The 8t Huada school on QCD @ CCNU, Wuhan, China

Foundations of GW from BNS merger

with application to nuclear/hadron physics

Yuichiro Sekiguchi (Toho University)




Introduction

Era of Gravitational-wave astronomy has come !

Qualitatively new information provided by GW enabled us

» Test of Einstein’s theory of general relativity as the theory of gravity
especially in strong field regimes

» Test of cosmology via independent estimates of Hubble constant

» Exploring the physics of dense nuclear matter using GW from binary
neutron star (BNS) mergers

Also, together with observations of electromagnetic signals,
» The origin of short-hard gamma-ray bursts
» The origin of heavy elements, like gold, lanthanides and actinoides

» Constraining the maximum mass of neutron star by inferring the remnant
of BNS merger



Tests of general relativity by BH-BH (1)
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LIGO Virgo Collaboration GWTC-1 paper (2018)

Tests of general relativity by BH-BH (2)

» Comparison of Post-
Newtonian waveform
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of general relat1v1ty by BH- BH (3)
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Test of Cosmology
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with extra dimensions: only GW (gravity) can propagate in extra dimensions
» Measurement of H, could be used to test Cosmology
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Neutron star structure and EOS

» Deep interiors of NS is still poorly known : many theoretical models

» Each model predicts its own EOS : NS structure is uniquely determined
» Model (EQOS) = NS structure

Hybrid star eutron star

Pion
Hyperon condensation

star

absolutely stable
strange quark
matter

Kaon

Quark star condensation

> F. Weber (2005) e
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Neutron star structure and EOS

» Deep interiors of NS is still poorly known : many theoretical models

» Each model predicts its own EOS : NS structure is uniquely determined
» Model (EQS) = NS structure

» Inverse problem : NS structure = constraining the models/EQS
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TOV (Tolman-Oppenheimer-Volkov) equations
dP Gm( P) <1 . 4nr3P> (1 - 26:M>‘1 dM
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» put one-to-one correspondence between EOS & NS M-R relation
»  Lindblom ApJ 398, 569 (1992)

» set maximum mass Mgos max Of NS associated with EOS
» models with Mggg max Not compatible with Mg a5 should be discarded
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The most massive NS so far

» A pulsar (PSR J1614-2230) — White dwarf (WD) binary
» pulse profile is modified by the gravity of the WD

» Mass of WD is determined = NS mass is determined (since total mass is known)
> MNS = 193M®

; I5ulse§ from pulsar.(NS)

WD gravity modifies the pulses
= MWD
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Constraining NS EOS with GW

We will consider to extract information of both mass and radius
(infact, mass and tidal deformability, a quantity which represent
finite-size effect) from GW emitted in NS-NS merger

Then, we can challenge the inverse problem : NS structure =
constraining the models/EQS

We will also consider to put a constraint on the maximum mass of
NS using GW from NS-NS merger



Contents

» Aim : Introduce physics of GW from NS-NS in a fundamental viewpoint

» Lecture 1: Linearized theory
» GW propagation, TT gauge, polarization of GW (+, and X modes)
» GW production, quadrupole formula

» Lecture 2: GW from binary system in circular orbit
» the (point-particle) chirp signal, tidal deformability
» Post-Newtonian GW and Numerical Relativity

» Lecture 3: Achievement in GW170817
» Extraction of tidal deformability and its interpretation

» Current constraint on EOS (combining with EM signals)

» Lecture 4: Future prospects
» higher density regions, proving hadron-quark transition

» Importance of numerical relativity



Lecture 1: Linearized Theory



The goals of lecture 1

Understanding two polarization modes of GW propagation from
fundamental viewpoints (using linearized Einstein’s equaion)

+ mode X mode

o cinW | r2cd . .
Deriving the energy flux formula 0 = 3720 (h% + h2)

. 2G
Deriving the quadrupole formula ~ h;" 3% = -0 -1/0



Lecture 1: Linearized Theory

the linearized Einstein’s equations



Derivation of the linearized equation (1)

In general relativity, the spacetime metric g,; is determined by
Einstein’s equations :

[Gab = 820G Tabj Einstain’s equation

4
C

B 1 od Definition of
{Gab =R s~ Egabzzg Rcd] Einstain tensor G,

0 =2 0 . — E— Coordinate component
R — ra— rc + rarec_rcrea
[ @ oy 4 o Z‘ b} Zg‘( : : )] of Ricci tensor R,
08 , 98ua 98
Fca — ed l(/ ad __ ab .
[ b= ; { O ﬁrb o’ }J Christoffel symbol

Now we expand g, in the background Minkowski metric 1, as

and linearize Einstein’s equation



Derivation of the linearized equation (2)

With a straightforward calculation, the linearized Einstein tensor (the
left-hand of Einstein’s eqgs) is

which can be simplified (by using the so-called trace-reversed tensor)
- 1

h’uv = h’uv - znluvh
» So as to satisfy g#tg,, = 8%, the inverse metric is given by gV = n#V — h#*V,
» Note that the indices of tensors can be raised or lowered in linearized theory by
the Minkowski metric n%?,7n,, : e.g., h = hl‘f = g"h,, = n*hy,,.

In terms of i_lm,, the linearized Einstein’s equations become
161G

ct

We can further simplify it by using the gauge degree of freedom of
general relativity




Derivation of the linearized equation (3)

The transformation law of components of the 2" lank tensor via x* — x'(x)
_0xP ox?
©AX' Ox!V

gives the linear transformation law of h,,, under the infinitesimal coordinate

g,uv(x) — g,lw(x') 8po

transformation x'# = x#* — &, as
hy — by = hyy + 0,8, + 0,8, = hyy + Leny,

Because all observers (all coordinate system) are equivalent in general
relativity, g,,, and g',,, (or hy, and h',,)) must be equivalent as descriptions

of gravitational fields
This is the gauge degree of freedom of general relativity

h ab

geometrically, this reflects the degree of
freedom in description of the perturbed
field h,, : from which point h, deviates




Derivation of the linearized equation (4)

We can use this gauge degree of freedom to impose de Donder gauge
condition 7
avh’uv . 0

» Because Gvfluv — avfluv +0¢,, de Donder gauge can be chosen by setting

¢, to be the solution of O¢, = —0"hyy

In de Donder gauge, the linearized Einstein’s equations become simple
wave equations :

_ _ _ _ 167G
. 161G

» Note that the de Donder gauge condition gives 4 conditions, so that h,
have 6 independent components, not 10

The above linearized Einstein’s equation are the start point to study GW




Lecture 1: Linearized Theory

Propagation of Gravitational Waves



The transverse-traceless gauge (1)

Outside the source (propagation of GW), we can greatly simplify the
form of the metric

» The following discussion closely parallels the situation in electrodynamics

First, note that de Donder condition does not fix the gauge completely

» de Donder gauge condition can be imposed by solving Oé* = —3,h*Y, but we
still have degrees of freedom to add a homogeneous solution Oé#* = 0

We use these ‘extra‘ degrees of freedom as follows
» We set h = 0 (traceless) using the time component &°
» We set hy; = 0 using spatial components &*

Then b, = i_tm, , and de Donder condition gives
aﬂhﬂo — aohoo + aihio - aOhOO — 0

which indicates that hyy describes a static ‘Newtonian’ potential outside
the source = for GW, we will set hyg = 0



The transverse-traceless gauge (2)

Traceless condition is now h; = 0

de Donder gauge condition is now 0 = thw = ajhl-j

To summarize, we have imposed the so-called TT (Transverse-Traceless)
gauge condition for GW outside the source :

H=0 hi=0 & h;=0

Note that in the TT gauge, only 2 degrees of freedom remain (6 — 4 =
2)



Propagation of GW in TT gauge (1)

For a plane wave propagating along z direction, in TT gauge, we have

hy hx O
hij(t,2)=| h« —hy 0 [cosw(r-z/c)
0 0 O

What will happen to two nearby test bodies (in geodesics) when GW
propagate through them ?

The separation vector X' = (x, + 6x(t), yo +8y(t)) obeys the geodesic
deviation equation
; dea ayb,,c,,d d a

d'l’z =Rdequ — =UuU Va

M _ M M M a M a .
» Here Rvpo_aprva_aUrvp+raprva_raa vp IS
Riemann curvature tensor

For the linearized theory in TT gauge

ua

Xt = > HZ;-TXJ' (dot denotes time-derivative)
________________________________________________________________________________________________________________ X



— TV (T, x%) ) Tev, (xvv, T

— (T°V.X")(V,T%) + X"T°V .V, T"

= (X°V.I") (VT + X TV )V T — X T [V, V. .T% — V.V, 1]
= X°V.(T°V,T) + X"T°R,,,"T"

= R, ° xbpepd

T7°V, X" = X*Vv,1° (3.8)



Propagation of GW in TT gauge (2)

» It is easy to solve the geodesic deviation equation and we have two

solutions , h. h. O
¥l = —hITxJ Tt - _ _
X _Zh” X hij(t,2)=| h« —hy 0 |cosw(r-2z/c)
0 0 0

e h h
» Eor h(+ polarization) 556:—?(x0+5x)wzcosw(t—z/c)z—ixowzcosw(t—z/c)

h h
oj = +7+(y0+5y)wzcosw(t—z/c) ~ +7+yowzcosw(t— zlc)

» The solutions are .
Ox = +7xocosw(t—z/c)

h
0y = —%ygcosw(t—z/c)

» For h,(X polarization)

h
0x = 73/0 cosw(t—z/c)

h
Oy= — %o cosw(t—zlc)




Propagation of GW in TT gauge (3)

» For h_(+ polarization) » For h.(X polarization)
h+ hX
5x:+7xocosw(t—z/c) 5x:7yocosw(t—z/c)
h+ hX
5y:—7yocosw(t—z/c) 6y:7xocosa)(t—z/c)
+ mode X mode
o o o i © a ° o
. O o . | O .
Q (o] o *
o (o] o ©
o o ©
o]




Propagation of GW in TT gauge (4)

» Somewhat different from naive notion of ripples in spacetime

© LIGO/Caltech



Propagation of GW in TT gauge (4)

Linear Polarization

https://www.ydutube.com/watch?v=F4stTzxYrNO



Generalization

Given a plane wave GW solution h,,, propagating in the direction n,we
can find solution in the TT gauge as follows

First we introduce a projection tensor : Pij(n)=06;;—n;n;
» Note that this tensor is symmetric and transverse (niPl-j = 0)

» Projection means Py Pyj = P;;

Then we construct a prOJECtIOH tensor

1
Aijri(n)=PiPj— Epijpkl

» Which is transverse on all indices : n'A;j ki =n/A;jri=-+-=0
» Traceless with respect to (i,j) and (k,l)

» Explicitl 1 1 1 1
P y Al-j,kl:5ik5j1—§61-j5k1—njnlél-k—nink5j1+§nkn[6ij+§n,-nj5k1+§ninjnkn1
The GW in the TT gauge is given b TT _
BAUEE 1S 6 Y hii = Nijkihi



Energy (& momentum) carried by GW (1)

Let us regard the linearized gravity h,; as a classical field on Minkowski
spacetime

Then, by Noether’s theorem, we can derive the canonical energy
momentum tensor for GW from the Einstein-Hilbert action

Sg = fd4x /=gR —9 = det(—gw) : determinant of the metric

16JIG R = g*’R_, : Ricci tensor

A messy calculation gives

Sg=- fd‘* a ap ' h®P -0, hot h+20,h" 0, h—20,h"" 0, K,
641G
Then, we obtain (canonical) energy-momentum tensor for b, , a
oL c*
thY = — dVh B L = OHh*B9vh
0 @phag) . BT 32mG | s}

» Where we used Einstein’s equation Oh,,, = 0 and de Donder condition

» ( ) denotes an average over GW wavelength (for completeness)



Energy (& momentum) carried by GW (2)

Let us compute the energy flux of GWs, t°"

The conservation of the energy-momentum tensor 0, =0 implies
fd?’x(ao %0 +0;1°) =0
» Integration is taken over a volume V, bounded by a surface S

In terms of the energy inside the volume V in TT gauge, g — f a x tY°

the conservation of energy becomes

1 dE | | |
__:—fdgxaitm :—denit()’ :—de[OI
cdt
» where
or _ € OTTierT_C3 t 1 TT,ij A7 3 TT o 0
0 = 5o (OORTTVOTh ) = 2 {OTRTTVOTR)  5m =

We are interested in the energy flux in a far distance from the source
for which a more useful expression can be derived



Energy (& momentum) Carried by GW (3)

For GWs propagating radially outward, h (t r) = fij(t— ric), then
h.T.T_laf” fU-_ 1 afu fij
r or 12 ra(ct) 12

= —0ohjj +0(r™1) =+0° +0(r™1)

o"RIT = 9,

So that at large distances,

4 2
£0r — JORTT, l]arhTT RTT.U {RTT
327TG< ) 32nG( H )
Thus the energy flux of GW is
By dPgw _  1?dE  1%C? (T RTT)
LdE _ [ q.or dQ ~—  dSdt 32nG 2
‘ rc3 . .
= 320G 1 )

This formula will be used in deriving GW from a binary system in lecture 2




Lecture 1: Linearized Theory

Generation of Gravitational Waves



Multipole and low velocity expansion (1)

Let us start from the following qualitative consideration

Let w, : the typical frequency of the motion inside the source
d : the source size,
then the typical velocity will be v ~ wqd

The frequency of GW will be wgy, ~ wg ~ v/d , so that GW wavelength is

Aogw = C/wgw ~ d(c/v)
which is much larger than the source size (4g,, > d) for low velocity

This implies that generation of GW will not depends on fine features, but
determined by coarse/bulk features of the source

= lower-order multipoles will contribute to GW in lower velocity sources

(we will explicitly derive in below)




Multipole and low velocity expansion (2)

In the linearized theory, generation of GWs is governed by the linearized eq.

- 167G

Ohyy = T Ty

The solution is given using the retarded Green’s function as

_ 4G
hyy (1,x) = chﬁx'

» where fret=t—|x—x'|/c isthe retardation time

x— x| Tu'v(tret» x')

We are interested in GWs far from the source, so that with n* = x!/r,

I

hij(t,x)= fdgx'T,] t——+—x) |x—x'|:7‘—x’ini+0(1/1')

Now we we write T;; in terms of its Fourier transform

, r x'-n
—zw(t——+
c ¢

(T xX'-n )\ d4kT( .
z]( —E-I'T,X)—f(znyl w, K) exp




Multipole and low velocity expansion (3)

/. d4k _
Tff("“E* - ,x’):f(zn)4T(w,k)exp

—iw(
» Here we note that

> T will be peaked around the typical frequency wq

> Integratlon is restricted within the source size : |x'| < d

then, we have for low velocity sources o , ws v
—x''nsS —d~—-<x1
C C C

» Then, in the right-hand-side, we may expand

. ) Iw 1 ) j ;
:e—lw(t—’/C) [1 x nl+ ( ) (x n )(x/_n])+...
c 2 c J

, r x'-n
—zw(t——+ )

exp
c c

» Substituting to the Fourier transform, we obtain

r x'-n r 1 : 1
T--(t——+—,x') ~ T--(t——,x') + =X nkoyT: i + — x x\n nZOZT + -
i - - [ - ok B0 TS 5 ke [
» Note that there is no mention to the low velocity nature if we regard the above

as a result of the direct expansion for small x" - n/r



Multipole and low velocity expansion (4)

1

rox-n , _ I 1k 1 [ A2
Tij(t——+ ,x) = T,-j(t——,x)+zxkn 0o T;j+ 5o xkxln nd Tij+---

Let us define moments

st = f BxTU(t -1, x), SUk = j 3 TU(t =T, x)xk,

then, we get

Skl = Jd3x TY(t — I x)x*x!

4G 1 1 1
hTT(t x) C__A1] Kl [S/\l + Cnnlsl\l 171

2 —= Ny npS‘-kl,mp +oee

This is multipole formula for GW generation in linearized theory

Note again that higher multipoles corresponds to higher orderin v/c



Quadrupole formula (1)

The muItipoIe formula is not very useful because it is given in terms of
moments of matter stress tensor T;;

Using the conservation law 0,T*" = 0, in the leading order, we can
rewrite it using mass (energy) moment M, M*, MY,

2M(p) = f BxTO(tx), 2M(E) = f BxTO(, O)xi, 2 MU(E) = j dx TOO(t, x)xix)
cPi(t) =jd3xT0i(t,x), c PY(t) = jd3x TOUt, x)x!, ¢ PYk(t) = Jd3xT°i(t,x)xjxk
Because 9,T° = —9,,T* and 9,T°° = —0,, T %,
cd, P = jd3xxf60Ti0 = —dexxjakT”‘ = Jd3x(0kxj)T”‘ = jd3x §iTik = sii
c20,MY = —jd3xxixj6kT°k = Jd3x T, (xtx)) = (P + P/?)

so we obtain



Quadrupole formula (2)

Thus, for the leading order, GW are generated by the 2" time
derivative of mass quadrupole moment

12G ... 12G .
TT, quad __ TT _ kl
hij — ; c4 [Ml]] — ; c4 Aij,le (t _ T'/C)

where g N A B
QY =MY —§5UM,'§ :fd?’xp(t,x) (x’xf —51'26”)

This is the quadrupole formula

Order of magnitude estimate gives

by ~e s 0~ LT () RO ()

R r c2R

» (nearby R~r), Non-spherical (e~1), high-velocity (v~c), strong-gravity
(GM /c*R ~1) phenomena are promising sources of GW

C



