Hardware development for TDAQ based on xTCA

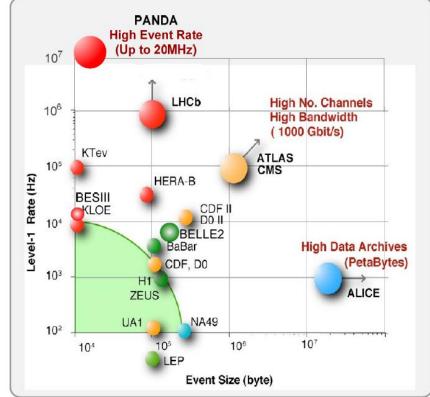
Jingzhou ZHAO¹, Zhen-An LIU¹, Wenxuan GONG¹, Pengcheng CAO¹, Wolfgang Kuehn²

- 1. Trigger Lab, Institute of High Energy Physics, Chinese Academy of Sciences
 - 2. II. Physikalisches Institut, Justus-Liebig-Universität Gießen

MTCA/ATCA workshop 2019, IHEP,Beijing

Outline

- **#** Requirements to TDAQ system
- **¤** xTCA for Physics
- CN_V3 for Belle II PXD DAQ
- **#** CN_V4 for PANDA DAQ
- **CPPF** for CMS trigger system

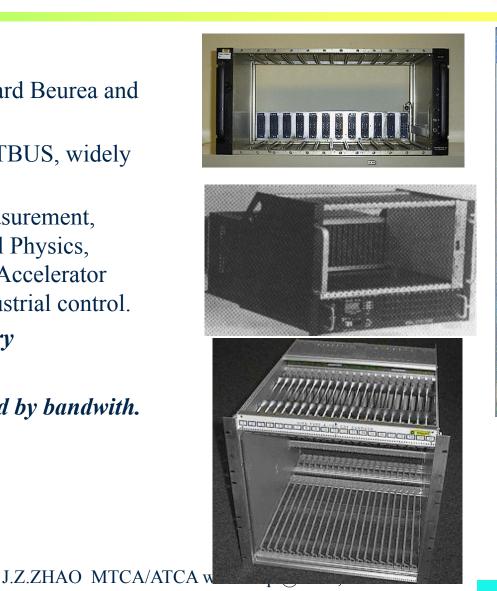

summary

Requirements to TDAQ system

- Future Physical experiment accelerator and Spectrometer
 - > High luminosity
 - ➤ CEPC(90-350GeV,
 - > CEPC(10^{34} cm⁻²s⁻¹~ 10^{35} cm⁻²s⁻¹)
 - High data event rate
 - > PANDA (20MHz)
 - > CEPC(40MHz)

Requirements to TDAQ system

- High speed data transmission;
- High performance data processing;
- Mass data buffering

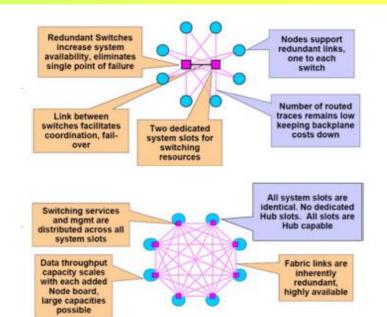

Standards for Nuclear Instrumentation

Beijing

- **#** 1960's
 - NIM: American Standard Beurea and NIM Module Committee
- 70-80's CAMAC, FASTBUS, widely used

Nuclear Spectrum Measurement,
Particle Physics, Medical Physics,
Accelerator Instrument, Accelerator
Control, Aerospace, Industrial control.

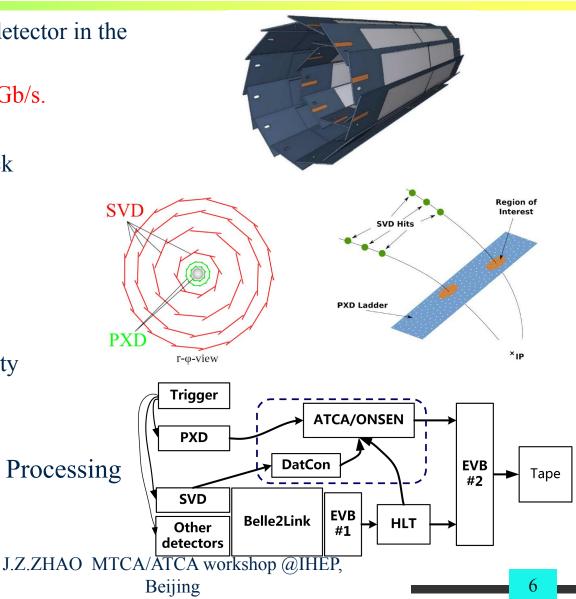
- **•** 90's VME from Industry
- **♯** 2000 CPCI
- **•** Still in use, BUT limited by bandwith.



xTCA for Physics

ATCA ->PIGMG3.8

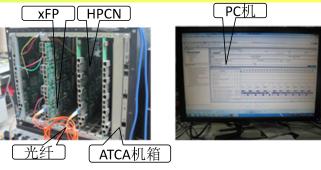
- Advantages
 - High speed IO and 10Gbps-25Gbps interconnections
 - HA ~99.999%
 - IP management
- Add control signal
- •MicroTCA (MTCA) ->MTCA 4.0
 - Advantages of ATCA
 - Half height, compact system
 - add rear transition board and control
- AdvancedMC (AMC)
 - Modular design



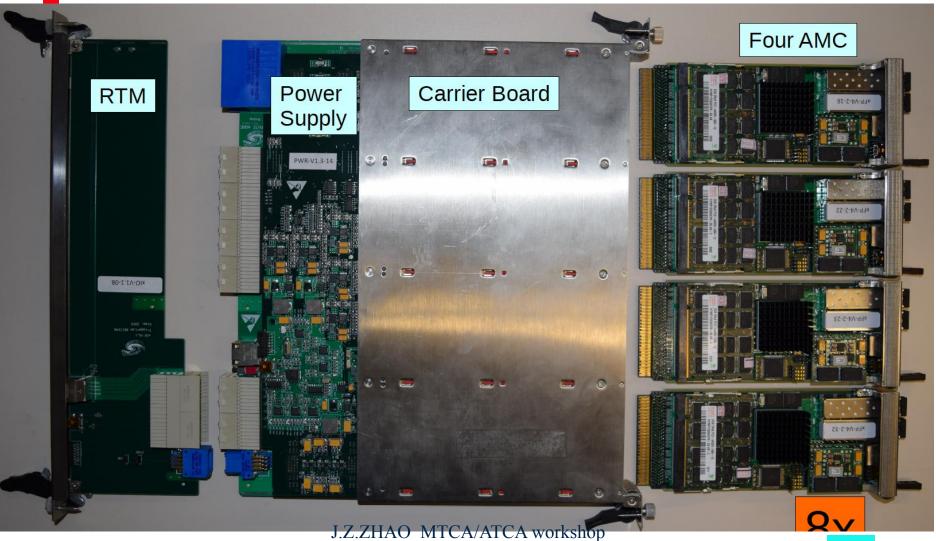
Compute Node for Belle II PXD DAQ

- PXD detector is a new detector in the upgrade of Belle II.
- **\ddagger** Huge data output: ~ 200 Gb/s.
- **# PXD** reduction
 - Help with SVD track
 - **1/10**
 - Tracking back
 - ROI searching
 - Data extraction
- **#** Difficulties
 - Computing capability
 - Algorithms
 - 5s data buffer
- Data sharing between Processing node

Compute Node for Belle II PXD DAQ


- **#** High Performance FPGA is used for data processing,
- RocketIOs are used for high speed data transmission between data processing node,
- **#** DDR is used for mass data buffering,
- **#** ATCA/xTCA architecture is used for PXD DAQ,
- Intelligent platform management control system is used for system stable.

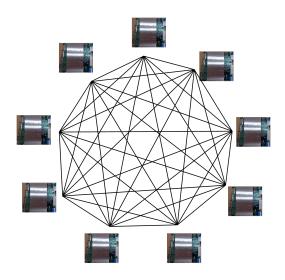
Key parts of PXD-DAQ


ONSEN/PXD-DAQ

- Firmware(Giessen Uni)
- Hardware(IHEP Beijing)
 - 1 ATCA Shelf
 - 2 shelf managers
 - 1 Power Supply
 - 9 Compute Node(CN)
 - 1 ATCA Carrier(PICMG3.8)
 - 1 RTM
 - 1 Power Board
 - 4 xFP/AMC cards
 - 1 IPMC+ 4 MMCs J.Z.ZHAO MTCA/ATCA workshop @IHEP,

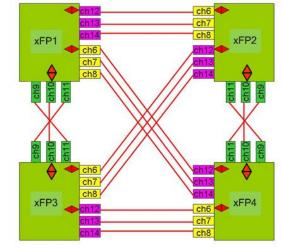
Full Compute Node for PXD DAQ

@IHEP, Beijing


9

2019/06/23

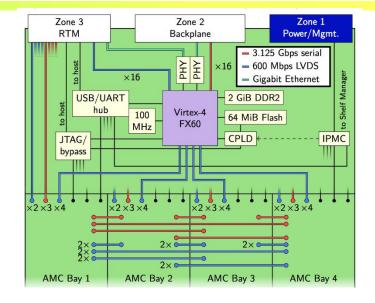
Full Mesh for PXD DAQ

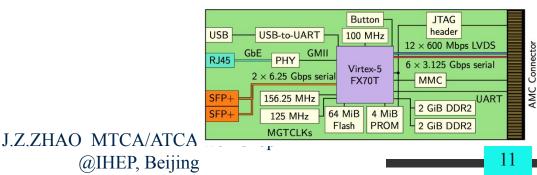


- Full mesh backplane for CN data sharing with each node.
- Full mesh on board connection for AMC cards.
- **#** Point to Point via one MGT channel,
- Line rate up to 3.125Gbps.

Full mesh backplane connection

Ch6-12, pin definition of AMC connector
Connectivity on carrier board, each channel has one input differential pair and one output differential pair


Full mesh on board connection for AMC

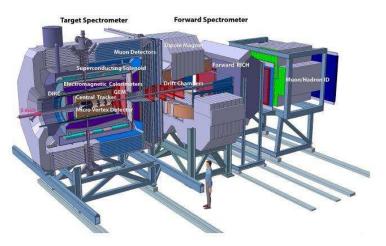

CNCB(CN Carrier Board)

- **#** Function of CN Carrier Board V3.3
 - > Virtex-4 FX60 with PowerPC405,
 - > Embeded linux system for slow control,
 - > 16 RocketIO channel connect to backplane,
 - > 2GB DDR2,
 - > 2 Ethernet ports,
 - > IPMC
 - **#** Function of AMC
 - > Virtex-5 FX70T with PowerPC440,
 - > Embeded linux system for data management,
 - > 2 SFP+ port, 6.25Gbps/ch
 - > 4GB DDR2,
 - > 1 Ethernet ports,
 - > UART port,
 - > MMC

Status of Belle II xTCA PXD-DAQ

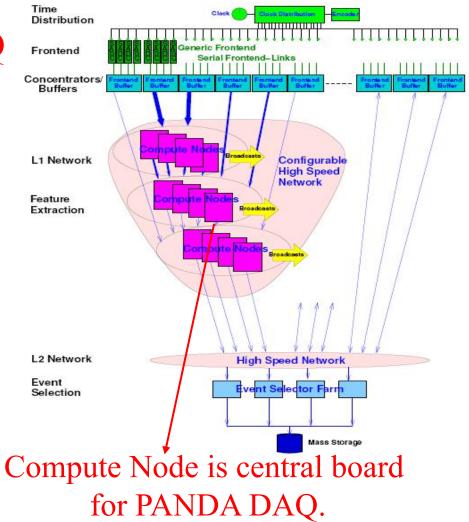
12

- **F**rist Beam test in DESY in 2014
- **#** Second BT in 2016
 - The whole DAQ chain was tested with up to 2kHz, Long time stability tested for 8h.
 - Everything stably watched by run and slow control
- **#** Complished in 2016
 - Mass Production 2015
 - System integration Nov.2016
- Now whole system is being integrated with detector in KEK for data taking.


PANDA DAQ system

- PANDA is a next generation hadron physics detector planned to be operated at the future Facility for Antiproton and Ion Research(FAIR) at Darmstadt, Germany.
- High event Rate: up to 20MHz,
- Each event: 1.5Kbyte-4.5Kbyte,
- Considering electronic noise, background and signal accumulation, DAQ should has ability of data processing about 200GBps.

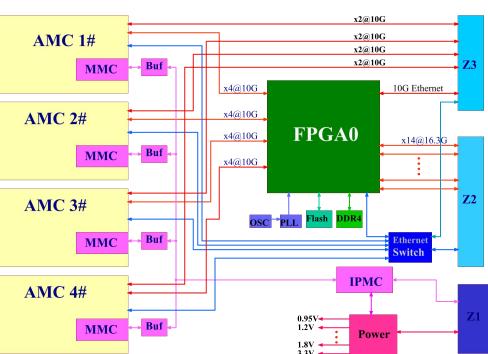
How to deal with such big data with NO Dead Time is a great challenge to DAQ system.



PANDA DAQ

Trigger-less streaming DAQ with event filtering

- Global time distribution for time stamping,
- L1 Network,
 - Extract particle information like energy, position, momentum and so on;
- - Make a preliminary reconstruction for physics events;
- Event selection will be done based on the research topics of PANDA experiment.

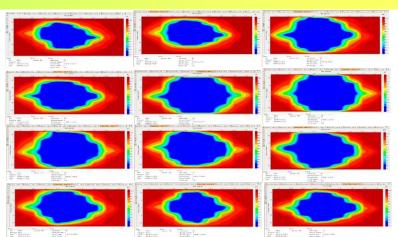


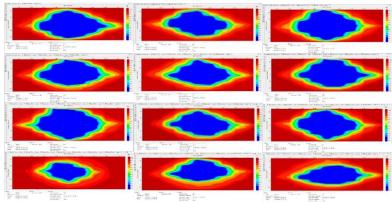
Compute Node for PANDA

- **FPGA:** Ultrascale Kintex xcku060
- **RAM:** 16 GB DDR4 (8 chips)
- **# MGTs:** 16.3 Gbps
 - 4 links to each AMC card;
 - 12 links to ATCA backplane;
 - 1 link to RTM (10G Ethernet);
- **GbE** switch:
 - 4 AMCs,
 - 1 switch FPGA,
 - 1 uplink to ATCA Base Interface
 - 1 RTM RJ45
- 10 Gigabit Ethernet to RTM(SPF+)
- **Configuration:** automatic from NOR Flash (master BPI)
- **#** Programmable MGT clock
- **#** CPLD as **JTAG hub**
- **♯** IPMC/MMC

2019/06/23

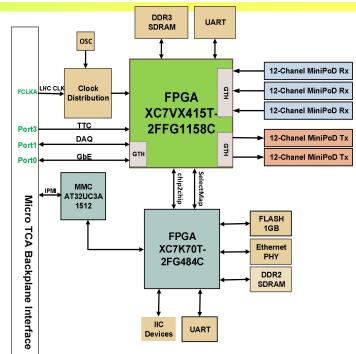
First Version of CNV4.0


CN Backplane MGT channel test


Crate:

- Two ATCA Slots,
- 12 Backplane channel point-to-point, connection between two slots,
- 25Gbps/ch for Backplane connector.
- ◆ 24 hours, No error on 12.5Gbps.
- Error rate <1E-15.

Backplane MGT 10G 12channel



Backplane MGT 12.5G 12channel

CPPF for CMS trigger system

- Based on MicroTCA protocol
- Two Xilinx FPGA chips for board controlling and functionalities implement
- ☎ 36 optical links input,
- 24 optical links output,
- **♯** Support 10Gbps/ch
- ➡ CPPF system was successfully integrated in CMS trigger system in May of 2017.

- **x**TCA is the Next Trigger/DAQ standard for physical experiment.
- **#** CN V3 is designed and successful used for Belle II PXD DAQ.
- **#** CN V4 is designed successfully for PANDA DAQ.
- CPPF has been desinged and used on CMS Phase-I upgrade successfully.
- New Compute Node is being developed for CMS PhaseII upgrade according to the requirement.

Thanks for your attention and comments.