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Summary of lecture 1

We understand two polarization modes of GW propagation from
fundamental viewpoints (using linearized Einstein’s equaion)

+mode | | | X mode
dI; récs . .
We derived the energy flux formula dgw =330 (hZ + h2)
: 2G
We derived the quadrupole formula  p;/" 94 = —— 0t —7/c)



Lecture 2: GW from binary system in
circular orbit



The goals of lecture 2

» Deriving the so-called chirp signal for point-particle GW
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» Understanding Post-Newtonian (PN) expansion

» Understanding the concept of tidal deformability

» Deriving the result that the finite-size effect (tidal deformability) come
in GW (via equation of motion) from 5PN order

» Thus knowing point-particle GW at least up to 5PN order is essential in
extracting information of tidal deformability



Lecture 2: GW from binary system in
circular orbit

Derivation of the chirp signal



GWs from a binary in circular orbit (1)

Let us consider GWs from a binary system with masses m; and m, in
circular orbit of radius R

In the center of mass frame, the relative coordinate ¥ = 7, — 7, are
x(t) = Rcos(wt +m/2) y(t) = Rsin(wst +7m/2) z(t) =
The 2" mass moments M/ = ux'x/ are (only for non-zero)
1 1, .
M = %,URZ(I —cos2wst)  M* = EuRZ(l +cos2wst) M= —§#R2 sin2wt

mimio
my +msy

» where pu= is the reduced mass

Substituting the quadrupole formula, + and X modes of GWs seen from
n; = (sinH sin¢, sinf cos @, COSQ) are

14G 1 + cos?0
hqlnd(t 0,p) = ” — 1R w5 o8 (2(Ws tyer + ) CZOS
14G
--------------------- hql“d(t 0,p) = ——,uRza) CoS (Z(a)stretﬂp)) cosf




GWs from a binary in circular orbit (2)

o G(my+my)

From Kepler’s 3 law, o?= 3 so that
4 (GM "3 (7 fw ) *"? 1 +cos?60
gt = () (222 cos o e+ 20)

5/3 2/3
hquad _ 4(GM.\ T[fgw

oS (271 fawtret + 2¢0) cOSO

X

r\ c? c

i 3/5 25 __(mamp)*P
» Here we use the chirp mass : | M, = "> (m, + m,)*° =

(my + my) />

and 27 foy = Wew = 20

The radiated power are calculated by the energy flux formula

dP. r2c3 . . 205 (GM g\ />
= (M +hE) = —— (=] g(0)
dQ  16nG TG 2¢3
o . , in2 9)°
where R is eliminated using Kepler’s law and g(6) = (1+51: ) + cos? 8
Thus 32 ¢° (GMngW)IO/ ’
5 G263



GWs from a binary in circular orbit (3)

The binary system evolves according to the GW emission (Fyyy)
The total energy of the system is

. 1/3
G G*M2w?,
E = Exin + Epot = = e = - X )
2R 32
. dE
From the energy conservation — — = Py, we have
5 5
dogy _ 12, (ﬂ) P w96 (Gﬁ ) B
dt 5 c3 gEW dt 5 c3 gEW

With a condition that f,, diverges at the merger time t;erge , We have

oo L5 1 3/8 (GMC>_5/8
Jaw(8) = 1\ 256 tmerge — t c3

» Of cause, in fact, the compact objects have finite size and the frequency never
diverges in realistic systems

» GW amplitude also increases with time and diverges at tyerge



The chirp signal

Substituting f,,, to h, and hy , we obtain the chirp signal as

4 (GMC>5/ } (nfgw(tret)

1+ cos?6
2

2/3
h,(t) = -\ 2 c ) cos D (tret)

4 (GMC)S/ ’ (nfgw(trea

hX(t) = CZ c

2/3
" > sin @ (t et) cos O

where ®(t) is a solution of d®/dt = Wgyw , given by

SGMC)_S/B e

(L) = Py — 2 ( 3 (tmerge —t

Note that the chirp signal depends on (chirp) mass of the system and
we can obtain information of mass from its analysis



Gravitational Wave Signal

The chirp signal

» Substituting f,,, to h, and h, , we obtain the chirp signal as

0.1

4 (GMN® (Ttfo (tret) 2/3 1+ cos? 60
h,(t) = —( C) g cos D(t
®==(4 - (tre) —
4 (GM\*? (M fg (tre)
h(t) = ;( 2 ) . sin @ (t ) cos O
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https://www.youtube.com/watch?v=Y6tSFk5ESAo0

A ring of particles, at
the viewer location,
responds to the
WENEES

Orbiting compact
objects: a gravitational-
wave source




For a typical NS-NS case (1)

» For a typical case withmy = m, = 1.4My (Mg ~ 2x10%3g: solar mass )

(©) ~ 130 H 1sec \/® M, 5/8
Jow(8) “\tmerge — ) \121Mg

-8/3 -5/8
, fow NP M\
fmerge = £~ 2S€¢ | 100 Hz 1.21M,

» Number of GW cycles N can be calculated by dN = dt/T(t) = faw (t)dt

tmax fmax f 1 GM -5/3 B B
N :f dtfgw(t) :j dfgw = ( C) (fmif’l/g - ma5>{3)
t

fow  320°73\ 3

min fmin

» For a typical advanced GW detector: fi,in~10HzZ, f,2x~1000Hz, and

— -5/3
fmin 5/3 Mc
N = 1.6><104( )
10 Hz 1.21Mg,




For a typical NS-NS case (2)

» The merger time is (T(t) = 2/ ws = 2/ faw)

t t ~ 7x10° (T )8/3 M.\ 3% 1010 ( r )8/3 M, \*"°
—tx~7X — — ~ 3X —
merge "\1hr) \121Mg T\Taay) \121Mg

Name Mot M, Mg gl Torp R exn D fs Bsurt
(Mo]  [Mo]  [Mo)] [days] [Heht s] [kpe] [Hz] (G]
J0453+1559 8] 2.734 1.559 1.174 0.75] 4.1 14 0.11 1.8 22 9.3E+09
J0737-3039 [9] 2.587 1.338 1.249 0.93] 0.10 1.4 0.088 1.1 44 6.4E+09
J1518+4904 [ 10] 2718 <1.766 >0.951 >0.54] 8.6 20 025 0.7 24 9.6E+08
B1534+12[11] 2.678 1.333 1.345 0.99] 0.42 3.7 027 1.0 26 9.6E+09
J1753-2240 [12] - — - - 14 18 030 35 10 9.7E+09
J1756-2251 [13] 2.577 1.341 1.23 0.92] 0.32 2.8 0.18 0.73 35 5.4E+09
J1807-2500B [14]  2.571 1.366 1.21 0.89] 1.0 29 0.75 — 239 <9.8E+08
J1811-1736 [15] 2571 <1478 >1.002 >0.68 19 35 083 59 96 9.8E+09
J1829+2456 [ 16] 259 <1.298 >1.273 >098] 1.2 7.2 0.14 074 24 1.5E+09
J1906+0746 [ 17] 2.613 1.291 1.322 0.98] 0.17 1.4 0.085 7.4 69 1.7E+12
J1913+1102 [ 18] 2875 <184 >1.04 >0.56] 0.21 1.8 0.090 13 1.1 2.1E+09
B1913+16 [19] 2.828 1.449 1.389 0.96] 0.32 23 062 7.1 17 2.3E+10

_________ J1930-1852 [20] 259  <1.199 =>1.363 >0.88 45 87 040 23 54 6.0E+10 _______.
4 B2127+11C [21] 2.713 1.358 1.354 1.0 | 0.34 25 0.68 13 33 1.2E+10




For a typical NS-NS case (3)

GW amplitude for a event at 100 Mpc = 3.1x10*°km

3 2/3
B~ i(GMC)S/S T[fgw 7 ~ 1024 M. o fgw / (100 MpC)
r\ c?2 C MQ 100 Hz r

Effective amplitude is enhanced (x+/N) by integration

M, /e 100 Mpc
~ 22 gW
hete ~ I/N ~ 107 <M@> (100 Hz) ( r )

» For GW170817 (NS-NS) : hegr ~ 107%4(r = 40Mpc, M, ~ M)

» For GW150914 (Bh-BH) : hegr ~ 10721 (r = 400Mpc, M, ~ 60M)



Lecture 2: GW from binary system in
circular orbit

Very brief introduction of Post-Newtonian formalism



Post-Newtonian (PN) formalism (1)

Post-Newtonian (PN) formalism is a method which can be applied to
» slowly moving (v/c < 1)

» weakly self-gravitating (GM /c?d < 1)

GW sources like (early-phases of) compact-star binaries

For self-gravitating systems, as a consequence of the virial theorem,

w2 GM R
(E) c2d cf

so. we may perform perturbation expansion only in terms of v/c

)Zn

The correction in G" or (v/c)“" is called n-th ordher PN correction or

nPN order correction




Post-Newtonian (PN) formalism (2)

In the PN formalism, we first deflne hop = \/=gg®P —n°F, and impose de
Donder gauge condition aﬁh‘“ =

In de Donder gauge, Einstein’s equation exactly takes a form

167G . . .
(heP = y 7% the relaxed Einstein’s equation
where ¢
4
ap _ (_ Taﬁ c Taﬁ
’ (=8) +16nG h
16 G
Tﬁﬁ T (—g ) aﬁ ( A, h o hﬁv_h;l\/a“avhaﬁ)
167G , , 1 , ) . ,
T (- g)t“ﬁ g8 Ovh ™ O + 2 g1y, g O™ O KK — g, OahPH (g1, hFY + g0 )
ici Lv 1 (n) | uv
Then, we expand metric in terms of 1/c as h*Y = Z — hH
n=2C

and perturbatively solve the relaxed
Einstein’s equation



Post-Newtonian (PN) formalism (3)

Once we have the PN metric, we can derive the equation of motion
from the action

dxH dxV 9 i vivi
:—mcfdf 8w T e fdf —800—2801'?—81'1' 2

The equation of motion schematically takes the form

(1 +0((0/0)?) + O((010)*) +++-) + — (O((w/0)2) + O((/ )*) +- )
r C

d?x! Gm
dr2  r2

If we can solve the equation of motion, the energy momentum tensor
is given by )
, 1 dr,dx), d
T/.l\/:_z m, TgadX, x053)(x_xn([))
V-8 dt dtv,drt,

a

which becomes the source term for the relaxed Einstein’s equation



Difficulty in PN formalism (1)

Due to the nonlinearity of GR, h,itself becomes the source of GW

Then, the Poisson integral does not have compact support

As we have shown in Lecture 1, there is the correspondence
“higher v/c < higher multipole (x')”
The Poisson integrals are necessarily divergent beyond some order

» Divergent features start to appear from 2PN order (become inexorably
divergent at 3PN)

Some special treatment using a variant of the analytic continuation
is necessary to obtain a particular solution

For details of PN formalism, see

» Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling
Compact Binaries”, Living Reviews in Relativity, 17, 2 (2014)



Difficulty in PN formalism (2)

1
In PN formalism, we use approximation : _TWWZ (1+0?*/c))V*
C

» This means that retardation effects are assumed to be small corrections

We are trying to reconstruct a retarded field from its expansions for
small retardationr/c K t (v ~r/t L ¢)

1 1 r .
h/JV:;FIJV(Z-_r/C) I"l‘(t)-i- F/J‘(t)_i—zc /J\/(t)+6€3 F/J\f(l.)'i'-..

The higher-order-term coefficients blow up as r = oo

» Mathematically, the PN expansion is an example of asymptotic expansion
(singular perturbation theory)

Just as in electrodynamics, it is convenient to distinguish between the
‘near zone’ and the ‘far (wave) zone’.

» The near zone and far zone are separated by an intermediated region atr ~ A,



Difficulty in PN formalism (3)

Since GWs carry away the energy from the system, the equation of
motion is modified due to the back-reaction of GW emission

As shown in the linearized theory, at the leading order, GW power is

_ 32 ¢° (GMCCUg\V)lO/g G,L12 4 6 Gm? v°

N — I r (,U: ~ I .
&t 5 G 2¢3 co ° co 12

The total energy of self-gravitating systems is E = Eyin + Epot~Epot~Ekin

d (1

d G 5
a2 v m(z)

dt r2 \c

Thus the back-reaction of GWs comes in EOM from 2.5PN

There are other effects like spin-orbit and spin-spin coupling, etc,

» For more details, see Blanchet (2014)



Khan et al. PRD 93, 044008 (2016)

Taylor F2 waveform : 3.5PN GW

3 M=m; +m
5/3 = 3 25
drv = 2uftc = go = w/4 + o (nf M) S (@ army’ |
@y = 1 =0 n = mym,/M?,
¢1 =0 6= (my—my)/M,
3715  55n i )
Py = - mass can be determined in 1PN
756 9 Xs = (1 +x2)/2,
B 1130y, 113 76n .
¢z = —167 + 3 + (T - T)X“ spin effect comes n 1.5PN — (1 —12)/2.
15293365 . 27145p . 30851> . 405 200 405 405 405 . 51\
P4 = 7508032 504 7 8 e =~ ks g 1 )X
1+ log (zM )] 38645r 657y [ 732985 140pn N 732985 n 24260n L 340n°
pr— 0o — —_ —_ 4 — A
s &I 756 9 268 9 e 2268 81 9 )4
11583231236531 6848y, 6407 15737765635  2255x° . 760557> 1278251
( - —_— [— J— ' —_
6 T 1694215680 21 3 3048192 2 )T T1728 1296
6848 2270 2270
og(64zMf) + TJZ(S,}’(, + ( . 5207r17>,{3‘
77096675z 378515xn  740457n? s 25150083775 268049357 19851
[¢ = —_ _
P71 = "254016 1512 756 3048192 6043 13 e
} 25150083775 10566655595y 10421657> 53453\ e
3048192 762048 3024 36 )1



Lecture 2: GW from binary system in
circular orbit

The tidal deformability appears in SPN
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When tidal deformation joins ? (1)

Treating the compact objects as perfect fluids, we can take into account
the effect of the tidal deformation (finite-size effect)

The basic equations are the continuity and Euler equations
0rp+0;(pv') =0
parvi +pvj6_,-(,ovi) =—0;p+po;U
» together with an equation of state : p = p(p) and Poisson eq. VU = —4nGp

The mass and center-of-mass coordinates of the a-th (a = 1,2) NS are
. 1 .
ma= | d’xp(t,x) z,(1) = —f d*xp(t,x)x’
v, Mg Jv,

» where V is the volume occupied by the a-th object

Using the continuity and Euler equations, we get equations of motion

d?z!
Mg dt;{ = . d?’x(—a,-p+p0,-U)




When tidal deformation joins ? (2)

Derivation
dz} 1 . 1 .
= d3x (0 E——__— | d3x 4 kY,
dt  mgJy, x (0ep)x Mg Jy, g k(pv )x

1 .
=— | d3xpvt
mg Jy,

d?z} 1 : 1 . iy .
= j d3x d,(pv') = —f d3x [0k (pv'v*) — 6Y0,p + psUo;U |
Va Va

dt? m, mg
1 g y 1
=— | d3x[-6Y0,p+psUoU | =—| d3x[-0;p + po;U]
Mg Jy, Mg Jy,



When tidal deformation joins ? (3)

The gravitational potential can be split into “self-” and “external” parts as

t, x' t, x'
U(t}x) =G dsxr P( /) +G dsxrp(—’) — Uself + Uext

The self-part vanishes because

Fself — f d3x [_aip +paiUself] — j depaiUself
V- V-

1 1
0 t, x'
— Gf d3xp(t,x)—l.j d3x’' P ,)
o(t, x)p(t, x'
= —Gf d3x | d3x' (x — x’)‘p( )'D(, 5 ) =0
Vi Vi |2 — x|

» The integrand is odd under the exchange x < x', while the domain is symmetric
» Note that the two densities p(t, x) and p(t, x") are conceptually different

p(t,x) : passive gravitational mass density

p(t, x") : active gravitational mass density

» The vanishing of the self-force is rooted in the equality of two gravitational mass



When tidal deformation joins ? (4)

Thus the equation of motion only contains external gravitational force
Dependence on the tidal deformability is obtained from a multipole
expansion of the external force
We introduce a coordinate y = x — z,(t) around primary star z; and
expand the external field as
. 1 .
0 U (t,y + 21) = 0,US (¢, 2,) + ¥’ 0;0,U°*" (¢, 2,) + EykyjakajaiUeXt(t, zy) + -

Then, equations of motion are

d?zt
= | d®yp(t, )0, U (t,y + z,)
ez J,

my

. 1 .
= | d3yp(t, x) laiU XU(t,z,) +y’0;0,U°*'(t,2z,) + EykyjakajaiUeXt(t» Z,) + - ]
V1

. 1 .
== mlaiUeXt(t, Zl) + IljajaiUeXt(t, Zl) + ElljkakajaiUeXt(t, Zl) +

where U= d3ypt,x)y,, I*=| d3yptx)yiy*



When tidal deformation joins ? (9)

Note that the term with dipole moment vanishes as follows

Ilj = | d®ypt,x)y' = | Bxpt,x)(x —z; )= | d3xp(t,x)x' — | d3xp(t, %)zt

1 41 41 |41
. . . 1 .
= | d3xp(t,x)x' —myzi = | d3xp(t,x)xt —m;— | d3>xp(t,x)x' =0
A Vv, mq Jy,

The term with Iljk can be rewritten with quadrupole moment Q{k
because §/¥9,.0;0,;U**(t, z1) = 0;V2U®**(t,2,) = 9;(—4nGp,(t,z,)) = 0

» Spatial derivative with respect to the primary-star coordinate of density of the
secondary star vanishes

Then,
1%0,0,0,U%(t, 2,) = (1{" - §5Jk1{l) 00,0, UX(t, 21)
= 07%0,0;0,U'(t, z,)



When tidal deformation joins ? (6)

To summarize, the equation of motion is
dzzé ext 1 Jk ext Newt induced

» If there is non-vanishing quadrupole moment (tidal deformation) induced by
the companion’s tidal force, we will have the 2"9 term

The quadrupole moment induced by tidal force is QIF ~ e MR? , With
typical ellipticity

_ Figal GMR/d® _ (5)3 We introduced the non-dim
Foer GM /R? d tidal deformability A
Then,
ik 2 pNewt 5
Finduced~ ﬁ aZFNewt _ EMR” F™° ~ A (E) FNewt ~ A (Z)lOFNewt
M M d? d c

. GM .
where we use % ~v? (by Virial theorem) and R ~ — for compact object

Thus, tidal effect joins at 5PN order !
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Wade et al. PRD 89, 103012 (2014)

Tidal effects on GW phase

3 (39 03 3115 6595 o3
" - — A M 1+ — 1—-4n— M
Pidal =~ 155 ( 2 )(”f ) [ (1248 7008V "R )(nf ) ]

8
A== |(1+77=317)(Ar+ A2) = VT=37(1+ 97— 117%) (A, ~ Ac)|

1 13272 8944 15910 32850 ., 3380
SA==|\/1-4n|1- + 21(A;+Ay)—|1— + 2y 3) A=A ]
2[ 77( 1319 11319 )( 1+ 42) ( 1319 7 1319 7 " 1319 (A1 =22)




Higher order point-particle GW is necessary

To extract information of the tidal deformation correctly, we need
point-particle GW waveform accurate at least in 5PN order

Otherwise the tidal deformability A may be overestimated

» Taking into account the PN corrections, in general leads to faster phase
evolution due to the stronger gravity in GR

» Tidal effects will also results in faster phase evolution, because the energy
should be consumed in exciting the tidal modes, which can be regarded as an
additional cooling source

However, there is no well-established point-particle GW waveform
higher order than 4.5PN Messina & Nagar PRD 96, 049907 (2017)

» But see Messina et al. (2019) 1904.09558 for recent study for 5.5PN

» It will be necessary to fully take into account the relativistic effects using
Numerical Relativity (Lecture 4)




Messina et al. (2019) 1904.09558

Importance of higher PN terms

Comparison of BH-BH GW (no 20 —
. . I|—— quasi-5.5PN : 11024H
effect of tidal deformability) | duast :l:::“ ;| 1024Hz
[T T quasi-SPN 718Hz: |
between PN waveform and a 15 f1|~—quasi-4.5PN Eo
. . . . I quasi-4PN 2 /
numerical-relativity-calibrated .  [1I|—3spN F
Ay 3 | T s | b
(phenomenological) waveform < 1 | i /,f/
| : Y
ml | | )
: : c. | (g, x1,x2) = (1,0,0 1
According to Messina et al. S ] (@x1,x2) = (1,0,0) .
dr7 :
(2019), the 5.5PN correction . OHy. :/

. :7
significantly improves the " 120Hz B4
accuracy Of point_particle 0 : l . = ..» ..... : .......................
approximation -7 -6 -5 -4 3 2

: : -~ 08hH
We will see impact of the 83 0 [l | i)
. . i I A
higher order corrections on | 041 | AN
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