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Neutron star interior
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E. Fermi: Notes on Thermodynamics and Statistics (1953)) __




Neutron stars below the surface

Surface composition is ideally *°Fe, endpoint of thermonuclear
burning. Possible “impurities” (*He, etc.), especially in
accreting neutron stars in binaries.

T (surface) ~ 1057 K = 0.1-1 KeV >> T, ,4(°°Fe) ~ 1800 K
=> surface is liquid

lonization:  atomic radius:  Frpgmas.rorm = 0.8853 ay/Z!"

X _ - n .
!ﬁilr Z = nuclear charge, ag= o R Bohr radius
TF

“ Matter begins to ionize for interatomic spacing

re = (341 Nyome)® < e => p > mAZ/ a,® ~ 10 AZ g/locm?

~ 104 g/cm?3 for *°Fe; A = atomic number



Electron degeneracy

Electrons become degenerate for T << T,

T, = electron degeneracy temperature
= p22m, = 2.5 X 10°K (p/p)?3

P, = electron Fermi momentum;

ps = ((M.c)3/3n2h3) m A/Z ~ 3 X 105 g/cm?3
At T= 108 K, degeneracy sets in at p > 3 X104 g/cm?

For p >> p, => electrons are relativistic



Neutron stars are dark inside: no photons

Photon dispersion w k) = (2E2 4 o2 1/2
relation in matter photon (K) = ( plasma)

2

plasma frequency: o 4mnee (non-relativistic)

w - .
p! Me (Me — e in general)
or ,
2 2
(%) _— 16 e (EF ) € - = Fermi energy
T 3m hvp \'T ve = Fermi velocity

For degenerate electrons, w, >> T, and thus

—wpl/T

Number of photons ~ ¢ greatly suppressed



Matter solidifies

Tmelting ~ Ebinding/Fm Where 1_‘m ~ 102

e‘ ‘e ~ Wigner-Seitz cell containing one atom
3 _
4 R° /3 = 1/Ng40ms= MA/P
3 Z2e? 9 Z2e?
B~ 5, 28 _
o= /cezszTne+5 R. 10 R.

1/3
T~ 9 Z2¢2 _Z5/3 e> et (2 /
10T,,R. T, he D

p. = ((M.c)33n2/%) m A/Z ~ 3 X 105 g/lcm?

ForZ=26,T,,=10% T,~108K
Melt at p~ 5 X 107 g/cm?,
about 10m below surface

Form BCC lattice



Nuclei before neutron drip

e+p —» n+ v: makes nuclei neutron rich

as electron Fermi energy increases with depth
p+ e + 7V : not allowed if e state already occupied

n—V

Beta equilibrium: p, = p, + p,

Shell structure (spin-orbit forces) for very neutron rich nuclei?

Do N=50, 82 remain neutron magic numbers? Proton shell structure?
Being explored at rare isotope accelerators: RIKEN Rare lon Beam
Facility, and later GSI (MINOS), FRIB, RAON (KoRIA)



Modification of shell structure for N >> Z

2t levels in neutron-rich nuclei

Usual shell closings
(N~ Z) at 20, 28, 50, 82, 126

Spin-orbit forces and hence shell structure
modified by tensor and 3-body forces in
neutron rich nuclei

22 24 26
Neutron number

No shell effect for Mg(Z=12), Si(14), S(16), Ar(18) at N=20 and
28. Bastin et al. PRL (2007)

Oxygen: shell closure at N=16 Otsuka et al PRL (2005)

Calcium: shell closure at N=34
D. Steppenbeck et al. Nature (2013)

Binding of 47P, 49S, 52Cl, %4Ar, °’K, 59:%0Ca, and %2Sc
0.B. Tarasov et al., PRL 121, 022501 (2018)




Nuclear sizes: minimize energy

Einteraction(ZaA) = Ebqu i Esurface_i-ECoqumb-i-Esymmetry to..

2/3 2 :
Eoirface = 3. A7 ~ Rn Rn = nuclear radius, a, ~ 18MeV

Ecoulomb = a.Z2A3~ Z°/Rn = ~x2 A58, ZIA=x, a. ~0.7MeV

1) At fixed x, balance nuclear Coulomb vs. surface energies per

QUGG a% (AT a2a%%) =0

=> Egrface = 2 Ecou = A~ 12/x2  (cf. *Fe at x = 1/2)

2) Best Z/A: No energy cost to convert n to p+e- (+neutrino)
=> beta equilibrium condition on chemical potential in nuclei:
Mp = Hp = Me L, = electron chemical potential (w. m,)
determined by density, driving x
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Neutron drip

Beyond density pg;, ~ 4.3 X 10" g/cm® neutron bound states
iIn nuclei become filled. Further neutrons must go into
continuum states. Form degenerate neutron Fermi sea.

Neutrons in neutron sea are in equilibrium with those inside
nucleus (common p,)

Protons appear not to drip, but remain in bound states until
nuclei merge in interior liquid.



Cross section of nuclei before and after drip
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Figure 5 Density profiles of lattice unit cells in the crust for various average densities. The upper curve is the neutron
number density; the lower is the proton number density ; n, denotes the average nucleon density, measuled in nucleons/cm®.
The horizontal axis is distance in fm. From (27). (The density of nuclear matter is 1.7 x 10°° nucleons/ cm?.)

J. Negele and D. Vautherin, Nucl. Phys. A207 (1973) 298
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How stable are spherical nuclei?

Take incompressible liquid drop with small quadrupolar deformation:

3cos?6—1
Py(@) = 22

Radius R — R(1 + eP»(£2))

Area increases by factor (1+3€2/5).
Coulomb energy decreases by factor (1- €4/5).

2
5(Esurf + Ecoul) —

€

- (3EY, . —EY )

surf coul

For E..u > 3Esur-s have spontaneous deformation. Can have
first order jump to lower energy configuration before that though.
More accurate is E.,,; > 2F;,,.f or Z?/A>2 aja, ~ 50
(Bohr-Wheeler fission criterion)

r




New states of nuclei deep in neutron star crust

Nuclei deform at high density in crust. Calculate Coulomb

energy
of nuclei including the electron background.

Wigner-Seitz method: draw sphere around each nucleus of
radius r. where (47T/3)7“3C Nouclei = 1

Nuclear lattice in crust Wigner-Seitz spheres around each nucleus

radius ry radius r

Coulombenergy p . ~ EO°
of lattice

vanishes for ry=rq



Bohr-Wheeler instability of nuclei

Z/A of nuclei for given Aobey  E e = 2E
Bohr-Wheeler => instability for E°.,, > 2E

coul = EOcouI/4

coul

surface

coul
or E

Instability for . 37c +% (TC

Y

or ry/re ~ V2.

When nuclei fill ~1/8 of space
> fission and onset of non-spherical shapes

Transition to liquid interior at n/ny ~ 0.5 (10% uncertain)



Pasta Nuclel in inner crust
D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, PRL 50, 2066 (1983)

When Coulomb wins over surface energies:
as in Bohr-Wheeler criterion for nuclear fission (Z%/A> 50)

(a) Meatballs (c) Lasagna

"Antipasta"

Ly

(f) Cheese (e) Anti-spaghetti (d) Anti-lasagna

Involves over half the mass of the crust !! Effects on crust
bremsstrahlung of neutrinos, pinning of n vortices, modes of crust, ... ?7?
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FIG. 1. Energies per unit volume as a function of den-
sity for the one-fluid phase, and the three-, two-, and one-
dimensional nucleus phases, with (for FPS) the bubble (in-
verted structure) versions of the first two, after subtraction
of the energy of the two-fluid phase, neglecting Coulomb and
interface effects. The two nuclear interactions illustrated are
SKM [6] and the version of FPS (8, 9] described in the text.
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FIG. 2. Profile of a neutron star crust as given by FPS |8,
9]. The distance (in km) is measured from the surface. The
solid line is density p/mn, in fm™3, and the dashed line is
pressure, in MeV fm~3, plotted logarithmically. Vertical lines
indicate the phase boundaries described in the text. At the
top is shown the superfluid energy gap [22].

Profile of neutron star



Pasta phases of symmetric nuclear matter (n, =n,)
M. Okamoto, T. Maruyama, K. Yabana, & T. Tatsumi , PRC 88, 025801 (2013)
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a) ng = 0.01 fm=3 fcc lattice
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The liquid interior

Transition to liquid interior at n/ny ~ 0.5 (10% uncertain)

Neutrons (likely superfluid) ~ 95% Non-relativistic
Protons (likely superconducting) ~ 5% Non-relativistic
Electrons (normal, T. ~ T;e'37") ~5%  Fully relativistic

Eventually muons, hyperons??, quark matter and possible
exotica:

pion condensation

kaon condensation

quark droplets

Uncertainties in nuclear matter liquid: intexpolations between
pure neutron matter and symmetric nuclear matter.



Why “neutron” star?

B equilibrium: p, = p, +
Charge neutrality: n, = n,

Non-interacting matter:

Hp = pn2/2mn’ “p = ppz/zmp’ He = Cpe =Cpp
=>p /p =p [2m ¢ =>n,/n, = (p,/2m.c)3~0.03

Mean field effects: (p,4/2m,) + V, = (p,2/2m,) + V, + p,C
V, <V, (favors fewer neutrons) => n/n,=0.05

Matter is primarily neutron liquid

Estimate the value of V-V to get n /n, = 0.05



Neutron Star Models

Equation of state:  E = energy density = p c?
n, = baryon density
P(p) = pressure = n,? 6(E/n,)/0 n,

Tolman-Oppenheimer-Volkoff equation of hydrostatic balance:

OP(r) _ p(r) + P(r)/c?
or r(r —2Gm(r)/c?)

Im(r) + 4nr’ P(r)/c?]
, general relativistic corrections
m(r) = / 47T7“/2d7“/0(7°/) = mass within radius r
0

1) Choose central density: p(r=0) = p,
2) Integrate outwards until P=0 (at radius R)

3) Mass of star R
M:/ dmridrp(r)
0



Families of cold condensed objects:
mass vs. central density
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BPS, Ap.J 170, 299 (1971)
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Mass vs. radius, and stability
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Problem: Solve the TOV equation analytically for
constant mass density, p



Scaling TOV equation

OP(r) _ g PV H POV 1) | g P(r) /)

or r(r—2Gm(r)/c?)
Dimensionless variables p = 60 p , P = 60 P r = C r
with ¢ =1/VG

~

OP(r) 1 (p+ P)(m(F) + 4773 P)
or 12 1 — 2m(7)/7

with 7 (7) = / 47 p(7) d7
0]

R3/2.7/2 B (mpc2)2 A

Scaled TOV equation:

(=
G/ €0 mpcoz};/Q
my mp02 ? mpc2 ’ n

Mo —=p{ =) ~180(— ) Mo Scale of masses and radii
Sle!

2
Rx (=172 (mpc ) km Rschwarzschild . 2MG -1
0 R 2R



Upper bound to neutron star mass:

require speed of sound, c,, in matter in core not to
exceed speed of light: ¢.2=0P/op < 2

Maximum core mass when c, = C
Rhodes and Ruffini (PRL 1974)

Po ~ 4pnm == I\/Imax =22 M@
20m => 2.9 Mg

V. Kalogera and G.B., Ap. J. 469 (1996) L61



Properties of liquid interior
near nuclear matter density

Determine N-N potentials from
- scattering experiments E<300 MeV
- deuteron, 3 body nuclei (*He, 3H)
ex., Paris, Argonne, Urbana 2 body potentials
Solve Schrodinger equation by variational techniques

Large theoretical extrapolation from low energy laboratory
nuclear physics at near nuclear matter density

Two body potential alone:

Underbind *H: Exp =-8.48 MeV, Theory = -7.5 MeV
“He: Exp =-28.3 MeV, Theory =-24.5 MeV



Importance of 3 body interactions

Attractive at low density
Repulsive at high density

Various processes

that lead to three

and higher body

Intrinsic interactions

(not described by
iterated nucleon-nucleon
iInteractions).

Stiffens equation of state at high density
Large uncertainties!



Excitation energy (MeV)
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Calculation in Green’s
functionsMonte Carlo

of energy levels

of light nuclei.

AV18+ lllinois 7

three body interaction.

Quantum Monte Carlo

methods for nuclear physics
Carlson, J. et al. Rev.Mod.Phys.
1067 arXiv:1412.3081 [nuclth]




Standard construction of neutron star models

1) Compute energy per nucleon in neutron matter (pure orin
beta equilibrium: p, = p, + ). Include 2 and 3 body forces
between nucleons

Akmal, Pandharipande

& Ravenhall, Phys. Rev. C58 (1998) 1804
60.0 e

TCO

condensate

A18+UIX

(1996) \
15 2 A14+UVII, WFF(1988) 1
\ U-DDI, FP(1982) |
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w
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000 0.05 0.10 0.15 020 025 0.30 0.35 0.40
-3
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Neutron star models using static interactions between nucleons

OP(r) _ o _plr) + P(r)/c

= ' - 2
E = energy density = pc = T 2Gm(r) /@)

n, = baryon density
P(r) = pressure = n,2 d(E/n,)/dn, TOV equation "

M:/ 4rr2drp(r)
0

[m(r) + 4nr? P(r) /c?]

A18+UIX 47

// A18UIX +dv,

10.0 11.0
radius [km]

Mass vs. central density Mass vs. radius
Akmal, Pandharipande and Ravenhall, 1998

APR equation of state



