

The Low Level RF control system of CAFe and the conceptual design for CiADS at IMP

Zheng Gao, Huang Guirong, Xue Zongheng, Chen Qi, Zhu Zhenglong, Ma Jinying On behalf of IMP Linac RF group Institute of Modern Physics, CAS

Institute of Modern Physics, Chinese Academy of Sciences

- The introduction of CAFe
- The LLRF control system of CAFe
- The introduction of CiADS
- The conceptual LLRF design for CiADS

The introduction of CAFe

Chinese ADS Front-end Demo linac (CAFe)

China Initiative Accelerator Driven System

The high power beam operation for Reliability Test in 2019

								CONTRACTOR AND	1.71904	· · · · ·							
CM1	用轩状态山水开关	890 M 10	动室調入射(kW)	功率源反射(kW)	Epk(MV/m)	Gem(uSv/h)	(200)	純白茶業空(Pa)	旧体温室(K)	建合新活業 (K)	68	NE(W/kW)	应用反射 (W/kW}	股限	入射多路开关	PHR通多端开关
CM1-1	0	۲	0.70	0.80	14.8	251.34	1.70E-7	3.30E-6	5.00	122.62	0	0.00	0	0.00		· H ·	CM3-3
CM1-2	0	۲	1.90	1.60	17.9	446.23	1.70E-7		4.46	156.97	0	0.00	0	0.00		0	CM1-2
CM1-8	0	۲	1.72	1.73	21.4	340.90	1.12E-7	3.40E-6	4.47	133.73	0	0.00	0	0.00		0	CM2-2
CM1-4	0	۲	0.90	0.11	19.0	78.35	9.37E-8	3.70E-6	4.44	128.81	0	0.00	0	0.00		0	CM1-4
CM1-5	0	۲	0.90	1.20	15.4	47.32	1.41E-7		5.04	128.08	0	0.00	0	0.00		0	CM1-5
CM1-6	0	۲	2.30	2.50	19.4	17.22	2.04E-6		0.00	141.33	0	0.00	0	0.00		0	CM2-4
CM2	简新被感动来研究	VICES	动掌握入数(kW)	功率源反射(kW)	Epk(MV/m)	Gam(uSv/h)	総体業型(Pa)	総合営業空(Pa)	目体温度(K)		総務	20(W/kW)	但形在他 们	W/kW)			PREBATIN
CM2-1	0	0	2.40	2.20	25.4	0.39	9.50E-8	3.33E-7	4.62	123.10	0	0.00	0	0.00		0	CM2-1
CM2-2	0	۲	2.00	1.90	18.5	0.00	4.27E-8		4.40	138.58	0	0.00				0	CM242
CM2-8	0	۲	0.60	0.80	16.4	0.12	7.81E-8		4.76	125.97	0	0.00				0	CM2+3
CM2-4	0	۲	4.80	5.60	25.9	0.06	8.69E-8		4.35	124.70	0	0.00				0	CM2-4
CM2-5	0	۲	2.30	2.20	18.0	0.13	1.23E-7	6.09E-7	4.96	132.02	0	0.00				0	CM2-S
CM2-6	0	۲	2.14	1.82	19.0	0.09	1.26E-7		4.40	126.33	0	0.00				0	CM24
CMB	MARGOARI TH	VICES	初期調入剤(kW)	动掌握线制(kW)	Epk(MV/m)	Gam(uSv/h)	288 東空 (Pa)	統合営業空(Pa)			E能入起(W/kW)		1088588(W/KW)				PHID建步运开关
CM3-1	0	۲	2.28	2.45	21.2	0.08	6.52E-7		4.04	112.28	0	0.00				0	CM3-1
CM3-2	0	۲	1.41	1.62	18.6	0.08		2.46E-7	4.48	91.32	0	0.00				0	CM3+2
CM8-8	0	۲	1.20	1.28	16.4	0.08			5.48	113.76	2	0.00				0	CM3-3
CM3-4	0	۲	2.24	2.45	23.7	0.13		5.08E-7	4.54	114.58	0	0.00				0	CM2+4
CM8-5	0	۲	2.24	2.36	24.2	0.11	6.36E-7		4.00	115.50	0	0.00				0	CM3+3
CM4	间环状态众术开关	(1)(1)(1)	功學讓入對(kW)	功率源反射(kW)	Epk(MV/m)	Gam(uSv/h)	但体 发 空(Pa)	総合営業空(Pa)	旧体温室(K)		総務	28(W/kW)	85/80		REQ		
CM4-1	0	۲	2.85	3.90	20.2			1.47E-7	4.62				CM1EE	105058	Pa	CMARKE	Buchers
CM4-2	0	۲	2.08	2.16	24.5	1.69		1.53E-7	7.58				CM1兼位	220		104972	Barcher2
CM4-8	0	۲	1.82	1.71	19.7			1.45E-7	5.25	CM42006342		CM2BE	105765	24		城道门城本	
CM4-4	0	•	0.00	0.00	0.0	0.10		1.72E-7	11.23			CM288	216		CM4812		
CM4-5	0		0.00	0.00	0.0			1.20E-7	4.34				CM3RE	105404	8	-10	
CM4-6	0	۲	0.00	0.00	0.0			1.83E-7	4.36				CM1802	232		空运机 1 22 MPs	

100 hours high beam power operation test record

SRF system operation status during CW beam test

	CM1	CM2	CM3	CM4
Epk(MV/m)	14.8, 17.9, 21.4, 19, 15.4, 19.4	25.4, 18.5, 16.4, 25.9, 18, 19	21.2, 18.6, 16.4, 23.7, 24.2	20.2, 24.5, 19.7
Pin(kW)	0.7, 1.9, 1.7, 0.9, 0.9, 2.3	2.4, 2, 0.6, 4.8, 2.3, 2.1	2.3, 1.4, 1.2, 2.2	2.8, 2, 1.8
Helium pressure(Pa)	10500	105700	105400	10500

The trips analysis of CW high beam power test

Trip statistics

Statistics of trips from SRF system during CW high beam power test, the availability better than 89%. The most trip sources are helium pressure fluctuation and unknown reasons.

The LLRF control system of CAFe

elerator Driven St

The LLRF control system of CAFe

RFQ LLRF control system

Buncher LLRF controller

June, 2019, mTCA conference, Beijing

celerator Driven St

The LLRF control system of CAFe

June, 2019, mTCA conference, Beijing

China Initiative

China initiative Accelerator Driven System (CiADS)

Features:

SC LINAC
 Coupling beam line
 Reactor Hall

④ Accelerator equ. hall
⑤ Beam dump and target
⑥ Cryogenic station

SRF hall

- ③ SRF conditioning hall
- ④ Cooling water station

- The Linac of CiADS
- The requirements of CiADS Linac
- The conceptual LLRF design

celerator Driven

The Linac of CiADS

System	RF frequency	Close lo	ose loop stability Number Current		Cavity Bandwidth	
name	(MHz)	Amp (3σ)	Phase(3σ)		(mA)	(HBW)
RFQ	162.5	0.1%	0.1°	1	5	≈10 kHz
Buncher	162.5	0.1%	0.1°	3	5	≈10 kHz
HWR010	162.5	0.1%	0.1°	14	5	150 Hz
HWR019	162.5	0.1%	0.1°	28	5	70 Hz
Spoke042	325	0.1%	0.1°	54	5	60 Hz
Elliptical062	650	0.1%	0.1°	44	5	120 Hz
Elliptical082	650	0.1%	0.1°	15	5	100 Hz

The requirements of CiADS Linac

CiADS Linac		CiADS dem	no facility (CAFe,) CW beam test result	
Low beam RAMI	High	Opera time	tion Ə	7553 min		
		Beam time Down time		6816 min 737 min		
High inte stabili	ity	Availability		0.89		
-	Particle type	Proton		Avail	lability of CiADS linac:	
-	Energy	500	MeV	Bette	er than 90%	
Main challenges:	Beam current	5	mA			
High availability.	Beam power	2.5	MW			
Fast recovery from trip.	Operation mode	CW & Pulse		Preliminary analysis of CiADS linac characteristics		
CW&PULSE operation.	Beam loss	< 1	W/m			
-	Number of	~	t<10s	-		
	beam trip /	< 2500/year	10s <t<5m< td=""><td>-</td><td></td></t<5m<>	-		
	year	< 300/year	t>5m	-		

China Initiative Accelerator Driven Syst

The conceptual LLRF system

LLRF control system includes FPGA based cavity field amplitude and phase control, cavity frequency tuning part, high-power RF interlock protection, and global data communications.

The conceptual LLRF system

Combined with the advantages of crate and stand-alone chasis, the hybrid LLRF control chassis is proposed, easy to expand and maintain.

The RF interlock system is under design and the prototype of some component will be produced and tested.

Beside the LLRF main controller will monitor RF power and protect RF power source, the Arc and vacuum of coupler will be monitored for fast interlock, the interlock signal will be transmitted with optic fiber.

The RF front-end board design based on mTCA RTM standard

Features:

8 downconvert channels, 2 upconvert channels, hardware protection and auxiliary function was developed, include temperature, voltage and current monitor.

- The CiADS demo linac (CAFe) successfully accelerated 25 MeV pulse beam and CW beam in 2017, and then great progress for beam commissioning of CAFe has achieved during last two years.
- 2. The beam commissioning results demonstrated that the LLRF control system can maintain stable operation, but more optimization needed to improve the reliability.
- 3. With the arrival of the new CiADS project, the initial design stage of LLRF system is starting.
- 4. The mTCA platform is one candidate, but the trade-off of system engineering need to be evaluated.
- 5. The next generation FPGA chip (Zynq) is under investigated.

Thanks! 谢谢!

