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Summary of lecture 1 
} We understand two polarization modes of GW propagation from 

fundamental viewpoints (using linearized Einstein’s equaion)

} We derived the energy flux formula

} We derived the quadrupole formula 
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The goals of lecture 2 
} Deriving the so-called chirp signal for point-particle GW

} Understanding Post-Newtonian (PN) expansion
} Understanding the concept of tidal deformability
} Deriving the result that the finite-size effect (tidal deformability) come 

in GW (via equation of motion) from 5PN order
} Thus knowing point-particle GW at least up to 5PN order is essential in 

extracting information of tidal deformability
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Derivation of the chirp signal



GWs from a binary in circular orbit (1)
} Let us consider GWs from a binary system with masses !" and !# in 

circular orbit of radius $
} In the center of mass frame, the relative coordinate &⃗ = &⃗" − &⃗# are

} The 2nd mass moments                      are (only for non-zero)

} where                        is the reduced mass 

} Substituting the quadrupole formula, + and �modes of GWs seen from  
are 



} From Kepler’s 3rd law,                              so that

} Here we use the chirp mass :
and  2"#$% = '$% = 2'(

} The radiated power are calculated by the energy flux formula

where ) is eliminated using Kepler’s law and * + = ,-./01 2
1

3
+ cos8 +

} Thus 

GWs from a binary in circular orbit (2)
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} The binary system evolves according to the GW emission (!"#)
} The total energy of the system is

} From the energy conservation −%&
%' = !"# , we have

} With a condition that )"# diverges at the merger time *+,-", , we have

} Of cause, in fact, the compact objects have finite size and the frequency never 
diverges in realistic systems

} GW amplitude also increases with time and diverges at *+,-",

GWs from a binary in circular orbit (3)
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} Substituting !"# to ℎ% and ℎ× , we obtain the chirp signal as
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where Φ(') is a solution of ⁄FΦ F' = G45 , given by
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} Note that the chirp signal depends on (chirp) mass of the system and 
we can obtain information of mass from its analysis

The chirp signal
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we can obtain information of mass from it

The chirp signal



https://www.youtube.com/watch?v=Y6tSFk5ESAo



} For a typical case with !" = !$ = 1.4(⨀ �(⨀ ≈ 2×10..g : solar mass �
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For a typical NS-NS case (1)



} The merger time is (! " = ⁄2& '( = 2/*+,) 
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For a typical NS-NS case (2)



} GW amplitude for a event at 100 Mpc ≈ 3.1×10*+km
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} Effective amplitude is enhanced (× C) by integration 
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} For GW170817 (NS-NS) � ℎDEE ~ 10>66(1 = 40Mpc,34 ≈ 3⨀)

} For GW150914 (Bh-BH) � ℎDEE ~ 10>6* 1 = 400Mpc,34 ≈ 603⨀

For a typical NS-NS case (3)
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Very brief introduction of Post-Newtonian formalism



Post-Newtonian (PN) formalism (1)
} Post-Newtonian (PN) formalism is a method which can be applied to 

} slowly moving (!/# ≪ 1)
} weakly self-gravitating (&'/#() ≪ 1) 
GW sources like (early-phases of) compact-star binaries

} For self-gravitating systems, as a consequence of the virial theorem,
!
#

(
~ &'#() =

,-
)

so. we may perform perturbation expansion only in terms of !/#

} The correction in &. or (!/#)(. is called n-th ordher PN correction or 
nPN order correction



Post-Newtonian (PN) formalism (2)
} In the PN formalism, we first define                                  , and impose de 

Donder gauge condition
} In de Donder gauge, Einstein’s equation exactly takes a form

where

} Then, we expand metric in terms of 1/# as
and perturbatively solve the relaxed 
Einstein’s equation

the relaxed Einstein’s equation 



} Once we have the PN metric, we can derive the equation of motion 
from the action

} The equation of motion schematically takes the form

} If we can solve the equation of motion, the energy momentum tensor 
is given by 

which becomes the source term for the relaxed Einstein’s equation

Post-Newtonian (PN) formalism (3)



Difficulty in PN formalism (1)
} Due to the nonlinearity of GR, h"#itself becomes the source of GW
} Then, the Poisson integral does not have compact support

} As we have shown in Lecture 1, there is the correspondence                  
“higher $/& ⇔ higher multipole (())” 

} The Poisson integrals are necessarily divergent beyond some order
} Divergent features start to appear from 2PN order (become inexorably 

divergent at 3PN)

} Some special treatment using a variant of the analytic continuation 
is necessary to obtain a particular solution

} For details of PN formalism, see 
} Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling

Compact Binaries”, Living Reviews in Relativity, 17, 2 (2014)



} In PN formalism, we use approximation :

} This means that retardation effects are assumed to be small corrections

} We are trying to reconstruct a retarded field from its expansions for 
small retardation !/# ≪ % (' ~ !/% ≪ #)

} The higher-order-term coefficients blow up as ! → ∞
} Mathematically, the PN expansion is an example of asymptotic expansion 

(singular perturbation theory)

} Just as in electrodynamics, it is convenient to distinguish between the 
‘near zone’ and the ‘far (wave) zone’.
} The near zone and far zone are separated by an intermediated region at ! ~ ,-.

Difficulty in PN formalism (2)



} Since GWs carry away the energy from the system, the equation of 
motion is modified due to the back-reaction of GW emission

} As shown in the linearized theory, at the leading order, GW power is

} The total energy of self-gravitating systems is ! = !#$% + !'()~!'()~!#$%

} Thus the back-reaction of GWs comes in EOM from 2.5PN

} There are other effects like spin-orbit and spin-spin coupling, etc,
} For more details, see Blanchet (2014)

Difficulty in PN formalism (3)



Taylor F2 waveform : 3.5PN GW 

Khan et al. PRD 93, 044008 (2016)

mass can be determined in 1PN 

spin effect comes n 1.5PN 



Lecture 2:  GW from binary system in 
circular orbit  ,

The tidal deformability appears in 5PN



Tidal deformability 
} Tidal Love number : !
} Response of quadrupole moment 
"#$ to external tidal field %#$

} Stiffer NS EOS 
⇒ NS Gravity can be supported with  

less contraction 
⇒ larger NS radius 
⇒ larger !

} We also use the non-dimensional 
tidal deformability � Λ
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When tidal deformation joins ? (1)
} Treating the compact objects as perfect fluids, we can take into account 

the effect of the tidal deformation (finite-size effect)

} The basic equations are the continuity and Euler equations

} together with an equation of state : ! = !($) and Poisson eq.
} The mass and center-of-mass coordinates of the &-th (& = 1,2) NS are

} where  *+ is the volume occupied by the &-th object
} Using the continuity and Euler equations, we get equations of motion



} Derivation
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When tidal deformation joins ? (2)



} The gravitational potential can be split into “self-” and “external” parts as

} The self-part vanishes because

} The integrand is odd under the exchange ! ↔ !′, while the domain is symmetric
} Note that the two densities $ %, ! and $(%, !′) are conceptually different

} $ %, ! : passive gravitational mass density
} $ %, !′ : active gravitational mass density

} The vanishing of the self-force is rooted in the equality of two gravitational mass

When tidal deformation joins ? (3)
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} Thus the equation of motion only contains external gravitational force
} Dependence on the tidal deformability is obtained from a multipole 

expansion of the external force

} We introduce a coordinate ! = # − %&(() around primary star %& and 
expand the external field as

} Then, equations of motion are

where

When tidal deformation joins ? (4)
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} Note that the term with dipole moment vanishes as follows

} The term with !"#$ can be rewritten with quadrupole moment %"#$
because &#$'$'#'()*+, -, /" = '(12)*+, -, /" = '( −45672 -, /" = 0
} Spatial derivative with respect  to the primary-star coordinate of density of the 

secondary star vanishes

} Then, 

When tidal deformation joins ? (5)
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} To summarize, the equation of motion is

} If there is non-vanishing quadrupole moment (tidal deformation) induced by 
the companion’s tidal force, we will have the 2nd term

} The quadrupole moment induced by tidal force is                      , with 
typical ellipticity

} Then, 

where we use               (by Virial theorem) and               for compact object

} Thus, tidal effect joins at 5PN order !

When tidal deformation joins ? (6)
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Tidal deformability 
} Tidal Love number : !
} Response of quadrupole moment 
"#$ to external tidal field %#$

} Stiffer NS EOS 
⇒ NS Gravity can be supported with  

less contraction 
⇒ larger NS radius 
⇒ larger !

} We also use the non-dimensional 
tidal deformability � Λ
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Effect of tidal deformation on GWs

Soft EOS �Smaller NS radius, smaller tidal deformability�
Effect of  tidal deformation is not prominent orbit

GW waveform 
Point particle
Tidal deformation

Point particle
Tidal deformation

Stiff  EOS �larger NS radius, larger tidal deformability�
Deviation from point particle approximation can be clearly seen



Tidal effects on GW phase

Wade et al. PRD 89, 103012 (2014)



Higher order point-particle GW is necessary
} To extract information of the tidal deformation correctly, we need 

point-particle GW waveform accurate at least in 5PN order

} Otherwise the tidal deformability Λ may be overestimated
} Taking into account the PN corrections, in general leads to faster phase 

evolution due to the stronger gravity in GR
} Tidal effects will also results in faster phase evolution, because the energy 

should be consumed in exciting the tidal modes, which can be regarded as an 
additional cooling source 

} However, there is no well-established point-particle GW waveform 
higher order than 4.5PN  Messina & Nagar PRD 96, 049907 (2017)

} But see Messina et al. (2019) 1904.09558 for recent study for 5.5PN
} It will be necessary to fully take into account the relativistic effects using 

Numerical Relativity (Lecture 4)



Importance of higher PN terms
} Comparison of BH-BH GW (no 

effect of tidal deformability)
between PN waveform and a 
numerical-relativity-calibrated 
(phenomenological) waveform

} According to Messina et al. 
(2019), the 5.5PN correction 
significantly improves the 
accuracy of point-particle 
approximation

} We will see impact of the 
higher order corrections on 
Λ and importance of 
numerical relativity in Lec. 3,4

Messina et al. (2019) 1904.09558
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