ZHANG NANJING,2019/04/14

Content

Introduction
LHAASO
Anisotropy with prototype array
Conclusion

Introduction

Cosmic rays were observed with magnitude of about $10^{-4} \sim 10^{-3}$ anisotropy by ground arrays. Such as Tibet-Asp, ARGO-YBJ, Milagro, HAWC, Auger

Two typical features:
A: "Tail-in", excess structure around 50 to 130 R.A.
B: "Loss-cone", deficient structure around 150 to 250 R.A.

Anisotropy VS Energy

Anisotropy VS Energy

Bartoli et al. 2018

Tibet-AS γ

M. Amenomori et al. 2017

IceCube

Aartsen et al. 2016

C: New "excess" above 100 TeV up to PeV,
nearly the Galactic Center direction.

Hint the Galactic origin of CRs

Anisotropy VS Energy

Auger: above 8 EeV , with $3^{*} 10^{\wedge} 4$ CRs.

Fig. 2. Map showing the fluxes of particles in equatorial coordinates. Sky map in equatorial coordinates, using a Hammer projection, showing the cosmic-ray flux above 8 EeV smoothed with a 45° top-hat function. The galactic center is marked with an asterisk; the galactic plane is shown by a dashed line. by a dashed line.

The phase at $\alpha_{\delta}=100 \pm 10^{\circ}$, indicating an extragalactic origin for these ultrahigh-energy particles.

Fig. 3. Map showing the fluxes of particles in galactic coordinates. Sky map in galactic coordinates showing the cosmic-ray flux for $E \geq 8 \mathrm{EeV}$ smoothed with a 45° top-hat function. The galactic center is at the origin. The cross indicates the measured dipole direction; the contours denote the 68% and 95% confidence level regions. The dipole in the 2MRS galaxy distribution is indicated. Arrows show the deflections expected for a particular model of the galactic magnetic field (8) on particles with $E / Z=5$ or 2 EeV .

Long term observation @ TeV

ARGO, Tibet Asp, Milagro

IceCube

LHAASO

KM2A-prototype array@YangBaJing

LHAASO

KM2A+WCDA+WFCTA@DaoCheng

KM2A prototype array

The experiment data

KM2A-protoarray@YangBaJing

33ED@Daocheng
71ED+10MD@ Daocheng
WCDA @ Daocheng

From 2014.10 to 2016.9
nfilte ≥ 5
Zenith angle < 50° About 2.08×10^{9} events

Anisotropy with prototype array

About 29 TeV , with 30 deg smooth

Range A: vanished "Tail-in"
Range B: "Lose-cone"
Range D: Confused "excess"

Energy dependence

NfitE	Energy (TeV)	events
$5-9$	18.95	1.54 e 9
$10-19$	38.08	4.44 e 8
$>=20$	131.51	9.90 e 7

E(TeV)	18.95	38.08	131.51
Amp	$9.98 \mathrm{e}-04$	$12.14 \mathrm{e}-04$	$5.91 \mathrm{e}-04$
Phase	323.76 ± 2.06	317.75 ± 3.16	279.56 ± 13.76

Range D: The phase of the excess has a shift.

Km2a-proto:130TeV

With the phase at $\mathbf{2 7 9 . 5 6} \pm \mathbf{1 3 . 7 6}$, then

- Range D: Confused "excess" ?
- Range C: The new excess toward Galactic Center ?

Check: Moon shadow

Zen <50, 0.1 degree/bin,1.5 deg smooth,NfiltE>=5

Check: Solar time

Check: Anti-sidereal

E(TeV)	Amp_sid	Amp_anti	Phi_anti
19	$9.98 \mathrm{e}-04$	$5.87 \mathrm{e}-04$	31
38	$12.14 \mathrm{e}-04$	$6.28 \mathrm{e}-04$	23
130	$5.91 \mathrm{e}-04$	$7.47 \mathrm{e}-04$	67

Conclusion

>The anisotropy with data collected by km2a-prototype array was analyzed.
$>$ A confused excess in range D was observed, and the causes of the feature is still unknown.

Future plan

$>$ More detail work to check the prototype array data.
> Analysis the data collected by portion-array of LHAASO

