The 8th Huada school on QCD @ CCNU, Wuhan, China

Foundations of GW from BNS merger with application to nuclear/hadron physics

Yuichiro Sekiguchi (Toho University)

Contents

- Aim : Introduce physics of GW from NS-NS in a pedagogical viewpoint
- Lecture 1: Linearized theory
 - ▶ GW propagation, TT gauge, polarization of GW (+, and × modes)
 - GW production, quadrupole formula
- Lecture 2: GW from binary system in circular orbit
 - the (point-particle) chirp signal, tidal deformability
 - Post-Newtonian GW
- Lecture 3: Achievement in GW170817
 - Extraction of tidal deformability and its interpretation
 - Current constraint on EOS (combining with EM signals)
- Lecture 4: Future prospects
 - higher density regions, proving hadron-quark transition
 - Numerical Relativity

Summary of the previous lectures

- We can simultaneously extract information of both mass and tidal deformability, Λ, from GW from NS-NS, with which we can constrain the EOS of NS matter
 - Leading order of Tidal-deformability is 5PN
- The correction in G^n or $(v/c)^{2n}$ is called n-th order PN correction

Lecture 3: GW170817

NS-NS merger event rate : 110-3840 Gpc⁻³yr⁻¹

NS-NS merger as origin of r-process nucleosynthesis

- ▶ NS-NS rate from GW170817 : 320-4740 Gpc⁻³yr⁻¹
 - Mej ~ 0.01 Msun is sufficient for NS-NS merger to be the origin of r-process elements ! (Abbott et al. 2017)

NS-NS(BH) candidates : S190425a and S190426c

- We have two additional candidates of GW from compact binary mergers including NS
- S190425a
 - probability (from mass estimation) being NS-NS : 0.999
 - $D \approx 160^{+40}_{-40} \,\mathrm{Mpc}$
- S190426c
 - > probability being NS-NS : 0.493, NS-BH(> $5M_{\odot}$) : 0.129, NS-(NS or low mass BH) : 0.237 , unknown terrestrial : 0.140
 - $D \approx 420^{+130}_{-130} \text{ Mpc}$
- \Rightarrow suggest that the event rate may be relatively high as \sim 10/yr

Gravitational waves from NS merger

Numerical relativity simulation modelling GW170817

Mass determination by the chirp signal

S/N = 33.0 (signal to noise ratio)

- Assumption/setup of data analysis:
 - NS is not rotating rapidly like BH
 - Using the EM counterpart SSS17a/AT2017gfo for the source localization
 - Using distance indicated by the red-shift of the host galaxy NGC 4993

• Chirp mass :
$$\frac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}} = 1.186^{+0.001}_{-0.001}M_{\odot}$$

- ▶ Total mass : 2.74*M*_☉ (1%)
- Mass ratio : $m_1/m_2 = 0.7 1.0$
 - ▶ Primary mass (m1): $1.46^{+0.12}_{-0.10}M_{\odot}$
 - Secondary (m2): $1.27^{+0.09}_{-0.09}M_{\odot}$
- Luminosity distance to the source $:40^{+10}_{-10}$ Mpc

LIGO-Virgo Collaboration GWTC-1 paper See also Abbott et al. PRL 119, 161101 (2017); arXiv:1805.11579

Tidal deformation and NS EOS

Numerical relativity simulation modelling GW170817

Tidal deformability

- Tidal Love number : λ
 - Response of quadrupole moment
 Q_{ij} to external tidal field E_{ij}

$$Q_{ij} = -\lambda E_{ij}$$

- Stiffer NS EOS
- ► ⇒ NS Gravity can be supported with less contraction
- ► \Rightarrow larger NS radius
- $\Rightarrow \text{larger } \lambda$
- → larger deviation from point particle
 GW waveform
- Tidal deformability (non-dim.): Λ

$$\lambda = \frac{C^5}{G} \Lambda R^5 \qquad C$$

Compactness parameter

 $d = \frac{GM}{c^2 R}$

Lackey et al. PRD 91, 043002(2015)

The first PRL paper : upper limit on $\widetilde{\Lambda}$

 PRL 119, 161101 (2017)
 PHYSICAL REVIEW LETTERS
 week ending 20 OCTOBER 2017

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

$\widetilde{\Lambda} < 800 \implies \Lambda_{1.4} \lesssim 800$

The analysis uses GW data only, the other constraints such as

- causality ($c_S < c$), $M_{\rm EOS,max} \gtrsim 2M_{\odot}$, nuclear experiments
- the two NS should obey the same EOS
- use of mass distribution of the observed binary pulsar as prior
- are NOT taken into account

• $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for EOS

• connect to the NNLO pQCD (Kurkela et al. 2010) and chiral EFT (Hebeler et al. 2013)

- $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for EOS
 - connect to the NNLO pQCD (Kurkela et al. 2010) and chiral EFT (Hebeler et al. 2013)
 - causality $c_s < c$ and $M_{\rm EOS,max} > 2M_{\odot}$ constraints in the intermediate region

• $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for EOS

- connect to the NNLO pQCD (Kurkela et al. 2010) and chiral EFT (Hebeler et al. 2013)
- causality $c_s < c$ and $M_{\rm EOS,max} > 2M_{\odot}$ constraints in the intermediate region

► $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for EOS

Impact of $\tilde{\Lambda} < 800$: the other studies

Almost all studies assume some phenomenological EOS model as in Annala et al. (2018)

- Annala et al. (2018) : chiral EFT (up to 1.1ns) + pQCD
 - ► $120 \lesssim \Lambda_{1.4} \lesssim 800$, $10 \lesssim R_{1.4} \lesssim 13.6$ km
- Tews et al. (2018) : chiral EFT (up to 2ns !!)
 - ▶ $80 \leq \Lambda_{1.4} \leq 570$ (the upper limit from EOS model, not from GW data)
- Fattoyev et al. (2018) : using results of PREX (Pb Rudius EXperiment)
 - ► 400 $\leq \Lambda \leq 800$, 12 $\leq R_{1.4} \leq 13.6$ km (lower limit from $R_{skin}^{208} \gtrsim 0.15$ fm)
 - ▶ suggest large symmetry energy \Rightarrow larger NS radius
- Malik et al. (2018) : using nuclear data (symmetry energy, incompressibility)
 12 ≤ R_{1.4} ≤ 14 km
- and many other studies

Importance of the other constraints

- **<u>GW</u> data analysis (**not interpretation of $\tilde{\Lambda} < 800$) using constraints of
 - causality ($c_S < c$)
 - $M_{\rm EOS,max} \gtrsim 2M_{\odot}$
 - nuclear experiments
 - the two NS (Λ) should obey the same EOS
 - use of mass distribution of the observed binary pulsar as prior in the Bayesian analysis
- $\tilde{\Lambda} \sim 100 400$ $R_{1.4} \sim 10 - 12$ km

Importance of GW template

For GW from NS-NS, template is much more important than BH-BH

Importance of GW template

- Abbott et al. PRL (2017) : The 1st paper and the related papers
 - used <u>3.5PN</u> (Post-Newtonian) <u>point-particle</u> waveform (TaylorF2)
 - 3.5PN : relativistic correction up to $(v/c)^{2 \times 3.5}$
 - tidal effects join at <u>5PN</u>
 - ► ⇒ at least 5PN *point-particle* waveform is necessary to extract $\widetilde{\Lambda}$ correctly
 - Otherwise $\widetilde{\Lambda}$ will be overestimated (and actually seems to be overestimated) :
 - Modulations, which is due to 4-5PN+ point-particle corrections, are included in the tidal correction in an incorrect manner
 - Considerable difficulties in calculating higher order (> 4PN) waveform
 - No well-established PN waveform so far
 - □ But see 4.5PN waveform proposed in Messina & Nagar PRD 96, 049907 (2017)
 - \rightarrow importance of **numerical-relativity (NR)** waveform

Comparison of NR and PN (TaylorF2) waveform

Update analysis with NR waveform (1)

PHYSICAL REVIEW LETTERS 121, 161101 (2018)

Editors' Suggestion

GW170817: Measurements of Neutron Star Radii and Equation of State

B.P. Abbott et al.*

(The LIGO Scientific Collaboration and the Virgo Collaboration)

(Received 5 June 2018; revised manuscript received 25 July 2018; published 15 October 2018)

- waveform calibrated by numerical relativity simulations
- wider data range 30-2048 Hz \Rightarrow 23-2048 Hz (\approx 1500 cycle added)
- source localization from EM counterpart SSS17a/AT2017gfo
- the causality and maximum NS mass constraints are also considered

$\tilde{\Lambda} < 800 \implies \tilde{\Lambda} \approx 300^{+400}_{-200}$

LIGO-Virgo Collaboration GWTC-1 paper

Update analysis with NR waveform (2)

Update analysis with NR waveform (3)

- Analysis without $2M_{\odot}$ constraint
 - $R_1 = 10.8^{+2.0}_{-1.7}$ km
 - $R_2 = 10.7^{+2.1}_{-1.5}$ km

- Analysis with $2M_{\odot}$ constraint
 - $R_1 = 11.9^{+1.4}_{-1.4}$ km
 - $R_2 = 11.9^{+1.4}_{-1.4}$ km

A summary of NS structure constraint

Radius (km)

Constraint from nuclear experiments+

Symmetry energy constraints from nuclear experiments ⇒ NS radius constraint

Constraint from nuclear experiments+

Constraints on EOS

EOS comparison : GW vs. Heavy Ion Col.

How to explore the higher densities ?

Massive NS is necessary to explore high density region

- Supernova core bounce
 - ▶ mass: 0.5~0.8Msun
 - ρc : a few ρs
- Canonical mass NS
 - ▶ mass : 1.35-1.4Msun
 - ρc : several ρs
- Massive NS (> 1.6 Msun)
 - ρc : > 4ρs
- We need more massive NS to explore high density region
 - GW from massive NS formed after the merger
 - Constraint of *M*_{EOS,max} from BH formation after merger

GW from post-merger phases

Numerical relativity simulation modelling GW170817

No GW from merger remnant detected

QCD Phase diagram and NS

McLerran, Nucl.Phys.Proc.Suppl. 195, 275 (2009)

Constraints from EM signals

x (km)

Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

x (km)

y (km)

Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

Kilonova from NS-NS merger

• Ejecta from NS-NS merger is very neutron rich

 Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta, synthesizing neutron rich nuclei (r-process nucleosynthesis)

r-process in NS-NS merger ejecta ($Y_e = 0.09$)

Credit : S. Wanajo

Kilonova from NS-NS merger

- Ejecta from NS-NS merger is very neutron rich
- Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta synthesizing neutron rich nuclei (r-process nucleosynthesis)

Kilonova from NS-NS merger

- Ejecta from NS-NS merger is very neutron rich
- Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta, synthesizing neutron rich nuclei (r-process nucleosynthesis)
- Kilonova : Radioactive decay of r-process nuclei will power the ejecta (by gamma-rays and electrons) to shine in UV, optical, and IR bands (due to the opacity of r-process elements like lanthanides)
 - Luminosity is basically determined by the ejecta mass
 - Ejecta mass depends on the merger dynamics
 - The merger dynamics depends on NS EOS

Constraints from EM observations

- Electromagnetic (EM) observations can be used to tell weather BH is formed after the merger
 - Although no GW from post-merger phase is detected
 - Modelling based on Numerical Relativity is necessary

Threshold mass for the BH formation

 $M_{\rm crit} = M_{\rm EOS,max} + \Delta M_{\rm rot,rig} + \Delta M_{\rm rot,diff} + \Delta M_{\rm therm}$

- $M_{EOS,max}$: maximum mass of cold spherical NS determined by EOS
- $\Delta M_{\rm rot,rig}$: additional support from rigid rotation
- △M_{rot,diff}: additional support from differential rotation
 □ Short-time support : magnetic field will destroy differential rotation
- ΔM_{therm} : additional thermal support
 - □ Short-time support : emission of neutrinos will remove thermal support

Numerical relativity simulation

Constraints from EM observations

 $M_{\text{crit}} = M_{\text{EOS,max}} + \Delta M_{\text{rot,rig}} + \Delta M_{\text{rot,diff}} + \Delta M_{\text{therm}}$

Condition 1 : BH should not form promptly after the merger

• need $M \gtrsim 0.01 M_{\odot}$ mass ejection to explain the observed kilonova

 $M_{\rm crit} \gtrsim M_{\rm GW170817} = 2.74 M_{\odot}$

- too soft EOS or too compact NS is excluded (e.g., Bauswein et al. 2017)
- Condition 2 : massive NS formed after the merger should not be too long-lived
 - No signal from long-lived NS (e.g. Sun et al. 2017)

$$M_{\rm EOS,max} + \Delta M_{\rm rot,rig} \lesssim 2.74 M_{\odot}$$

- ▶ stiff EOS with $M_{\rm EOS,max} \gtrsim 2.3 M_{\odot}$ is excluded
- Margalit & Metzger 2017; Shibata et al. 2017; Rezzolla et al. 2018

Constraints from EM observations

$M_{\rm crit} = M_{\rm EOS,max} + \Delta M_{\rm rot,rig} + \Delta M_{\rm rot,diff} + \Delta M_{\rm therm}$

- ▶ stiff EOS with $M_{\rm EOS,max} \gtrsim 2.3 M_{\odot}$ is excluded
- Margalit & Metzger 2017; Shibata et al. 2017; Rezzolla et al. 2018

Summary of constraint on NS structure using both GW and EM

NS mass/radius measurement: GW vs. EM

GW : Simultaneous mass and radius measurement

- Inspiral waveform naturally provides the mass of each NS
- Degeneracy of M and R in EM observations : additional information (assumption) required

GW : contains multiple information

- ▶ Tidal deformation (radius) : lower (~ps) density
- Oscillation of NS after the merger : higher density
- Maximum mass : highest density

Simple in a complementary sense (GW obs. rare)

- GW : quadrupole formula, no interaction with matter
 - EOS (what we want to know) is only uncertain (provided GR is correct and GWs are detected) ⇒could be smoking-gun
- EM : a number of parameters, models
 - Atmosphere, distance, column density, B-field, fc, ...
 (recent debate : Ozel et al., Steiner&Lattimer, Guillot et al.)

<u>Radius</u> is sensitive to relatively <u>low density parts</u>

Comments on RNs determination by EM

- NS in X-ray binaries sometimes show burst activity
 - Three observables can be obtained in a model dependent manner : A (apparent size), FEdd and TEdd (Eddington flux and temperature)
 - Each observables draw a curve in M-R plane
 - If the model is good, these three curves will intersect self-consistently
 - But often they do not
 - In some case, no intersection
 - After statistical manipulation, intersection point emerges
 - M and R depends on Authors
- Situation is similar for the other EM observation
 - Observation of quiescent low mass X-ray binaries (qLMXB)

Sulemimanov et al. (2011)

Comments on RNs determination by EM

- NS in X-ray binaries sometimes show burst activity
 - Three observables can be obtained in a model dependent manner : A (apparent size), FEdd and TEdd (Eddington flux and temperature)
 - Each observables draw a curve in M-R plane
 - If the model is good, these three curves will intersect self-consistently
 - But often they do not
 - In some case, no intersection
 - After statistical manipulation, intersection point emerges
 - M and R depends on Authors
- Situation is similar for the other EM observation
 - Observation of quiescent low mass X-ray binaries (qLMXB)

Sulemimanov et al. (2011)

- But often they do not
 - In some case, no intersection
- After statistical manipulation, intersection point emerges
 - M and R depends on Authors
- Situation is similar for the other EM observation
 - Observation of quiescent low mass X-ray binaries (qLMXB)

Sulemimanov et al. (2011)

NS mass/radius measurements by EM

- The measurement of flux and temperature yields an apparent angular size (pseudo-BB) $\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - GM / Rc^2}}$ $F \propto T_{\text{eff}}^4 \frac{R_{\infty}^2}{D^2}$
 - Many uncertainties : redshift, distance, interstellar absorption, atmospheric composition
 2.5
- Good Targets:
 - Quiescent X-ray binaries in globular clusters
 - Bursting sources with peak flux close to Eddington limit
- Imply rather small radius
 - If true, maximum mass may not be much greater than 2Msun

Lattimer & Steiner 2014