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Introduction
} Era of Gravitational-wave astronomy has come !

} Qualitatively new information provided by GW enabled us
} Test of Einstein’s theory of general relativity as the theory of gravity 

especially in strong field regimes
} Test of cosmology via independent estimates of Hubble constant
} Exploring the physics of dense nuclear matter using GW from binary 

neutron star (BNS) mergers

} Also, together with observations of electromagnetic signals,
} The origin of short-hard gamma-ray bursts
} The origin of heavy elements, like gold, lanthanides and actinoides
} Constraining the maximum mass of neutron star by inferring the remnant 

of BNS merger



Tests of general relativity by BH-BH (1)
} 10 BH-BH mergers + 3 candidates (S190408an, S190412m, S190503bf)



Tests of general relativity by BH-BH (2)
} Comparison of Post-

Newtonian waveform 
(perturbation expansion 
in terms of !, "#/%#)

} Upper limit of GW phase-
parameter error in each 
PN order

} -1PN order corresponds 
to dipolar radiation
} In GR, GW can be 

generated only from 
quadrupolar radiation

} In some alternative 
theories, dipolar radiation 
is predicted

LIGO Virgo Collaboration GWTC-1 paper (2018)



Tests of general relativity by BH-BH (3)

GR

} Comparison with BH perturbation 
theory (GW after merger) in GR

LIGO Virgo Collaboration GWTC-1 paper (2018)
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Test of Cosmology
} Hubble’s law

} We have two !" :    
of EM and GW 
luminosities

} They can differ, for 
example, in theories

LIGO&Virgo+ (2017)
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with extra dimensions: only GW (gravity) can propagate in extra dimensions
} Measurement of &' could be used to test Cosmology
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Hybrid star

Hyperon 
star

Quark star

Neutron star

Pion 
condensation

Kaon 
condensation

F. Weber (2005)

} Deep interiors of NS is still poorly known : many theoretical models
} Each model predicts its own EOS : NS structure is uniquely determined 
} Model (EOS) ⇒ NS structure

Neutron star structure and EOS



} Deep interiors of NS is still poorly known : many theoretical models
} Each model predicts its own EOS : NS structure is uniquely determined 
} Model (EOS) ⇒ NS structure

} Inverse problem : NS structure ⇒ constraining the models/EOS 

Neutron star structure and EOS

Lattimer & Prakash ApJ 550, 426 (2001)



} put one-to-one correspondence between EOS ⇔ NS "-# relation
} Lindblom ApJ 398, 569 (1992)

} set maximum mass "$%&,()* of NS associated with EOS
} models with "$%&,()* not compatible with "+,-,()* should be discarded

TOV (Tolman-Oppenheimer-Volkov) equations
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The most massive NS so far
} A pulsar (PSR J1614-2230) – White dwarf (WD) binary

} pulse profile is modified by the gravity of the WD
} Mass of WD is determined ⇒ NS mass is determined (since total mass is known)
} "#$ ≈ 1.93"⨀

Pulses from pulsar (NS)

WD gravity modifies the pulses 
⇒+,-
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Constraining NS EOS with GW
} We will consider to extract information of both mass and radius 

(infact, mass and tidal deformability, a quantity which represent 
finite-size effect) from GW emitted in NS-NS merger

} Then, we can challenge the inverse problem : NS structure ⇒
constraining the models/EOS 

} We will also consider to put a constraint on the maximum mass of 
NS using GW from NS-NS merger



Contents
} Aim : Introduce physics of GW from NS-NS in a fundamental viewpoint

} Lecture 1: Linearized theory
} GW propagation, TT gauge, polarization of GW (+, and �modes)
} GW production, quadrupole formula

} Lecture 2: GW from binary system in circular orbit
} the (point-particle) chirp signal,   tidal deformability
} Post-Newtonian GW and Numerical Relativity

} Lecture 3: Achievement in GW170817
} Extraction of tidal deformability and its interpretation
} Current constraint on EOS (combining with EM signals)

} Lecture 4: Future prospects
} higher density regions, proving hadron-quark transition
} Importance of numerical relativity



Lecture 1:  Linearized Theory



The goals of lecture 1 
} Understanding two polarization modes of GW propagation from 

fundamental viewpoints (using linearized Einstein’s equaion)

} Deriving the energy flux formula

} Deriving the quadrupole formula 

+ mode � mode
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Lecture 1:  Linearized Theory

the linearized Einstein’s equations



Derivation of the linearized equation (1)
} In general relativity, the spacetime metric !"# is determined by 

Einstein’s equations :

} Now we expand !"# in the background Minkowski metric $"# as

and linearize Einstein’s equation

Einstain’s equation 

Definition of 
Einstain tensor %"#
Coordinate component  
of Ricci tensor &"#

Christoffel symbol 



} With a straightforward calculation, the linearized Einstein tensor (the 
left-hand of Einstein’s eqs) is 

which can be simplified (by using the so-called trace-reversed tensor) 

} So as to satisfy !"#!#$ = &$", the inverse metric is given by !"$ = ("$ − ℎ"$. 
} Note that the indices of tensors can be raised or lowered in linearized theory by 

the Minkowski metric (+,, (+, : e.g., ℎ = ℎ"" = !"$ℎ"$ = ("$ℎ"$.

} In terms of .ℎ"$, the linearized Einstein’s equations become

} We can further simplify it by using the gauge degree of freedom of 
general relativity 

Derivation of the linearized equation (2)



Derivation of the linearized equation (3)
} The transformation  law of components of the 2nd lank tensor via

gives the linear transformation law of ℎ"# under the infinitesimal coordinate   
transformation $′" = $" − (", as 

} Because all observers (all coordinate system) are equivalent in general 
relativity, )"# and )′"# (or ℎ"# and ℎ′"#) must be equivalent as descriptions 
of gravitational fields

} This is the gauge degree of freedom of general relativity 

*+

ℎ"# ⟶ ℎ-"# = ℎ"# + /"(# + /#(" = ℎ"# + ℒ12"#

} geometrically, this reflects the degree of 
freedom in description of the perturbed 
field ℎ"# : from which point ℎ"# deviates



} We can use this gauge degree of freedom to impose de Donder gauge 
condition 

} Because                                         , de Donder gauge can be chosen by setting 
!" to be the solution of

} In de Donder gauge, the linearized Einstein’s equations become simple 
wave equations :

} Note that the de Donder gauge condition gives 4 conditions, so that ℎ"$
have 6 independent components, not 10

} The above linearized Einstein’s equation are the start point to study GW

Derivation of the linearized equation (4)



Lecture 1:  Linearized Theory

Propagation of Gravitational Waves



The transverse-traceless gauge (1)
} Outside the source (propagation of GW), we can greatly simplify the 

form of the metric
} The following discussion closely parallels the situation in electrodynamics

} First, note that de Donder condition does not fix the gauge completely
} de Donder gauge condition can be imposed by solving □"# = −&' (ℎ#', but we 

still have degrees of freedom to add a homogeneous solution □"# = 0

} We use these ‘extra‘ degrees of freedom as follows
} We set  (ℎ = 0 (traceless) using the time component "+
} We set  ℎ+, = 0 using spatial components ",

} Then ℎ#' = (ℎ#' , and de Donder condition gives 
&#ℎ#+ = &+ℎ++ + &,ℎ,+ = &+ℎ++ = 0

which indicates that ℎ++ describes a static ‘Newtonian’ potential outside 
the source ⇒ for GW, we will set ℎ++ = 0



} Thus, we have ℎ"# = 0 ℎ"" = 0, ℎ"' = 0
} Traceless condition is now ℎ'' = 0
} de Donder gauge condition is now  0 = ()ℎ#) = (*ℎ'*
} To summarize, we have imposed the so-called TT (Transverse-Traceless) 

gauge condition for GW outside the source :

} Note that in the TT gauge, only 2 degrees of freedom remain (6 − 4 =
2)

The transverse-traceless gauge (2)



Propagation of GW in TT gauge (1)
} For a plane wave propagating along z direction, in TT gauge, we have

} What will happen to two nearby test bodies (in geodesics) when GW 
propagate through them ?

} The separation vector !" = $% + '$ ( , *%+'* ( obeys the geodesic 
deviation equation

} Here                                                                                is                                       
Riemann curvature tensor

} For the linearized theory in TT gauge
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Propagation of GW in TT gauge (2)
} It is easy to solve the geodesic deviation equation and we have two 

solutions 

} For !"(+ polarization)

} The solutions are

} For !×(�polarization)

%̈& = 1
2 ℎ̈&+

,,%+



} For !×(× polarization) 

+ mode � mode

} For !#(+ polarization) 

Propagation of GW in TT gauge (3)



} Somewhat different from naïve notion of ripples in spacetime

Propagation of GW in TT gauge (4)

© LIGO/Caltech



} Somewhat different from naïve notion of ripples in spacetime

https://www.youtube.com/watch?v=F4stTzxYrN0

Propagation of GW in TT gauge (4)



Generalization
} Given a plane wave GW solution ℎ"# propagating in the direction $ , we 

can find solution in the TT gauge as follows
} First we introduce a projection tensor :

} Note that this tensor is symmetric and transverse ($%&%' = 0)
} Projection means &%*&*' = &%'

} Then we construct a projection tensor

} Which is transverse on all indices :
} Traceless with respect to (i,j) and (k,l)
} Explicitly

} The GW in the TT gauge is given by



Energy (& momentum) carried by GW (1)
} Let us regard the linearized gravity ℎ"# as a classical field on Minkowski

spacetime
} Then, by Noether’s theorem, we can derive the canonical energy 

momentum tensor for GW from the Einstein-Hilbert action

} A messy calculation gives

} Then, we obtain (canonical) energy-momentum tensor for ℎ$% , as

} Where we used Einstein’s equation □ℎ$% = 0 and de Donder condition
} denotes an average over GW wavelength (for completeness)

−* = det −*$%
. = *"#."#

: determinant of the metric
: Ricci tensor

/$% = − 0ℒ
0(0$ℎ34)

0%ℎ34 + 734ℒ =
89

32<= 0$ℎ340%ℎ34



} Let us compute the energy flux of GWs, !"#
} The conservation of the energy-momentum tensor                   implies

} Integration is taken over a volume V, bounded by a surface S

} In terms of the energy inside the volume V in TT gauge, 
the conservation of energy becomes

} where

} We are interested in the energy flux in a far distance from the source 
for which a more useful expression can be derived

Energy (& momentum) carried by GW (2)
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} For GWs propagating radially outward,                                           , then

} So that at  large distances,

} Thus the energy flux of GW is 

} This formula will be used in deriving GW from a binary system in lecture 2

Energy (& momentum) carried by GW (3)
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Lecture 1:  Linearized Theory

Generation of Gravitational Waves



Multipole and low velocity expansion (1)
} Let us start from the following qualitative consideration

} Let !" : the typical frequency of the motion inside the source
# : the source size,

then the typical velocity will be $ ~ !"#
} The frequency of GW will be !&' ~ !" ~ $/# , so that GW wavelength is

)&' = +/!&' ~ #(+/$)
which is much larger than the source size ()&' ≫ #) for low velocity

} This implies that generation of GW will not depends on fine features, but 
determined by coarse/bulk features of the source                                   

⇒ lower-order multipoles will contribute to GW in lower velocity sources    
(we will explicitly derive in below)



Multipole and low velocity expansion (2)
} In the linearized theory, generation of GWs is governed by the linearized eq.

} The solution is given using the retarded Green’s function as

} where                                    is the retardation time

} We are interested in GWs far from the source, so that with !" = $"/&, 

} Now we we write '"( in terms of its Fourier transform



} Here we note that
} !"#$ will be peaked around the typical frequency %&
} Integration is restricted within the source size : '( < *
then, we have for low velocity sources

} Then, in the right-hand-side, we may expand

} Substituting to the Fourier transform, we obtain

} Note that there is no mention to the low velocity nature if we regard the above 
as a result of the direct expansion for small +′ - ./0

Multipole and low velocity expansion (3)



} Let us define moments

then, we get

} This is multipole formula for GW generation in linearized theory

} Note again that higher multipoles corresponds to higher order in !/#

Multipole and low velocity expansion (4)

$%& = ()*+ ,%& - − /
0, 2 , $%&,3 = ()*+ ,%& - − /

0, 2 +3, $%&,34 = ()*+ ,%&(- − /
0, 2)+3+4



Quadrupole formula (1)

} The multipole formula is not very useful because it is given in terms of 
moments of matter stress tensor !"#

} Using the conservation law $%!%& = 0, in the leading order, we can 
rewrite it using mass (energy) moment ),)",)"#, …

} Because $,!", = −$.!". and $,!,, = −$.!,.,

so we obtain

/0) 1 = 2345 !,, 1, 6 , /0)" 1 = 2345 !,, 1, 6 5", /0)"# 1 = 2345 !,, 1, 6 5"5#

/7" 1 = 2345 !," 1, 6 , / 7",# 1 = 2345 !," 1, 6 5#, / 7",#. 1 = 2345 !," 1, 6 5#5.

/0$,)"# = −2345 5"5#$.!,. = 2345 !,.$. 5"5# = / 7",# + 7#,"
/$,7",# = 2345 5#$,!", = −2345 5#$.!". = 2345 $.5# !". = 2345 9.#!". = :"#

2:"# = /0$,0)"# = )̈"#



Quadrupole formula (2)
} Thus, for the leading order, GW are generated by the 2nd time 

derivative of mass quadrupole moment

where

} This is the quadrupole formula

} Order of magnitude estimate gives

} (nearby !~#), Non-spherical $~1 , high-velocity ('~(), strong-gravity
(*+/(-! ~1) phenomena are promising sources of GW
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