

Calo seeding and GSF for forward tracks

Upgrade Inner Tracker && Egamma Group

Kaili Zhang

2019-01-21

Environments

- AtlasProduction,20.20.12.1
- Samples 50k each
 - r10846, Step 3, 25x100 digital clustering ATLAS-P2-ITK-17-00-01, $\mu = 0$;
 - mc15_14TeV.422029.ParticleGun_single_ele_Pt10.recon.RDO.e5286_s3348_s3347_r10846
 - mc15_14TeV.117050.PowhegPythia_P2011C_ttbar.recon.RDO.e2176_s3348_s3347_r10846
- Packages
 - Latest IDPVM;
 - InDetCaloClusterROISelector, InDetCaloClusterROIBuilder
- Interested Containers:
 - LArClusterEM Default setting, range from 0~2.47.
 - CaloTopoClusters Topology method, range from 0~4.8.

ROIs in the whole range

- 3 methods to use clusters are validated:
 - 1. LAr. default.
 - 2. Topo. topoclusters in the full range.
 - 3. Combined:
 - Use LAr with etaBE(2) first;
 - Use Topoclusters in forward, ranges $2.47 < \eta < 4.8$, with eta().
 - Ideally, it could keep the behavior in central region and use Topoclusters extending to forward.

Caloclusters Eta

Asymmetry distribution for Topoclusters in central region.

ROI selections: egamma Tools

• In ROIselector we have use several variables

• Requires
$$E_t > 0$$
, $\frac{E_{237}}{E_{277}} > 0.65$, $\frac{E_{t,had}}{E_t} < 0.12$

- Except η and E_t has good definitions in all ranges
 - also works good for Topoclusters
- etaBE(2), e237, e277, ethad, ethad1
 - calculated by egammatools, mainly use calosamples in central region;
 - do not work for forward region
 - behaves different between Lar and TopoClueters.
- Here the problem is ethad/ethad1 function in $-2.47 < \eta < -1$
 - Currently change to $\left|\frac{E_{t,had}}{E_{t}}\right| < 0.12$

Maybe egamma experts have better suggestions?

Ethad ratio

- $-2.47 < \eta < -1$
- Topocluster has lots of <-0.2 entry;

Other region:

Brief transverse energy in the first sampling of the hadronic calorimeters behind the cluster ethad: CaloSampling::HEC0 + CaloSampling::TileBar0 + CaloSampling::TileExt0 for $0.8 < |\eta| < 1.37$ ethad1: CaloSampling::HEC0 + CaloSampling::TileBar0 + CaloSampling::TileExt0 - CaloSampling::TileGap3, for $|\eta| < 0.8$, $1.37 < |\eta| < 2.47$;

No proper variable for $|\eta| > 2.47$;

Caloclusters Eta with $|\frac{E_{t,had}}{E_t}| < 0.12$

N_clusters_eta

- Currently, the combined container is LAr in central region, Topoclusters in forward.
- The peak in -0.6~-0.6 for TopoClusters disappears when enlarge Et cut to 1.5GeV.

Caloclusters Et cut:1GeV

Et cut can may shift from 1GeV to 5GeV somehow;

ROI selections

- Ideally we want only one candidate ROI for single electron sample
 - can be done when we optimize the selection more carefully
- Egamma tools are not designed for Topoclusters now
 - May need to validate the performance, or change the code;
 - Central region: since we continue to use LAr in the, not hurry?
 - Forward region: need to new method to validate the ROIs.
- While current 3 methods show no significant deviations In IDPVM distributions
 - How goodness of one ROI still unknown;
 - major task..... would dig further.

IDPVM

50

 3 true track η^4

3

true track η⁴

Others

- 4W Combination
- multi-lepton kickoff
- •

ttbar clusters

Eta

N_CaloClusters_vs_eta

• $\left|\frac{E_{t,had}}{E_t}\right| < 0.12$ works;

• We can raise the Et cut to decrease the

candidate ROIs

E237, E277

backups

- e237: brief uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x7
- e277: brief uncalibrated energy (sum of cells)
 of the middle sampling in a rectangle of size

EtaBE(2) or Eta()?

- EtaBE(2) only works for -2.5 and 2.5;
- $1.37 < |\eta| < 1.51$ behaves different:
- Seems eta() has less fluctuations?

