

Higgs to ZZ* Lepton State Decay on CEPC Based on Machine Learning Research

ZHANG RUIHAN

Results run by LHC:

	Untagged	VBF	VH	ttH
Н→γγ	✓	✓	✓	✓
H→ZZ→4l	✓	✓	✓	✓
H→WW→2l2v	✓	✓	✓	✓
Η→ττ	✓	✓	✓	✓
H→bb			✓	✓
Н→μμ	✓	✓		

Decay mode	Branching fraction [%]		
$H \rightarrow bb$	57.5 ± 1.9		
$H \to WW$	21.6 ± 0.9		
$H \rightarrow gg$	8.56 ± 0.86		
$H \to \tau \tau$	6.30 ± 0.36		
$H \rightarrow cc$	2.90 ± 0.35		
$H \rightarrow ZZ$	2.67 ± 0.11		
$H \rightarrow \gamma \gamma$	0.228 ± 0.011		
$H \rightarrow Z\gamma$	0.155 ± 0.014		
$H \rightarrow \mu\mu$	0.022 ± 0.001		

Run by CEPC:

- Higgs can be detected by recoil mass → distinguish Higgs and its decay particles independent of any particular model. (Only Z boson is reconstructed)
- Cleaner tracks → A better measurement → Improved accuracy measurement of H-Z coupling, 10 times better than LHC.
- More Physical phenomena could be explored → Better measurement of invisible decay tracks → Higgs singular decay.

What to achieve:

- 1. Filter collision cases in CEPC framework
- 2. Discriminate between signals and bkgd
- 3. Fit in distribution

How to discriminate:

- Analyses momentum distribution:
- According to their different kinematics features, signal particles and bkgd have different momentum distribution
- Pinpoint the generation peak and use energy cut
- Machine Learning method

Decision Tree:

- Set of information: D
- Variables (Excepted classifications of D): C(1) C(2) C(3)···C(k)
- Property: A
- Variable (Classifications divided by a): D(1) D(2) D(3)···D(v)
- Entropy of D:

$$H(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|}$$

Entropy of D based on property A:

$$H(D \mid A) = \sum_{i=1}^{n} \frac{|D_{i}|}{|D|} H(D_{i}) = -\sum_{i=1}^{n} \frac{|D_{i}|}{|D|} \sum_{k=1}^{K} \frac{|D_{ik}|}{|D_{i}|} \log_{2} \frac{|D_{ik}|}{|D_{i}|}$$

← Expectation of D's entropy distribution to A, based on the precondition of A

Gini rate:

$$Gini(D) = \sum_{k=1}^{|\gamma|} \sum_{k^1!=k} p_k p_{k^1} = 1 - \sum_{k=1}^{|\gamma|} p_k^2$$

← Randomly choose two samples from set D, the possibility that they are from two separated classification.

• Gini index:

$$Gini_index(D,a) = \sum_{v=1}^V rac{|D^v|}{|D|} Gini(D^v)$$

- Smaller Gini index means larger information purity
- The Toolkit for Multivariate Data Analysis with ROOT (*TMVA*)

