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Evidence for Dark Matter

There is very strong evidence from different 
observations for the existence of dark matter. 

Ordinary matter only accounts ~ 20% of the the 
gravitating matter in the universe! 
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How can we use observations of neutron stars to 
either discover or constrain dark matter? 



DM Accretion onto Neutron Stars

The Dark Side of Neutron Stars

Chris Kouvaris⇥
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We review severe constraints on asymmetric bosonic dark matter based on observations of old
neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic
WIMPs can be e�ectively trapped onto nearby neutron stars, where they can rapidly thermalize and
concentrate in the core of the star. If some conditions are met, the WIMP population can collapse
gravitationally and form a black hole that can eventually destroy the star. Based on the existence
of old nearby neutron stars, we can exclude certain classes of dark matter candidates.
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I. INTRODUCTION

Compact stars such as neutron stars and white dwarfs
can lead in general to two types of constraints regard-
ing dark matter candidates. The first one has to do with
annihilating dark matter that changes the thermal evolu-
tion of the star. Annihilation of Weakly Interacting Mas-
sive Particles (WIMPs) that are trapped inside compact
stars, can lead to the production of significant amount of
heat that can change the temperature of old stars [1–4].
Such a phenomenon can be in principle contrasted to ob-
servations. The second type of constraints is related to
asymmetric dark matter [5–12]. Asymmetric dark matter
is an attractive alternative to thermally produced dark
matter especially due to the intriguing possibility of relat-
ing its asymmetry to the baryonic one. For recent reviews
see [13, 14]. Due to the asymmetry, WIMP annihilation is
not significant in this case. If a certain amount of WIMPs
is trapped inside the star, the WIMPs can quite rapidly
thermalize and concentrate within a tiny radius in the
core of the star. If the WIMP population grows signif-
icantly, WIMPs might become self-gravitating and they
might collapse forming a mini black hole. Under certain
conditions, the black hole might consume the rest of the
star, thus leading to the ultimate destruction of the star.
However, very old (older than a few billion years) nearby
neutron stars have been well observed and studied. The
simple presence of such verified old stars leads to the con-
clusion that no black hole has consumed the star and as
we shall argue, this can lead to very severe constraints on
the properties of certain types of asymmetric dark mat-
ter. We should also mention that additional constraints
on asymmetric dark matter can be imposed on di�erent
ways (e.g. from asteroseismology [15–17], from e�ects on
the transport properties of the neutron stars [18] and/or
hybrid dark matter rich compact stars [19, 20]).

One can easily figure out that fermionic WIMPs due
to the fact that they have to overcome Fermi pres-
sure, require a huge number in order to collapse i.e.
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N ⇥ (Mpl/m)3 where Mpl and m are the Planck mass
and WIMP mass respectively. This number of WIMPs is
very di⇤cult to be accumulated within a few billion years
and with dark matter densities similar to the ones of the
earth. However, this required number for gravitational
collapse is reduced significantly in the case of attractive
Yukawa forces among the WIMPs [8].

II. ASYMMETRIC BOSONIC DARK MATTER

In the case of asymmetric bosonic WIMPs, the neces-
sary WIMP number for collapse is much smaller because
there is no Fermi pressure and only the uncertainty prin-
ciple keeps particles from collapsing. The collapse takes
place once the momentum becomes smaller than the self-
gravitational potential energy.

~
r
<

GMm

r
⇤ M >

M2
pl

m
, (1)

where M = Nm is the total mass of the WIMP cloud.
A more accurate and generic estimate that includes the
e�ect of self-interactions gives [21]

Mcrit =
2

⇥

M2
pl

m

⇤

1 +
�M2

pl

32⇥m2
. (2)

Although self-interactions between WIMPs can be quite
general in nature, without loss of generality, we can as-
sume that the self-interaction can be approximated well
by a �⇧4 interaction term. At the no interaction limit
� = 0 we trivially get the critical mass mentioned above
(up to factors of order one).
The accretion of WIMPs for a typical 1.4MJ 10 km

neutron star taking into account relativistic e�ects has
been calculated in [3]. The total mass of WIMPs accreted
is

Macc = 1.3� 1043
�

⇤dm
0.3GeV/cm3

⇥�
t

Gyr

⇥
f GeV, (3)

where ⇤dm is the local dark matter density, and the “ef-
ficiency” factor f = 1 if the WIMP-nucleon cross sec-
tion satisfies ⌅ > 10�45cm2, and f = ⌅/(10�45cm2) if
⌅ < 10�45cm2.
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Mass accretion rate: 

f = Min [1,
�

10�45 cm2
]where

R = 10 km. Using these standard values, we find

v ⇤ 0.7 . (3)

This implies that the energy that a typical DM particle has at the surface of a neutron star

is

E =
⇤
k2 +m2

� ⇤ 1.4m� , (4)

so we see that the scale of the incident energy of the DM particle is set by its mass and that

typical DM particles are at most semi-relativistic. These incident DM particles will scatter

with the quasi-particles inside the neutron star, lose energy, and become bound to the star.

The next step is DM thermalization with the neutron star. Since the DM particle is at

most semi-relativistic, and it must lose energy in order to be captured by the neutron star,

we will assume that the DM particle is safely non-relativistic for all thermalization time

calculations. As the DM thermalizes, it collects within a sphere of radius rth which satisfies

GM(rth)m�

rth
⇥ 3

2
T , (5)

where M(rth) is the mass of the neutron star enclosed within a radius rth and T is the

temperature of the neutron star. We can estimate this by considering a neutron star with a

constant core density �c = 5� 1038 GeV/cm3 and we find [22]

rth ⇥ 2.2 m

�
T

105 K

⇥1/2 �GeV

m�

⇥1/2

. (6)

This tiny sphere of DM at the center of the neutron star can then begin to self-gravitate

and collapse into a black hole. Gravitational collapse can be accelerated if the captured DM

forms a Bose-Einstein condensate inside the star [16, 18, 26]. Once the black hole is formed,

it must be massive enough to avoid evaporation due to Hawking radiation and then it may

consume the neutron star. The precise experimental signature of a neutron star collapsing

into a black hole is still an interesting, open question.

In previous works, [15, 18], two calculations to constrain the DM-neutron cross section as

a function of DM mass are done: 1) the thermalization time calculation: ⇥ = 1010 years, and

2) an accretion time calculation: ⇥accretion = 1010 years, in which ⇥accretion is the time needed
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Thermalization: 

Self-Gravitation: 

2

One can easily check thatMacc can be larger thanMcrit

practically for all masses larger than ⇤ 100 keV. To form
a black hole, satisfying the condition (2) is necessary but
it is not su⇤cient. One should make sure that after the
WIMPs have been captured, they slow down and ther-
malize with nuclear matter concentrating within a small
thermal radius. Failing to satisfy this condition, even if
the condition (2) is satisfied, does not necessarily lead to
the formation of a black hole, since WIMPs would not be
confined in a tiny region. The thermalization time scale
has been estimated in [5] and [3]

tth = 0.2yr
� m

TeV

⇥2 � ⌅

10�43cm2

⇥�1
⇤

T

105K

⌅�1

. (4)

As one can observe, despite the Pauli blocked interac-
tions between WIMPs and nucleons, unless they are very
heavy, WIMPs thermalize in less than a year. Having
thermalized with nuclear matter, WIMPs concentrate in
the center of the star within a thermal radius that can
be easily obtained by use of the virial theorem

rth =

⇤
9kTc

8⇥G⇤cm

⌅1/2

= 220cm

⇤
GeV

m

⌅1/2 ⇤ Tc

105K

⌅1/2

,

(5)
where k is the Boltzmann constant, Tc is the temperature
at the core of the star, and ⇤c = 5 ⇥ 1038GeV/cm3 is a
typical value for the neutron star core density.

Once the WIMPs are thermalized and if su⇤cient num-
ber is accumulated in the star, there are two di�erent
events that take place, the time order of which depends
on the WIMP mass. One is the self-gravitation of the
WIMP sphere and the second is the formation of a Bose
Einstein condensate (BEC). Self-gravitation takes place
once the mass of the WIMP sphere inside the thermal
radius becomes larger than the mass of the neutron star
within the same radius. In other words, this happens
once WIMPs start feeling strongly their own gravita-
tional field. For this to happen the WIMP sphere should
have a mass that satisfies

Msg >
4

3
⇥⇤cr

3
th = 2.2⇥ 1046 GeV

� m

GeV

⇥�3/2
. (6)

On the other hand, BEC formation takes place once the
WIMP number density is

nBEC ⌅ 4.7⇥ 1028cm�3
� m

GeV

⇥3/2
⇤

Tc

105K

⌅3/2

. (7)

One can easily check that for WIMPs roughly lighter
than 10 TeV, the accumulated WIMPs within rth meet
first the condition for BEC formation. We are going
to study these two cases (m < 10 TeV and m > 10
TeV) separately since events unfold with di�erent order.
For WIMPs lighter than 10 TeV, one can estimate that
the total number of WIMPs needed to form a BEC is
NBEC ⌅ 2 ⇥ 1036. Any accumulated WIMPs on top of

this number goes directly to the ground state of the BEC
state. The radius of the BEC state is

rBEC =

⇤
8⇥

3
G⇤cm

2

⌅�1/4

⌅ 1.6⇥ 10�4

⇤
GeV

m

⌅1/2

cm.

(8)
As it can be seen, rBEC << rth and therefore WIMPs in
the ground state can become self-gravitating much faster
than what Eq. (6) predicts. In fact we can appreciate
this if we substitute rth by rBEC in Eq. (6). This leads
to the condition

M > 8⇥ 1027 GeV
� m

GeV

⇥�3/2
. (9)

If Eqs. (2),(7), and (9) are satisfied, a black hole is going
to be formed. Once the black hole is formed, its fate is
determined by its initial mass Mcrit. One the one hand,
the black hole is accreting dark matter and nuclear mat-
ter from the core of the star. This tends to increase the
black hole mass. On the other hand, emission of photons
and particles in general via Hawking radiation tends to
reduce the mass of the black hole. The black hole mass
evolution is determined by

dM

dt
=

4⇥⇤cG2M2

c3s
� f

G2M2
, (10)

where cs is the sound speed at the core of the star, and
f is a dimensionless number that in general depends on
the number of particle species emitted and the rate of
rotation of the black hole. We have used a spherically
symmetric Bondi accretion of matter into the black hole.
By inspection of Eq. (10) it is apparent that there is a
critical value of the black hole massM above which accre-
tion always wins, while below, Hawking radiation reduces
the mass of the black hole which in turn it increases even
further the rate of Hawking radiation leading eventually
to the evaporation of the black hole. This critical mass
has been estimated if one considers only photons in [6]

M > 5.7⇥ 1036 GeV. (11)

The mass becomes slightly larger [10] if one includes also
other species that can be emitted (e.g gravitons, neutri-
nos, quarks, leptons etc). Comparison of Eq. (2) (with
� = 0) to Eq. (11) shows that WIMP masses larger than
16 GeV lead to black hole masses below the limit of
Eq. (11). This means that for masses larger than 16
GeV, black holes evaporate and their e�ect is to heat up
the star as they evaporate. However this does not lead to
a dramatic e�ect like the destruction of the star. This 16
GeV mass limit becomes slightly smaller if more Hawking
radiation modes are included.
Finally there is one last constraint that should be sat-

isfied. WIMP masses cannot be arbitrarily small because
for small WIMP masses, after WIMPs have thermalized,
those in the tail of the Maxwell-Boltzmann distribution
have large enough velocities to escape from the star.
This evaporation e�ect can be ignored for WIMP masses

Bose Einstein Condensation: 

v ' 0.7 c

rth ⇡ meters

r N
S
⇡

10
km

BEC

rBEC ⇡ 10�4 cm
MBEC > 8⇥ 1027

⇣
GeV

m

⌘1.5
GeV

For a concise recent review see Kouvaris (2013) Formation of the BEC triggers collapse.  



Black-hole Formation 
Idea:  Asymmetric bosonic dark matter can induce the  collapse of the NS to a black hole.    
Goldman & Nussinov (1989)

This idea has been explored in  more detail 
by: • Kouvaris and Tinyakov (2011)

• McDermott, Yu and Zurek (2012)
• Kouvaris (2012) & (2013)
• Guver, Erkoca, Reno, Sarcevic (2012) 
• Fan, Yang, Chang (2012)
• Bell, Melatos and Petraki (2013)
• Jamison (2013) 
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FIG. 1: Exclusion regions of the asymmetric bosonic dark
matter as a function of the WIMP mass and the WIMP-
nucleon cross section for an isolated neutron star at local DM
density ⇢dm = 0.3GeV/cm3 (such as J0437-4715 and J0108-
1431) and for a neutron star in the core of a globular cluster
with ⇢dm = 103GeV/cm3.

m > 2 keV [6]. If the accreted dark matter mass within
a billion years Macc is larger than Mcrit of Eqs. (2), and
(7), (9), and (11) are satisfied, the WIMPs form a black
hole that can destroy the star. There are some subtle is-
sues regarding how fast the black hole consumes the star
that have been addressed to some extend in [6]. The con-
straints on asymmetric bosonic dark matter are depicted
in Fig. 1. As it can be seen, depending on the WIMP-
nucleon cross section, WIMP candidates from 100 keV up
to roughly 16 GeV are severely constrained by the exis-
tence of nearby old neutron stars. The constrained region
is bound at 100 keV due to the fact that below that mass
accretion is not su⇥cient to acquire Mcrit from Eq. (2).
These constraints can be enlarged down to 2 keV (the
limit from WIMP evaporation we mentioned before) as
long as we consider old neutron stars in globular clusters
with ⇥dm & 30 GeV/cm3.

Now we can consider the case where the WIMP mass
is larger than 10 TeV and therefore self-gravitation of
the WIMP sphere happens before BEC formation. As
we mentioned above, black holes of critical mass (2) with
WIMP masses roughly larger than ⇥ 16 GeV, do not
survive due to Hawking radiation. Therefore one should
expect that black holes of Mcrit (of Eq. (2)) formed out
of 10 TeV WIMPs (or heavier) would evaporate quite
fast. However, since self-gravitation takes place before
BEC, and the self-gravitating mass of Eq. (6) for m > 10
TeV is much larger than the crucial mass for the survival
of the black hole of Eq. (11), there were speculations in
the literature [7, 9, 10] that constraints can be imposed
also for m > 10 TeV. The claim was that instead of
forming a black hole of Mcrit that is below the surviving
threshold for Hawking radiation, a much larger black hole
coming from the collapse of the self-gravitating WIMP
sphere Msg forms, that due to its larger mass can grow

and destroy the star, thus imposing constraints on this
part of the parameter space of asymmetric bosonic dark
matter. However we review here the argument that was
put forward in [23] that demonstrates that the formation
of smaller (non-surviving) black holes of mass Mcrit is
unavoidable and therefore the Msg instead of collapsing
to a single large black hole, it forms a series of black holes
of Mcrit that evaporate one after the other, thus resulting
to no constraint for WIMP masses with m > 10 TeV.

In order for the WIMP sphere to collapse,
the whole mass should be confined within the
Schwarzschild radius rs = 2GM of the black hole.
The density of WIMPs just before forming the
black hole would be nBH ⇥ 3(32�G3M2

sgm)�1 ⇥
1074 cm�3(GeV/m)(Msg/1040GeV)�2. It is easy to see
that this density is higher from the density required for
BEC formation of Eq. (7). This means that unless the
WIMP sphere collapses violently and rapidly, it should
pass from a density where BEC is formed. As the self-
gravitating WIMP sphere of mass Msg contracts, at some
point it will reach the density where BEC is formed. Any
further contraction of the WIMP sphere will not lead
to an increase in the density of the sphere. The density
remains that of BEC. The formation of BEC happens
on time scales of order [22] tBEC ⇥ ~/kBT ⇥ 10�16s,
i.e. practically instantaneously. Further shrinking of
the WIMP sphere results in increasing the mass of the
condensate rather than the density of non-condensed
WIMPs. This process happens at a time scale which is
determined by the cooling time of the WIMP sphere as
discussed below. As we shall show, this cooling time
is the relevant time scale for the BEC formation. As
in the previous case, the ground state will start being
populated with WIMPs which at some point will become
self-gravitating themselves. This of course will happen
not when Eq. (9) is satisfied. Eq. (9) was derived
as the WIMP ground state becomes denser than the
surrounding nuclear matter (since the dark matter that
is not in the ground state of the BEC is less dense).
Here, the condition is that the density of the ground
state of the BEC should be larger than the density of the
surrounding dark matter (that is already denser than
the nuclear matter at this point). The condition reads

MBEC, sg =
4�

3
nBECmr3BEC = 9.6�1021GeV

� m

10TeV

⇥�7/8
.

(12)
Once the BEC ground state obtains this mass, the ground
state starts collapsing within the collapsing WIMP
sphere. Any contraction of the WIMP sphere does not
change the density of the sphere but only the density
of the ground state. MBEC, sg is smaller than Mcrit and
therefore the BEC ground state cannot form a black hole
yet. However as the ground state gets populated at some
point it reaches the point where its mass is Mcrit and this
leads to the formation of a black hole of mass Mcrit and
not Msg. The evaporation time for such a black hole of

Existence of old neutron stars with 
estimated ages ~ 1010  years provide 
strong constraints on asymmetric DM.  

Kouvaris (2013)



Constraining Dark Baryons

There is speculation that a dark baryon with mass 
m𝛘 between 937.76 - 938.78 MeV might explain 
the neutron life-time discrepancy: 
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Neutron stars exclude light dark baryons
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Exotic new particles carrying baryon number and with mass of order the nucleon mass have been
proposed for various reasons including baryogenesis, dark matter, mirror worlds, and the neutron
lifetime puzzle. We show that the existence of neutron stars with mass greater than 0.7 M� places
severe constraints on such particles, requiring them to be heavier than 1.2 GeV or to have strongly
repulsive self-interactions.

I. INTRODUCTION

Exotic states that carry baryon number and have mass-
es below a few GeV have been theorized in a number of
contexts, such as asymmetric dark matter [1, 2], mirror
worlds [3], neutron-antineutron oscillations [4] or in nu-
cleon decays [5]. In general, such states are highly con-
strained because they can drastically alter the proper-
ties of normal baryonic matter–in particular, if too light,
they can potentially render normal matter unstable. We
currently understand that matter is observationally sta-
ble because the standard model (accidentally) conserves
baryon number. This ensures that the proton, the light-
est baryon, does not decay (up to effects caused by higher
dimensional operators that violate baryon number).

Now, consider the simple case of a single new fermion
state, �, that is electrically neutral, carries unit baryon
number, and carries no other conserved charge. (Note
that a new boson carrying baryon number does not lead
to proton decay as long as lepton number is conserved.)
Assuming that its couplings to ordinary matter are not
highly suppressed, because of the conservation of baryon
number and electric charge, it must have a mass larg-
er than the difference between the proton and electron
masses, m� > mp � me = 937.76 MeV, in order to not
destabilize the proton. In fact, a slightly stronger low-
er bound on m� comes from the stability of the weakly
bound 9Be nucleus: m� > 937.90 MeV. If the � mass
is less than that of the neutron, mn = 939.57 MeV, a
new neutron decay channel can open up, n ! � + . . . ,
where the ellipsis includes other particles that allow the
reaction to conserve (linear and angular) momentum.

It is interesting to note that if m� < mp + me =
938.78 MeV, � is itself kept stable by the conservation of
baryon number and electric charge. It could therefore be
a potential candidate for the dark matter, which we know
to be electrically neutral and stable on the timescale of

⇤ dmckeen@pitt.edu
† aenelson@uw.edu
‡ sareddy@uw.edu
§ zdk@uw.edu

the age of the Universe. It is compelling that in such
a situation that the stability of normal matter and of
dark matter is ensured by the same symmetry: baryon
number.

The potential existence of a new decay channel for the
neutron has recently received attention as a solution to
the 4� discrepancy between values of the neutron life-
time measured using two different techniques, the “bot-
tle” and “beam” methods [3, 6, 7]. The “bottle” method,
which counts the number of neutrons that remain in a
trap as a function of time and is therefore sensitive to
the total neutron width gives ⌧bottlen = 879.6 ± 0.6 s [8].
The “beam” method counts the rate of protons emitted
in a fixed volume by a beam of neutrons, thus mea-
suring only the �-decay rate of the neutron, results in
⌧beamn = 888.0 ± 2.0 s [9]. These two measurements can
be reconciled by postulating a new decay mode for the
neutron, such as n ! �+ . . . , with a branching fraction

Brn!� = 1� ⌧bottlen

⌧beamn

= (0.9± 0.2)⇥ 10�2. (1)

However, a recent reevaluation of the prediction for the
neutron lifetime from post 2002 measurements of the neu-
tron gA concludes that any nonstandard branching for
the neutron is limited to less than 2.7 ⇥ 10�3 at 95%
CL [10].

In this work we note that a new state that carries bary-
on number and has a mass close to the neutron’s can
drastically affect the properties of nuclear matter at den-
sities seen in the interiors of neutron stars. In neutron
stars the neutron chemical potential can be significantly
larger than mn, reaching values ' 2 GeV in the heaviest
neutron stars [11]. Thus any exotic particle that carries
baryon number and has a mass . 2 GeV will have a large
abundance if in chemical equilibrium. Because they re-
place neutrons, their presence will soften the equation of
state of dense matter by reducing the neutron Fermi ener-
gy and pressure, while contributing to an increase in the
energy density. This will in turn reduce the maximum
mass of neutron stars from those obtained using stan-
dard equations of state for nuclear matter. As we shall
show below, even a modest reduction in the pressure at
high density can dramatically lower the maximum mass
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Exotic states that carry baryon number and have mass-
es below a few GeV have been theorized in a number of
contexts, such as asymmetric dark matter [1, 2], mirror
worlds [3], neutron-antineutron oscillations [4] or in nu-
cleon decays [5]. In general, such states are highly con-
strained because they can drastically alter the proper-
ties of normal baryonic matter–in particular, if too light,
they can potentially render normal matter unstable. We
currently understand that matter is observationally sta-
ble because the standard model (accidentally) conserves
baryon number. This ensures that the proton, the light-
est baryon, does not decay (up to effects caused by higher
dimensional operators that violate baryon number).

Now, consider the simple case of a single new fermion
state, �, that is electrically neutral, carries unit baryon
number, and carries no other conserved charge. (Note
that a new boson carrying baryon number does not lead
to proton decay as long as lepton number is conserved.)
Assuming that its couplings to ordinary matter are not
highly suppressed, because of the conservation of baryon
number and electric charge, it must have a mass larg-
er than the difference between the proton and electron
masses, m� > mp � me = 937.76 MeV, in order to not
destabilize the proton. In fact, a slightly stronger low-
er bound on m� comes from the stability of the weakly
bound 9Be nucleus: m� > 937.90 MeV. If the � mass
is less than that of the neutron, mn = 939.57 MeV, a
new neutron decay channel can open up, n ! � + . . . ,
where the ellipsis includes other particles that allow the
reaction to conserve (linear and angular) momentum.

It is interesting to note that if m� < mp + me =
938.78 MeV, � is itself kept stable by the conservation of
baryon number and electric charge. It could therefore be
a potential candidate for the dark matter, which we know
to be electrically neutral and stable on the timescale of
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the age of the Universe. It is compelling that in such
a situation that the stability of normal matter and of
dark matter is ensured by the same symmetry: baryon
number.

The potential existence of a new decay channel for the
neutron has recently received attention as a solution to
the 4� discrepancy between values of the neutron life-
time measured using two different techniques, the “bot-
tle” and “beam” methods [3, 6, 7]. The “bottle” method,
which counts the number of neutrons that remain in a
trap as a function of time and is therefore sensitive to
the total neutron width gives ⌧bottlen = 879.6 ± 0.6 s [8].
The “beam” method counts the rate of protons emitted
in a fixed volume by a beam of neutrons, thus mea-
suring only the �-decay rate of the neutron, results in
⌧beamn = 888.0 ± 2.0 s [9]. These two measurements can
be reconciled by postulating a new decay mode for the
neutron, such as n ! �+ . . . , with a branching fraction

Brn!� = 1� ⌧bottlen

⌧beamn

= (0.9± 0.2)⇥ 10�2. (1)

However, a recent reevaluation of the prediction for the
neutron lifetime from post 2002 measurements of the neu-
tron gA concludes that any nonstandard branching for
the neutron is limited to less than 2.7 ⇥ 10�3 at 95%
CL [10].

In this work we note that a new state that carries bary-
on number and has a mass close to the neutron’s can
drastically affect the properties of nuclear matter at den-
sities seen in the interiors of neutron stars. In neutron
stars the neutron chemical potential can be significantly
larger than mn, reaching values ' 2 GeV in the heaviest
neutron stars [11]. Thus any exotic particle that carries
baryon number and has a mass . 2 GeV will have a large
abundance if in chemical equilibrium. Because they re-
place neutrons, their presence will soften the equation of
state of dense matter by reducing the neutron Fermi ener-
gy and pressure, while contributing to an increase in the
energy density. This will in turn reduce the maximum
mass of neutron stars from those obtained using stan-
dard equations of state for nuclear matter. As we shall
show below, even a modest reduction in the pressure at
high density can dramatically lower the maximum mass
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time measured using two different techniques, the “bot-
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which counts the number of neutrons that remain in a
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the age of the Universe. It is compelling that in such
a situation that the stability of normal matter and of
dark matter is ensured by the same symmetry: baryon
number.

The potential existence of a new decay channel for the
neutron has recently received attention as a solution to
the 4� discrepancy between values of the neutron life-
time measured using two different techniques, the “bot-
tle” and “beam” methods [3, 6, 7]. The “bottle” method,
which counts the number of neutrons that remain in a
trap as a function of time and is therefore sensitive to
the total neutron width gives ⌧bottlen = 879.6 ± 0.6 s [8].
The “beam” method counts the rate of protons emitted
in a fixed volume by a beam of neutrons, thus mea-
suring only the �-decay rate of the neutron, results in
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However, a recent reevaluation of the prediction for the
neutron lifetime from post 2002 measurements of the neu-
tron gA concludes that any nonstandard branching for
the neutron is limited to less than 2.7 ⇥ 10�3 at 95%
CL [10].

In this work we note that a new state that carries bary-
on number and has a mass close to the neutron’s can
drastically affect the properties of nuclear matter at den-
sities seen in the interiors of neutron stars. In neutron
stars the neutron chemical potential can be significantly
larger than mn, reaching values ' 2 GeV in the heaviest
neutron stars [11]. Thus any exotic particle that carries
baryon number and has a mass . 2 GeV will have a large
abundance if in chemical equilibrium. Because they re-
place neutrons, their presence will soften the equation of
state of dense matter by reducing the neutron Fermi ener-
gy and pressure, while contributing to an increase in the
energy density. This will in turn reduce the maximum
mass of neutron stars from those obtained using stan-
dard equations of state for nuclear matter. As we shall
show below, even a modest reduction in the pressure at
high density can dramatically lower the maximum mass
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FIG. 1. The mass-radius relationship for selected nuclear EOS
and resulting hybrid configurations. The standard nuclear
matter relationships are shown as dash-dotted curves. The
“Stiff” EOS makes a second order transition to a causal EOS
at nB = 1.5 ns. This is the stiffest possible EOS and pre-
dicts a maximum mass ' 3.3 M�. Adding a dark baryon
with m� = 938 MeV results in the solid curves, which dif-
fer by their nuclear EOS. Even for the extremely stiff EOS,
the maximum mass of hybrid stars containing non-interacting
dark neutrons does not exceed 0.8 M�. The measured mass-
es of the two most massive neutron stars J0348+0432 and
J1614-2230 are also shown.

which carries baryon number and has a mass in the range
937.90 MeV < m� < 938.78 MeV. In fact, we shall
find that any such weakly interacting particle with mass
m� . 1.2 GeV can be excluded.

In Fig. 1 we show the mass-radius curve for neutron
stars predicted by the standard nuclear EOS as dash-
dotted curves. The curve labelled APR was obtained
with a widely used nuclear EOS described in Ref. [18].
The curves labelled “Soft” and “Stiff” are the extreme
possibilities consistent with our current understanding
of uncertainties associated with the nuclear interactions
up to 1.5 ns. The curves terminate at the maximum
mass. The softest possible nuclear equation of state just
falls short of making a 2 M� neutron star. The curve
labelled “Stiff” is obtained by using the nuclear EOS that
produces that largest pressure up to 1.5ns, and at higher
density we use the maximally stiff EOS with P (✏) = P0+
(✏ � ✏0) where P0 and ✏0 are the pressure and energy
density predicted by the nuclear EOS at 1.5 ns. For
the maximally stiff EOS the speed of sound in the high
density region cs = c, and this construction produces the
largest maximum mass of neutron stars compatible with
nuclear physics.

Any exotic neutron decay channel n ! � + · · · which
makes even a small contribution to the neutron width,
of order the inverse lifetime of a neutron star, will be
fast enough to ensure that � is equilibrium inside the
star. The typical age tNS of old observed neutron stars is
tNS ⇡ 106� 108 years. In a dense medium, due to strong
interactions, the dispersion relation of the neutron can be

written as !n(p) =
p

p2 +m2
n+⌃r+i⌃i where ⌃r and ⌃i

are the real and imaginary parts of its self-energy. The
mixing angle is suppressed at finite density and is given
by

✓̃ =
�q

g�m
2
+ ⌃2

i

, (8)

where g�m = �m + ⌃r. Since ⌃r and ⌃i are expect-
ed to be of the order of 10 � 100 MeV at the densities
attained inside neutron stars [22], it is reasonable to ex-
pect the ratio ✓̃/✓ to be in the range 0.01 � 0.1. The
rate of production of �0s in the neutron star interior
due to neutron decay, defined in Eq. 6, is suppressed
by the factor (✓̃/✓)2 but enhanced by (g�m/�m)3 when
g�m > �m. For g�m ⇡ 10 MeV the neutron decay life-
time is < 108 yrs when � > 10�19 GeV, and it is safe to
assume that for the phenomenologically interesting val-
ues of � ' 10�14 � 10�12 GeV, � will come into equilib-
rium on a timescale t ⌧ tNS.2

Because � carries baryon number, in equilibrium it-
s chemical potential µ� = µB , where µB is the bary-
on chemical potential. Given a nuclear EOS the baryon
chemical potential is obtained using the thermodynamic
relation µB = (Pnuc + ✏nuc)/nB where nB is the baryon
number density. If � is a Dirac fermion with spin 1/2
and its interactions are weak, its Fermi momentum and
energy density are given by

kF� =
q

µ2
B �m2

� , (9)

✏� =
1

⇡2

Z kF�

0
dk k2

q
k2 +m2

� , (10)

respectively. The dark neutron number density n� =
k3F�/3⇡

2 and its pressure P� = �✏� + µBn�. The to-
tal pressure Ptot = Pnuc + P� and energy density ✏tot =
✏nuc+ ✏� are easily obtained, and the TOV equations are
solved again to determine the mass-radius relation for
hybrid stars containing an admixture of � particles. The
net result is a softer EOS where the pressure is lower
at a given a energy density, because, as we mentioned
earlier, � replaces neutrons and reduces their Fermi mo-
mentum and pressure. Results for m� = 938 MeV are
shown in Fig. 1 as solid curves which terminate at the
maximum mass. We allow the nuclear EOS to vary from
maximally stiff to soft, and also show the results for the
APR EOS. The striking feature is the large reduction in
the maximum mass. This reduction is quite insensitive
to the nuclear EOS. Even for the maximally stiff EOS,
the presence of non-interacting dark neutrons reduce the
maximum mass to values well below observed neutron s-
tar masses. Thus, a dark neutron with a m� ' 938 MeV

2 We delegate to future work a detailed calculation of the produc-
tion rate for such small values of � which may be interesting in
other contexts.

m𝛘 = mn

m𝛘 = 1.2 GeV
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matter which is called the APR EoS from Ref. [30]. We
will also employ a more general parameterization of the
neutron matter EoS based on realistic nucleon-nucleon
interactions discussed in [31] to explore important un-
certainties associated with poorly known three-nucleon
forces, and to account for associated uncertainties in the
neutron star structure. For a 1.4 M� neutron star it pre-
dicts radii in the range 11 � 13 km and the dimension-
less tidal polarizability ⇤ is approximately in the range
150� 500.

We will only consider scenarios in which trace amounts
of DM are trapped in the neutron stars’ gravitational field
and restrict the total DM mass M� . 10�2 M� where
MNS is the mass of the neutron star. For M� ⌧ MNS

we can neglect the back-reaction of DM onto the neu-
tron star spacetime geometry as long as the local energy-
momentum of DM is also negligible compared to that of
baryons in equilibrium. Incorporating DM is now fairly
simple. In hydrostatic equilibrium the chemical poten-
tial associated with the conserved charge carried by DM,
denoted as µ� should be a constant. In the presence of
neutron star’s gravitational field we require

µ� = µ̃�(r) exp (⌫(r)/2) = constant , (7)

where µ̃�(r) is the local chemical potential of DM in the
absence of the gravitational field. We obtain the number
density of DM n� by noting that the µ̃�(r) = (@✏�/@n�)
where ✏� is the energy density of DM. Neglecting finite
temperature e↵ects, since thermal energies in neutron
stars are small, the energy density of DM

✏� = ✏kin +m�n� +
g2�
2m2

�

n2
� , (8)

where ✏kin is the kinetic energy of DM particles. For spin
1
2 fermionic DM

✏kin =
1

⇡2

Z pF�

0
p2 (

q
p2 +m2

� �m�) , (9)

where the Fermi momentum pF� = (3⇡2n�)1/3. For
bosonic DM, since bosons occupy the lowest momentum
state, the kinetic energy ✏kin ⇡ 0. As already noted,
repulsive interactions are necessary to stabilize bosonic
DM, while for fermions the degeneracy energy provides
additional stabilization. For light gauge mediators with
mass m� in the eV-MeV range, their Compton wave-
length become larger than the inter-particle distance and
interactions between DM will be greatly enhanced since
each DM particle can interact with a large number of
neighboring particles coherently. If the dark sector is
strongly coupled with g� ' 1, mediator masses up to
about 10 MeV will be relevant to our study of the tidal
polarizability as we show below.

To determine the density profile of DM inside a neu-
tron star of a given mass we begin by choosing a cen-
tral number density for DM particles denoted by n�(0)
and calculate the corresponding local chemical potential

FIG. 1. Density profile for a hybrid star with M� = 1.7 ⇥
10�4 M�. The dimensionless tidal polarizability ⇤ = 800
for this 1.4M� hybrid star is enhanced from ⇤APR

1.4M� = 260.

m� = 100 MeV and g�/m� = 5⇥ 10�1 MeV�1.

µ̃�(r = 0). Using the metric function for the unper-
turbed neutron star, Eq. 7 allows us to calculate the
dark mater density profile in the local density approx-
imation. The energy density and pressure contributions
due to DM particles at any r can then be found using
the DM EoS specified in Eq. 8. The back-reaction of DM
particles onto background geometry can be incorporated
by using this hybrid EoS and solve TOV equations it-
eratively for fixed nB(0) and n�(0). Since we entertain
only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
are shown in Fig. 3. Results for both fermionic and
bosonic DM are shown, and demonstrate that either

Interacting Dark Matter

Energy density:

Large enhancement of interactions when Compton wavelength of mediator is larger than the 
inter-particle distance.  
Coupling to baryon number can create (dark) charge separation in neutron stars.    
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only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
are shown in Fig. 3. Results for both fermionic and
bosonic DM are shown, and demonstrate that either
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matter which is called the APR EoS from Ref. [30]. We
will also employ a more general parameterization of the
neutron matter EoS based on realistic nucleon-nucleon
interactions discussed in [31] to explore important un-
certainties associated with poorly known three-nucleon
forces, and to account for associated uncertainties in the
neutron star structure. For a 1.4 M� neutron star it pre-
dicts radii in the range 11 � 13 km and the dimension-
less tidal polarizability ⇤ is approximately in the range
150� 500.

We will only consider scenarios in which trace amounts
of DM are trapped in the neutron stars’ gravitational field
and restrict the total DM mass M� . 10�2 M� where
MNS is the mass of the neutron star. For M� ⌧ MNS

we can neglect the back-reaction of DM onto the neu-
tron star spacetime geometry as long as the local energy-
momentum of DM is also negligible compared to that of
baryons in equilibrium. Incorporating DM is now fairly
simple. In hydrostatic equilibrium the chemical poten-
tial associated with the conserved charge carried by DM,
denoted as µ� should be a constant. In the presence of
neutron star’s gravitational field we require

µ� = µ̃�(r) exp (⌫(r)/2) = constant , (7)

where µ̃�(r) is the local chemical potential of DM in the
absence of the gravitational field. We obtain the number
density of DM n� by noting that the µ̃�(r) = (@✏�/@n�)
where ✏� is the energy density of DM. Neglecting finite
temperature e↵ects, since thermal energies in neutron
stars are small, the energy density of DM

✏� = ✏kin +m�n� +
g2�
2m2

�

n2
� , (8)

where ✏kin is the kinetic energy of DM particles. For spin
1
2 fermionic DM

✏kin =
1

⇡2

Z pF�

0
p2 (

q
p2 +m2

� �m�) , (9)

where the Fermi momentum pF� = (3⇡2n�)1/3. For
bosonic DM, since bosons occupy the lowest momentum
state, the kinetic energy ✏kin ⇡ 0. As already noted,
repulsive interactions are necessary to stabilize bosonic
DM, while for fermions the degeneracy energy provides
additional stabilization. For light gauge mediators with
mass m� in the eV-MeV range, their Compton wave-
length become larger than the inter-particle distance and
interactions between DM will be greatly enhanced since
each DM particle can interact with a large number of
neighboring particles coherently. If the dark sector is
strongly coupled with g� ' 1, mediator masses up to
about 10 MeV will be relevant to our study of the tidal
polarizability as we show below.

To determine the density profile of DM inside a neu-
tron star of a given mass we begin by choosing a cen-
tral number density for DM particles denoted by n�(0)
and calculate the corresponding local chemical potential

FIG. 1. Density profile for a hybrid star with M� = 1.7 ⇥
10�4 M�. The dimensionless tidal polarizability ⇤ = 800
for this 1.4M� hybrid star is enhanced from ⇤APR

1.4M� = 260.

m� = 100 MeV and g�/m� = 5⇥ 10�1 MeV�1.
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imation. The energy density and pressure contributions
due to DM particles at any r can then be found using
the DM EoS specified in Eq. 8. The back-reaction of DM
particles onto background geometry can be incorporated
by using this hybrid EoS and solve TOV equations it-
eratively for fixed nB(0) and n�(0). Since we entertain
only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
are shown in Fig. 3. Results for both fermionic and
bosonic DM are shown, and demonstrate that either
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matter which is called the APR EoS from Ref. [30]. We
will also employ a more general parameterization of the
neutron matter EoS based on realistic nucleon-nucleon
interactions discussed in [31] to explore important un-
certainties associated with poorly known three-nucleon
forces, and to account for associated uncertainties in the
neutron star structure. For a 1.4 M� neutron star it pre-
dicts radii in the range 11 � 13 km and the dimension-
less tidal polarizability ⇤ is approximately in the range
150� 500.

We will only consider scenarios in which trace amounts
of DM are trapped in the neutron stars’ gravitational field
and restrict the total DM mass M� . 10�2 M� where
MNS is the mass of the neutron star. For M� ⌧ MNS

we can neglect the back-reaction of DM onto the neu-
tron star spacetime geometry as long as the local energy-
momentum of DM is also negligible compared to that of
baryons in equilibrium. Incorporating DM is now fairly
simple. In hydrostatic equilibrium the chemical poten-
tial associated with the conserved charge carried by DM,
denoted as µ� should be a constant. In the presence of
neutron star’s gravitational field we require

µ� = µ̃�(r) exp (⌫(r)/2) = constant , (7)

where µ̃�(r) is the local chemical potential of DM in the
absence of the gravitational field. We obtain the number
density of DM n� by noting that the µ̃�(r) = (@✏�/@n�)
where ✏� is the energy density of DM. Neglecting finite
temperature e↵ects, since thermal energies in neutron
stars are small, the energy density of DM

✏� = ✏kin +m�n� +
g2�
2m2
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� , (8)

where ✏kin is the kinetic energy of DM particles. For spin
1
2 fermionic DM

✏kin =
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where the Fermi momentum pF� = (3⇡2n�)1/3. For
bosonic DM, since bosons occupy the lowest momentum
state, the kinetic energy ✏kin ⇡ 0. As already noted,
repulsive interactions are necessary to stabilize bosonic
DM, while for fermions the degeneracy energy provides
additional stabilization. For light gauge mediators with
mass m� in the eV-MeV range, their Compton wave-
length become larger than the inter-particle distance and
interactions between DM will be greatly enhanced since
each DM particle can interact with a large number of
neighboring particles coherently. If the dark sector is
strongly coupled with g� ' 1, mediator masses up to
about 10 MeV will be relevant to our study of the tidal
polarizability as we show below.

To determine the density profile of DM inside a neu-
tron star of a given mass we begin by choosing a cen-
tral number density for DM particles denoted by n�(0)
and calculate the corresponding local chemical potential

FIG. 1. Density profile for a hybrid star with M� = 1.7 ⇥
10�4 M�. The dimensionless tidal polarizability ⇤ = 800
for this 1.4M� hybrid star is enhanced from ⇤APR

1.4M� = 260.

m� = 100 MeV and g�/m� = 5⇥ 10�1 MeV�1.

µ̃�(r = 0). Using the metric function for the unper-
turbed neutron star, Eq. 7 allows us to calculate the
dark mater density profile in the local density approx-
imation. The energy density and pressure contributions
due to DM particles at any r can then be found using
the DM EoS specified in Eq. 8. The back-reaction of DM
particles onto background geometry can be incorporated
by using this hybrid EoS and solve TOV equations it-
eratively for fixed nB(0) and n�(0). Since we entertain
only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
are shown in Fig. 3. Results for both fermionic and
bosonic DM are shown, and demonstrate that either
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FIG. 3. The 90% credible region of the posterior probability for
the common radius R̂ and binary tidal deformability ⇤̃ with the
common EOS constraint for the three mass priors. The posteriors
for the individual parameters are shown with dotted lines at the
5%, 50% and 95% percentiles. The values of ⇤̃, and hence R̂
forbidden by causality have been excluded from the posteriors.

mon radius R̂ of the neutron stars in the binary. Our results
suggest a radius R̂ = 10.7+2.1

�1.6 ± 0.2 km (90% credible
interval, statistical and systematic errors) for the uniform
mass prior, R̂ = 10.9+2.1

�1.6±0.2 km for double neutron star
mass prior, and R̂ = 10.8+2.1

�1.6±0.2 km for the prior based
on all neutron star masses.

For the uniform mass prior, we computed the Bayes fac-
tor comparing a model with a prior ⇤s ⇠ U [0, 5000] to a
model with a prior ⇤s ⇠ U [0, 100]. We find log10(B) ⇠
1, suggesting that the data favors a model that includes
measurement of tidal deformability ⇤̃ & 100. However,
the evidences were calculated using thermodynamic inte-
gration of the MCMC chains [9]. We will investigate model
selection using, e.g., nested sampling [44] in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [45, 46]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [47].
Waveform systematics and comparison of other waveform
models (e.g., [48]) will be investigated in a future work.

Discussion.—Using Bayesian parameter estimation, we
have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes
our findings. To compare to Ref. [1], which reports a 90%
upper limit on ⇤̃  800 under the assumption of a uni-
form prior on ⇤̃, we integrate the posterior for ⇤̃ to obtain
90% upper limits on ⇤̃. For the common EOS analyses,
these are 485, 521, and 516 for the uniform, double neu-

Mass prior ⇤̃ R̂ (km) B ⇤̃90%

Uniform 222+420
�138 10.7+2.1

�1.6 ± 0.2 369 < 485

Double neutron star 245+453
�151 10.9+2.1

�1.6 ± 0.2 125 < 521

Galactic neutron star 233+448
�144 10.8+2.1

�1.6 ± 0.2 612 < 516

TABLE I. Results from parameter estimation analyses using three
different mass prior choices with the common EOS constraint,
and applying the causal minimum constraint to ⇤(m). We show
90% credible intervals for ⇤̃, 90% credible intervals and system-
atic errors for R̂, Bayes factors B comparing our common EOS
to the unconstrained results, and the 90% upper limits on ⇤̃.

tron star, and Galactic neutron star component mass pri-
ors, respectively. We find that, in comparison to the un-
constrained analysis, the common EOS assumption signif-
icantly reduces the median value and 90% confidence up-
per bound of ⇤̃ by about 28% and 19%, respectively, for
all three mass priors. The difference between our common
EOS results for the three mass priors is consistent with the
physics of the gravitational waveform. At constant M, de-
creasing q causes the binary to inspiral more quickly [49].
At constant M and constant q, increasing ⇤̃ also causes the
binary to inspiral more quickly, so there is a mild degener-
acy between q and ⇤̃. The uniform mass prior allows the
largest range of mass ratios, so we can fit the data with a
larger q and smaller ⇤̃. The double neutron star mass prior
allows the smallest range of mass ratios, and so, a larger
⇤̃ is required to fit the data, with the Galactic neutron star
mass prior lying between these two cases.

Nevertheless, considering all analyses we performed
with different mass prior choices, we find a relatively ro-
bust measurement of the common neutron star radius with
a mean value hR̂i = 10.8 km bounded above by R̂ <

13.2 km and below by R̂ > 8.9 km. Nuclear theory and
experiment currently predict a somewhat smaller range by
2 km but with approximately the same centroid as our re-
sults [14, 50]. A minimum radius 10.5–11 km is strongly
supported by neutron matter theory [51–53], the unitary
gas [54], and most nuclear experiments [14, 50, 55]. The
only major nuclear experiment that could indicate radii
much larger than 13 km is the PREX neutron skin measure-
ment, but this has published error bars much larger than
previous analyses based on antiproton data, charge radii of
mirror nuclei, and dipole resonances. Our results are con-
sistent with photospheric radius expansion measurements
of x-ray binaries which obtain R ⇡ 10–12 km [12, 56, 57].
Reference [58] found from an analysis of five neutron stars
in quiescent low-mass x-ray binaries a common neutron
star radius 9.4 ± 1.2 km, but systematic effects includ-
ing uncertainties in interstellar absorption and the neutron
stars’ atmospheric compositions are large. Other analyses
have inferred 12± 0.7 [59] and 12.3± 1.8 km [60] for the
radii of 1.4M� quiescent sources.

We have found that the relation q
7.48

< ⇤1/⇤2 < q
5.76,

in fact, completely bounds the uncertainty for the range of
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on all neutron star masses.

For the uniform mass prior, we computed the Bayes fac-
tor comparing a model with a prior ⇤s ⇠ U [0, 5000] to a
model with a prior ⇤s ⇠ U [0, 100]. We find log10(B) ⇠
1, suggesting that the data favors a model that includes
measurement of tidal deformability ⇤̃ & 100. However,
the evidences were calculated using thermodynamic inte-
gration of the MCMC chains [9]. We will investigate model
selection using, e.g., nested sampling [44] in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [45, 46]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [47].
Waveform systematics and comparison of other waveform
models (e.g., [48]) will be investigated in a future work.

Discussion.—Using Bayesian parameter estimation, we
have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes
our findings. To compare to Ref. [1], which reports a 90%
upper limit on ⇤̃  800 under the assumption of a uni-
form prior on ⇤̃, we integrate the posterior for ⇤̃ to obtain
90% upper limits on ⇤̃. For the common EOS analyses,
these are 485, 521, and 516 for the uniform, double neu-
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90% credible intervals for ⇤̃, 90% credible intervals and system-
atic errors for R̂, Bayes factors B comparing our common EOS
to the unconstrained results, and the 90% upper limits on ⇤̃.
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per bound of ⇤̃ by about 28% and 19%, respectively, for
all three mass priors. The difference between our common
EOS results for the three mass priors is consistent with the
physics of the gravitational waveform. At constant M, de-
creasing q causes the binary to inspiral more quickly [49].
At constant M and constant q, increasing ⇤̃ also causes the
binary to inspiral more quickly, so there is a mild degener-
acy between q and ⇤̃. The uniform mass prior allows the
largest range of mass ratios, so we can fit the data with a
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allows the smallest range of mass ratios, and so, a larger
⇤̃ is required to fit the data, with the Galactic neutron star
mass prior lying between these two cases.
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bust measurement of the common neutron star radius with
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13.2 km and below by R̂ > 8.9 km. Nuclear theory and
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2 km but with approximately the same centroid as our re-
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supported by neutron matter theory [51–53], the unitary
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only major nuclear experiment that could indicate radii
much larger than 13 km is the PREX neutron skin measure-
ment, but this has published error bars much larger than
previous analyses based on antiproton data, charge radii of
mirror nuclei, and dipole resonances. Our results are con-
sistent with photospheric radius expansion measurements
of x-ray binaries which obtain R ⇡ 10–12 km [12, 56, 57].
Reference [58] found from an analysis of five neutron stars
in quiescent low-mass x-ray binaries a common neutron
star radius 9.4 ± 1.2 km, but systematic effects includ-
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FIG. 2. Dependence on nuclear EoS. Solid lines are ⇤ and
dashed lines represent radii. All configurations are approxi-
mately 1.4M� within 0.1%. ⇤1.4M� for selected realistic nu-
clear EoSs vary from 150 to 500. Hybrid stars based on these
nuclear EoSs all exhibit R5 growth for large R. Bosonic DM
with m� = 100 MeV and g�/m� = 0.1 MeV�1 is assumed.

strong coupling or light mediator masses can result in
large ⇤ even when only trace amounts of DM with total
mass M� ⌧ MNS is present. Inspiral dynamics can be

FIG. 3. ⇤ increases rapidly with increasing total DM mass
M�. For self-interacting DM with g�/m� > 1 MeV�1, M� >
10�4M� will increase ⇤ above the upper bound (' 800) set
by GW170817.

modeled by the simple approach described by Eq. 2 in
which all finite size e↵ects are incorporated through ⇤
only when the radius of halo is smaller than the orbital
separation

rorb ' 140

✓
M

M�

◆1/3 ✓ fGW

100 Hz

◆�2/3

km , (10)

at frequencies relevant to Ad. LIGO. For this reason
we restrict our study to dark halos whose radii R . 150
km. With this restriction we find that obtaining ⇤ > 800
requires M� & 5⇥ 10�6M�.

Fermion dark halos are larger and have larger ⇤ due
to the additional contribution from the Fermi degener-
acy pressure. For m� = 100 MeV, the di↵erence be-
tween fermions and bosons is modest but the di↵erence
increases rapidly with decreasing m�. We find that for
fermions with m� . 30 MeV, the dark halo and its
tidal polarizability is large even in the absence of self-
interactions. For example, we find that ⇤ = 800 is
reached for m� = 30 MeV at total dark matter mass
M� = 10�4M�, for m� = 10 MeV at M� = 3⇥10�6M�,
and for m� = 5 MeV at M� = 4⇥ 10�7M�. However in
these cases the radius of the dark halo is large: R ' 210
km for m� = 10 MeV, R ' 140 km for m� = 20 MeV,
and R ' 100 km for m� = 30 MeV. A more sophisti-
cated hydrodynamic treatment is needed to study these
situations when the dark halos overlap strongly and this
is beyond the scope of this work.

III. ACCUMULATING DARK MATTER

A key question that remains is how & 10�5 M� of DM
can be trapped by the neutron star. We noted earlier that
the mass of asymmetric DM that can accrete onto neu-
tron stars is much smaller when the ambient DM density
is of the order of GeV/cm3. In a strongly self-interacting
dark matter scenario DM-DM scattering could increase
the capture rate. In addition, the DM distribution may
not be uniform. If dense DM clumps exist, then nearby
neutron stars might accrete large amounts of DM. An-
other possibility is that DM dynamics resulted in small
structures which could seed star formation, thus massive
stars may already contain trace amounts of DM in their
cores, and the neutron stars born subsequent to the su-
pernova explosion would inherit it. Note that microlens-
ing constraints on small objects only rule out extremely
dense objects, and there is plenty of room for clumps of
DM that are much denser than the ambient density but
not dense enough to microlense. These scenarios for how
to get dark matter into neutron stars are complicated and
speculative, and imply that di↵erent neutron stars would
have vastly di↵erent amounts of DM. In contrast, be-
low we shall estimate that light DM with mass less than
a few hundred MeV can be produced copiously during
the first few seconds subsequent to core-collapse super-
nova events, and, if their coupling to baryons is not too
weak, asymmetric capture of dark particles (�’s) versus
anti-dark particles (�̄’s) would result in an ADM-neutron
star hybrid. In this case all neutron stars would contain
a similar amount of DM.
Inside the hot newly born neutron star with a tem-

perature TNS ' 30 � 50 MeV bremsstrahlung reactions
nn ! nn� and np ! np� produce � particles when
m� is not much larger than about 3TNS. In fact, the
most stringent constraint on gB , their coupling strength
to baryons, is obtained by requiring that the total energy
radiated away as � particles does not exceed ⇡ 1053 ergs
[32–34]. Since � can couple strongly to dark fermions, the

Interactions of “natural” 
size produce large Λ

For m𝜒 = 100 MeV
g𝜒/mΦ = (0.1/MeV) or (10-6/eV)

Ann Nelson, Sanjay Reddy, Dake Zhou, ArXiV:1803.03266
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excludes a significant fraction of the DM parameter space
in our simple model. The bounds for bosonic DM de-

FIG. 4. Contours of dimensionless tidal polarizability for
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scribed by our simple model are shown in Fig. 4. Here
we have fixed M� = 10�4 M� and varied the DM par-
ticle mass m� and e↵ective coupling strength g�/m� to
obtain the contours labeled by their dimensionless tidal
polarizability. In all cases we have used the APR EoS
to describe the underlying 1.4 M� neutron star. As ex-
pected from the discussion in section II, for fixed m�,
⇤ increases with increasing e↵ective coupling strength
g�/m�.

It is remarkable that models with light mediators are
severely constrained. For example, a model with m� =
100 MeV and m� = 1 eV, requires g� . 10�6. These
constraints should be especially useful since recent ob-
servations of strong absorption of the Lyman-↵ radiation
from some of the earliest stars corresponding to the 21-
centimeter transition of atomic hydrogen around redshift
20 [35] appears to favor light dark matter in the MeV-
GeV mass range and whose interactions (with baryons)
are due to the exchange of much lighter mediators [36].

The bound depends on the total mass M� and we find
the contour for ⇤ = 800 can be approximately fit by
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In Fig. 5 we show contours of fixed ⇤ for dark fermions

in the model parameter space defined by g�/m� versus
m�. For heavy fermions, where the contribution due
to the Fermi degeneracy pressure is small, the contours
of ⇤ are very similar to those obtained for bosons in
Fig. 4. However it is interesting to note that for light

FIG. 5. Contours of tidal deformability for 1.4 M� hybrid
star containing 10�4 M� of fermionic DM.

dark fermions, with m� . 30 MeV, ⇤ can be larger then
800 even in the absence of strong interactions or light
mediators. This is clearly seen in the behavior of the con-
tours for small values of m� when they plunge to smaller
values of the e↵ective coupling strength g�/m�.
With more detections of BNS and black hole-neutron

star mergers expected we anticipate that these limits on
the tidal polarizability will improve and provide stronger
constraints. There is also the tantalizing possibility that
as the detection sample grows, Ad. LIGO might detect a
larger than expected variability in the tidal polarizabil-
ity for neutron stars implicating that some are endowed
with dark halos. We have proposed a few mechanisms
by which DM can be either produced or accreted in ade-
quate quantities. These warrant further study to obtain
quantitative estimates for the amount of DM accumu-
lated and its dependence on the model parameters.
Finally, we note that in our study we have restricted

ourselves to dark halos whose radii are less than 150 km
to ensure that halos do not overlap during the early, yet
detectable, stage of the merger to ensure that the orbital
evolution can be described by the point particle + tidal
polarizability corrections formulation. Larger halos or
later times in the merger will experience a more complex
hydrodynamic evolution when the halos overlap. This
will require computer simulations to identify observable
signatures, and although this is beyond the scope of our
study we hope our results will motivate numerical rela-
tivists simulating neutron star mergers to include DM.
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Could/should neutron stars contain dark matter ? 

• Supernova can produce (thermally) 10-2 Msolar of  < 100 MeV dark matter. 

• Coupling to baryons allows for dark charge separation. 

• Dark matter could be clumpy. Compact dark objects -CDOs              
(strongly constrained but not excluded by micro-lensing)

• Dark clumps might seed star formation.     
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• Supernova can produce (thermally) 10-2 Msolar of  < 100 MeV dark matter. 

• Coupling to baryons allows for dark charge separation. 

• Dark matter could be clumpy. Compact dark objects -CDOs              
(strongly constrained but not excluded by micro-lensing)

• Dark clumps might seed star formation.     

A large variability in the tidal polarizability of the 
merging neutron stars would be tantalizing evidence ! 



Early Neutron Star Cooling: Supernova Neutrinos

1500 km

3X107 km

10 km

Core collapse
tcollapse ~100 ms Shock wave

Eshock~1051ergs

100 km

3 x 1053 ergs = 1058 × 20 MeV Neutrinos

neutrinos diffuse in the core.

SN 1987a: ~ 20 neutrinos over ~10 s. 

• The time structure of the neutrino signal 
depends on how heat is transported in the 
neutron star core. 


• The spectrum is set by scattering in a hot 
(T=3-6 MeV) and not so dense (1012-1013 g/
cm3 ) neutrino-sphere. Neutrino oscillations 
can strongly influence flavor asymmetries. 



Supernova 1987a bound on energy loss to exotic particles

Raffelt’s “local” bound: E(ρ = 3× 1014 g/cm3, T = 30 MeV) < ERaffelt = 1019
ergs

g s

This bound was found empirically by comparing to a suite of proto-neutron star simulations.   

The corresponding bound on the luminosity is Lexotic < ERaffelt ×MNS ≃ 2× 1052
M

M⊙

ergs

s

Early cooling of the newly born neutron star is set by neutrino diffusion and emission 
and shapes the supernova neutrino signal.   Exotic particles that can escape faster 
would shorten the SN neutrino signal. 
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2. Neutrino and axion emissivities

We begin by explicitly calculating the emissiv-
ity due to NN → NNνν̄. The νν̄ coupling to non-
relativistic baryons at low energies is given by the La-
grange density

(4)LW = −GF

2
√
2

lµN†(cvδµ,0 −caδµ,iσi )N,

where lµ = ν̄γ µ(1 −γ 5)ν is the leptonic current,
GF = 1.166× 10−5 GeV−2, N is the nucleon field,
and cv and ca are the nucleon neutral-current vector
and axial-vector coupling constants. Some Feynman
diagrams for the bremsstrahlung process are shown in
Fig. 1.
The incoming (outgoing) nucleon momenta are la-

beled p1, p2 (p3,p4). The dashed line represents radi-
ation — a neutrino–anti-neutrino pair in this case —
which carries energy ω and momentum q. In general
we are interested in cases where the radiated energy
is small compared to the incoming nucleon energy. In
the limit ω → 0 the amplitudes corresponding to dia-
grams (a) and (b) in Fig. 1 are dominant, as they con-
tain pieces proportional to 1/ω. On the other hand, the
contributions from the re-scattering diagram Fig. 1 (c),
and from meson-exchange currents such as Fig. 1 (d),
remain finite in the ω → 0 limit. Thus, for the reaction

Fig. 1. Feynman diagrams for the bremsstrahlung process. The
radiation is represented by the dashed line, and nucleons by solid
lines. TNN is the NN transition matrix and J

(2)
µ5 is a two-body axial

current. Only diagrams (a) and (b) contribute at order ω−1 and are
thus part of the SNA.

nn → nnνν̄ the matrix element can be written as

(5)M = 2
GF

2
√
2
1
ω

lµ⟨p′|[TNN,Γµ]|p⟩ + O
(
ω0

)
,

where p (p′) is the initial (final) relative momentum of
the two-nucleon system. As used here, the definition
of the nucleon–nucleon T-matrix TNN involves a sum
over the allowed partial-waves of the NN system. This,
together with the factor of two in front of the matrix
element, accounts for the exchange graphs which are
therefore included in M. We refer to results which
retain only this leading term, of O(ω−1), in M as
“true in the soft-neutrino approximation (SNA)”. In
general TNN appearing in Eq. (5) will be half off-
shell. But, in the SNA we can take TNN to be the on-
shell NN amplitude.We can also neglect the difference
between the magnitude of the initial and final-state
relative momenta. We expect these approximations
to break down when ω ∼ mπ , since mπ sets the
scale for variations of TNN in the off-shell direction. 1
So, in the SNA, the NN interaction is described by
the on-shell T-matrix TNN , evaluated at a center-
of-mass energy which, for reasons of symmetry, is
chosen to be (p2 + p′2)/(2M) (M is the nucleon
mass). This T-matrix can be constructed from phase
shifts deduced from NN scattering data [17]. Note
that the OPE approximation used in most previous
calculations involves substituting VOPE, the one-pion-
exchange potential, for TNN in Eq. (5). Meanwhile,
Γµ is the vertex which couples the radiation to the
nucleons. For νν̄ radiation Γµ follows straight from
Eq. (4). Only its three-vector part contributes toM at
O(ω−1). Eq. (5) then gives us a model-independent
result forM, which is correct in the SNA.
If only two-body collisions are taken into account

then the neutrino emissivity from a neutron gas is
given by Fermi’s golden rule

Eνν̄ =
∫

d 3q1
(2π)32ω1

d 3q2
(2π)32ω2

(2π)4δ(Ein −Efn)

× ω δ3(pin −pf n)

∫ [
∏

i=1,...,4

d 3pi

(2π)3

]

1 At very low relative momenta the scale of breakdown is set by
the NN scattering length, since that gives the variation in the on-
shell direction. However, aNN does not really play a role here, since
typical nucleon momenta in neutron stars are at least 100 MeV.

Production of Axions & Dark Gauge Bosons in SN

A ⇡ lµ
!

hpin|[TNN ,�µ(q)]|pout >

Nucleon-nucleon Bremsstrahlung dominates: 

nucleon-nucleon T-matrix 

intermediate nucleon - 
energy denominator 

�µ(q) �µ(q)

lµlµ

Hanhart, Phillips & Reddy (2001)
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Production of Axions & Dark Gauge Bosons in SN

•For small ω < mπ the contribution from “internal” diagrams is small <10%.  
•When ω, q  are small compared to incoming nucleon energy and momenta 
TNN can be related to the phase shifts. (Low’s Theorem)
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!
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Nucleon-nucleon Bremsstrahlung dominates: 

nucleon-nucleon T-matrix 

intermediate nucleon - 
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Radiating Dark Gauge Bosons 
3

cross-sections for bremsstrahlung radiation of LVBs are given by

d‡ppæpp“i = ≠4fi–em‘2
i

d3k
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(‘µJ (4)

µ )2 d‡ppæpp , (3)

d‡npæpp“Q = ≠4fi–em‘2
Q
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where
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4
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, (6)
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P3 · K
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P4

P4 · K

4

µ

, (7)

are the currents associated with dipole and quadrupole radiation, respectively [18, 20]. The unpolarized elastic di�erential
cross-sections for pp and np and given by d‡ppæpp and d‡npænp, respectively. These results are valid to leading order (LO) in
an expansion in powers of ‰ = Ê/Ecm where Ecm = (p̨1 ≠ p̨2)2/4M is the non-relativistic center of mass (cm) energy. When
it is appropriate to only retain terms at order ‰≠2 the elastic cross-section d‡ is calculated at the Ecm and is determined
by the incoming nucleon energies. Next-to-leading order corrections at order ‰≠1 and ‰0 arise and are proportional to the
d‡/dEcm and can be come important when Ecm . 10 MeV where d‡ varies rapidly. However, for ambient conditions in the
supernova core Ecm ¥ 100 MeV and for these energies d log ‡/d log Ecm π 1 and these corrections can be expected to be
small.
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Diagrams shown in Fig. 2 contribute to bremsstrahlung radiation at order ‰1 in the low energy expansion. Here, the
separation between the contributions from diagrams labelled (e) and (f), and the two-body current shown in the diagram
labelled (g) is model and scale dependent and it is inconsistent to selectively include any subset of these contributions. We
also note, once again, that the grey blobs should include both the pion exchanges and short-distance contributions and
latter being especially important. Comparisons between model calculations which include order ‰ contributions with those
obtained in the SRA, and nucleon-nucleon bremsstrahlung data find that the SRA provides as good a description of the
data as do the potential models with their prescribed 2-body currents[22]. For this reasons we will neglect the contributions
from the diagrams in Fig. 2 and use Eqns. 3, 4 & 5 to calculate the emission rates. A comparison between the photon
bremsstrahlung data measured in the laboratory, and predictions of the rate in SRA provides an estimate of the associated
error. For collisions with Ecm ¥ 100 MeV these comparisons show that the SRA provides a good description of the data for
Ê << Ecm, and for Ê ƒ Ecm underestimates the cross-sections by about a factor of about 2 [22–24]. For these reasons we
consider the leading order SRA better suited to calculate emission and scattering rates of LVB rather than models which
include corrections arising from a sub-class diagrams in Fig. 2 in perturbation theory.

The emissivity, which is the rate of emission of energy in LVBs per unit volume, can be calculated in the SRA using
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obtained in the SRA, and nucleon-nucleon bremsstrahlung data find that the SRA provides as good a description of the
data as do the potential models with their prescribed 2-body currents[22]. For this reasons we will neglect the contributions
from the diagrams in Fig. 2 and use Eqns. 3, 4 & 5 to calculate the emission rates. A comparison between the photon
bremsstrahlung data measured in the laboratory, and predictions of the rate in SRA provides an estimate of the associated
error. For collisions with Ecm ¥ 100 MeV these comparisons show that the SRA provides a good description of the data for
Ê << Ecm, and for Ê ƒ Ecm underestimates the cross-sections by about a factor of about 2 [22–24]. For these reasons we
consider the leading order SRA better suited to calculate emission and scattering rates of LVB rather than models which
include corrections arising from a sub-class diagrams in Fig. 2 in perturbation theory.
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cross-sections for pp and np and given by d‡ppæpp and d‡npænp, respectively. These results are valid to leading order (LO) in
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Diagrams shown in Fig. 2 contribute to bremsstrahlung radiation at order ‰1 in the low energy expansion. Here, the
separation between the contributions from diagrams labelled (e) and (f), and the two-body current shown in the diagram
labelled (g) is model and scale dependent and it is inconsistent to selectively include any subset of these contributions. We
also note, once again, that the grey blobs should include both the pion exchanges and short-distance contributions and
latter being especially important. Comparisons between model calculations which include order ‰ contributions with those
obtained in the SRA, and nucleon-nucleon bremsstrahlung data find that the SRA provides as good a description of the
data as do the potential models with their prescribed 2-body currents[22]. For this reasons we will neglect the contributions
from the diagrams in Fig. 2 and use Eqns. 3, 4 & 5 to calculate the emission rates. A comparison between the photon
bremsstrahlung data measured in the laboratory, and predictions of the rate in SRA provides an estimate of the associated
error. For collisions with Ecm ¥ 100 MeV these comparisons show that the SRA provides a good description of the data for
Ê << Ecm, and for Ê ƒ Ecm underestimates the cross-sections by about a factor of about 2 [22–24]. For these reasons we
consider the leading order SRA better suited to calculate emission and scattering rates of LVB rather than models which
include corrections arising from a sub-class diagrams in Fig. 2 in perturbation theory.

The emissivity, which is the rate of emission of energy in LVBs per unit volume, can be calculated in the SRA using
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When the mass of the LVBs is less than or comparable to few times TSN ƒ 30 MeV, the temperature encountered
in the supernova core, they can be produced copiously through nucleon-nucleon bremsstrahlung and electron-position pair-
annihilation reactions. For both types of LVB, the bremsstrahlung production rate is expected to be the dominant contribution
given the abundance of nucleons and the strong nature of nuclear interactions. In this article we calculate this production rate
using the soft-radiation theorem and obtain a model independent estimate, related directly to the nucleon-nucleon elastic
scattering data. A similar method was used in earlier work in [4] to estimate low energy neutrino and axion production
and in [17] to estimate the rate of production of Kaluza-Kelin gravitons and dilatons from nucleon-nucleon bremsstrahlung.
Here we present for the first time a calculation of the rate of emission of the LVB “B which couples to baryon number from
nucleon-nucleon bremsstrahlung. Our calculation of the bremsstrahlung production of dark photons predicts a rate that is
about a factor 10 smaller than that predicted in Ref. [7]. We trace this di�erence to an overly simplified treatment of the
nucleon-nucleon interaction based on one-pion-exchange, and the use of the Born approximation for strong interactions.

In section II we review the well known result for soft bremsstrahlung radiation and outline the calculation for the emissivity
of LVBs from the supernova core in this limit. We discuss the elastic neutron-neutron, proton-proton and neutron-proton
cross-sections and use experimental data to compute the emissivities in section III. In section IV we derive constraints on ‘B

and revise earlier constraints on ‘Q. Here we also discuss sources of opacity for LVBs that can suppress cooling arising from
inverse bremsstrahlung process, Compton scattering, and decay into electron–positron pairs.

II. NUCLEON-NUCLEON BREMSSTRAHLUNG IN THE SOFT LIMIT

We begin by briefly reviewing nucleon-nucleon bremsstrahlung in the soft limit where the energy radiated is small compared
to the energy associated with nucleon-nucleon interaction. It is well known that the amplitude for bremsstrahlung production
of particles can be related to the elastic scattering cross-section when expanded in powers of the energy Ê, carried away by
the radiated particles[18]. The amplitude for a generic bremsstrahlung process XY æ XY “ can be written as

MXY æXY “ = A(Ecm)
Ê

+ B(Ecm) + O(Ê) , (2)

where A(Ecm) and B(Ecm) are related directly to the elastic XY æ XY cross-section without radiation in the final state.
This result, called Low’s soft-photon theorem for bremsstrahlung was first derived by F. E. Low [19] and has been used to
study neutron-proton and proton-proton bremsstrahlung reactions since the pioneering work of [20, 21]. Calculations of the
bremsstrahlung rate in which only terms arising from on-shell elastic amplitudes A(Ecm) and B(Ecm) is generally referred
to as the soft-photon approximation or the soft radiation approximation (SRA).

The Feynman diagrams that contribute in the SRA are shown in Fig. 1. Here nucleons are represented by solid lines,
the LVB as the wavy-photon lines and the shaded circle represents the nucleon-nucleon interaction which contains both the
long-distance component arising from pion-exchanges and all of the e�ects of the short-distance components that contribute
to nucleon-nucleon scattering. The amplitude for the reaction pp æ pp“ is obtained by summing diagrams (a), (b), (c) and
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FIG. 1. Diagrams in which radiation denoted by the wavy-line attaches to the external nucleon legs (solid lines) dominates in the
low energy limit. The grey blob represents the anti-symmetrized nucleon-nucleon potential and contains both the direct and exchange
contributions.

(d), while for the reaction np æ np“ only two of these diagrams contribute in which the photon couples only to the proton at
leading order in this expansion. The four momenta of the initial state nucleons is denoted P1 and P2, and by P3 and P4 in the
final state. K = (Ê, k̨) is the four momentum of the radiated quanta and ‘µ is its polarization. These diagrams dominate at
small Ê because the intermediate nucleon is close to being on-shell and makes a contribution to the bremsstrahlung amplitude
at order Ê≠1. In this limit, when the energy radiated is small compared to Ecm of the nucleon pair, the unpolarized di�erential



Radiating Dark Gauge Bosons 
3

cross-sections for bremsstrahlung radiation of LVBs are given by

d‡ppæpp“i = ≠4fi–em‘2
i

d3k

2Ê
(‘µJ (4)

µ )2 d‡ppæpp , (3)

d‡npæpp“Q = ≠4fi–em‘2
Q

d3k

2Ê
(‘µJ (2)

µ )2 d‡npænp , (4)

d‡npænp“B = ≠4fi–em‘2
B

d3k

2Ê
(‘µJ (4)

µ )2 d‡npænp , (5)

where

J (2)
µ =

3
P1

P1 · K
≠

P3
P3 · K

4

µ

, (6)

J (4)
µ =

3
P1

P1 · K
+ P2

P2 · K
≠

P3
P3 · K

≠
P4

P4 · K

4

µ

, (7)

are the currents associated with dipole and quadrupole radiation, respectively [18, 20]. The unpolarized elastic di�erential
cross-sections for pp and np and given by d‡ppæpp and d‡npænp, respectively. These results are valid to leading order (LO) in
an expansion in powers of ‰ = Ê/Ecm where Ecm = (p̨1 ≠ p̨2)2/4M is the non-relativistic center of mass (cm) energy. When
it is appropriate to only retain terms at order ‰≠2 the elastic cross-section d‡ is calculated at the Ecm and is determined
by the incoming nucleon energies. Next-to-leading order corrections at order ‰≠1 and ‰0 arise and are proportional to the
d‡/dEcm and can be come important when Ecm . 10 MeV where d‡ varies rapidly. However, for ambient conditions in the
supernova core Ecm ¥ 100 MeV and for these energies d log ‡/d log Ecm π 1 and these corrections can be expected to be
small.
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Diagrams shown in Fig. 2 contribute to bremsstrahlung radiation at order ‰1 in the low energy expansion. Here, the
separation between the contributions from diagrams labelled (e) and (f), and the two-body current shown in the diagram
labelled (g) is model and scale dependent and it is inconsistent to selectively include any subset of these contributions. We
also note, once again, that the grey blobs should include both the pion exchanges and short-distance contributions and
latter being especially important. Comparisons between model calculations which include order ‰ contributions with those
obtained in the SRA, and nucleon-nucleon bremsstrahlung data find that the SRA provides as good a description of the
data as do the potential models with their prescribed 2-body currents[22]. For this reasons we will neglect the contributions
from the diagrams in Fig. 2 and use Eqns. 3, 4 & 5 to calculate the emission rates. A comparison between the photon
bremsstrahlung data measured in the laboratory, and predictions of the rate in SRA provides an estimate of the associated
error. For collisions with Ecm ¥ 100 MeV these comparisons show that the SRA provides a good description of the data for
Ê << Ecm, and for Ê ƒ Ecm underestimates the cross-sections by about a factor of about 2 [22–24]. For these reasons we
consider the leading order SRA better suited to calculate emission and scattering rates of LVB rather than models which
include corrections arising from a sub-class diagrams in Fig. 2 in perturbation theory.

The emissivity, which is the rate of emission of energy in LVBs per unit volume, can be calculated in the SRA using
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are the currents associated with dipole and quadrupole radiation, respectively [18, 20]. The unpolarized elastic di�erential
cross-sections for pp and np and given by d‡ppæpp and d‡npænp, respectively. These results are valid to leading order (LO) in
an expansion in powers of ‰ = Ê/Ecm where Ecm = (p̨1 ≠ p̨2)2/4M is the non-relativistic center of mass (cm) energy. When
it is appropriate to only retain terms at order ‰≠2 the elastic cross-section d‡ is calculated at the Ecm and is determined
by the incoming nucleon energies. Next-to-leading order corrections at order ‰≠1 and ‰0 arise and are proportional to the
d‡/dEcm and can be come important when Ecm . 10 MeV where d‡ varies rapidly. However, for ambient conditions in the
supernova core Ecm ¥ 100 MeV and for these energies d log ‡/d log Ecm π 1 and these corrections can be expected to be
small.
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Diagrams shown in Fig. 2 contribute to bremsstrahlung radiation at order ‰1 in the low energy expansion. Here, the
separation between the contributions from diagrams labelled (e) and (f), and the two-body current shown in the diagram
labelled (g) is model and scale dependent and it is inconsistent to selectively include any subset of these contributions. We
also note, once again, that the grey blobs should include both the pion exchanges and short-distance contributions and
latter being especially important. Comparisons between model calculations which include order ‰ contributions with those
obtained in the SRA, and nucleon-nucleon bremsstrahlung data find that the SRA provides as good a description of the
data as do the potential models with their prescribed 2-body currents[22]. For this reasons we will neglect the contributions
from the diagrams in Fig. 2 and use Eqns. 3, 4 & 5 to calculate the emission rates. A comparison between the photon
bremsstrahlung data measured in the laboratory, and predictions of the rate in SRA provides an estimate of the associated
error. For collisions with Ecm ¥ 100 MeV these comparisons show that the SRA provides a good description of the data for
Ê << Ecm, and for Ê ƒ Ecm underestimates the cross-sections by about a factor of about 2 [22–24]. For these reasons we
consider the leading order SRA better suited to calculate emission and scattering rates of LVB rather than models which
include corrections arising from a sub-class diagrams in Fig. 2 in perturbation theory.

The emissivity, which is the rate of emission of energy in LVBs per unit volume, can be calculated in the SRA using
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are the currents associated with dipole and quadrupole radiation, respectively [18, 20]. The unpolarized elastic di�erential
cross-sections for pp and np and given by d‡ppæpp and d‡npænp, respectively. These results are valid to leading order (LO) in
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by the incoming nucleon energies. Next-to-leading order corrections at order ‰≠1 and ‰0 arise and are proportional to the
d‡/dEcm and can be come important when Ecm . 10 MeV where d‡ varies rapidly. However, for ambient conditions in the
supernova core Ecm ¥ 100 MeV and for these energies d log ‡/d log Ecm π 1 and these corrections can be expected to be
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Diagrams shown in Fig. 2 contribute to bremsstrahlung radiation at order ‰1 in the low energy expansion. Here, the
separation between the contributions from diagrams labelled (e) and (f), and the two-body current shown in the diagram
labelled (g) is model and scale dependent and it is inconsistent to selectively include any subset of these contributions. We
also note, once again, that the grey blobs should include both the pion exchanges and short-distance contributions and
latter being especially important. Comparisons between model calculations which include order ‰ contributions with those
obtained in the SRA, and nucleon-nucleon bremsstrahlung data find that the SRA provides as good a description of the
data as do the potential models with their prescribed 2-body currents[22]. For this reasons we will neglect the contributions
from the diagrams in Fig. 2 and use Eqns. 3, 4 & 5 to calculate the emission rates. A comparison between the photon
bremsstrahlung data measured in the laboratory, and predictions of the rate in SRA provides an estimate of the associated
error. For collisions with Ecm ¥ 100 MeV these comparisons show that the SRA provides a good description of the data for
Ê << Ecm, and for Ê ƒ Ecm underestimates the cross-sections by about a factor of about 2 [22–24]. For these reasons we
consider the leading order SRA better suited to calculate emission and scattering rates of LVB rather than models which
include corrections arising from a sub-class diagrams in Fig. 2 in perturbation theory.

The emissivity, which is the rate of emission of energy in LVBs per unit volume, can be calculated in the SRA using
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When the mass of the LVBs is less than or comparable to few times TSN ƒ 30 MeV, the temperature encountered
in the supernova core, they can be produced copiously through nucleon-nucleon bremsstrahlung and electron-position pair-
annihilation reactions. For both types of LVB, the bremsstrahlung production rate is expected to be the dominant contribution
given the abundance of nucleons and the strong nature of nuclear interactions. In this article we calculate this production rate
using the soft-radiation theorem and obtain a model independent estimate, related directly to the nucleon-nucleon elastic
scattering data. A similar method was used in earlier work in [4] to estimate low energy neutrino and axion production
and in [17] to estimate the rate of production of Kaluza-Kelin gravitons and dilatons from nucleon-nucleon bremsstrahlung.
Here we present for the first time a calculation of the rate of emission of the LVB “B which couples to baryon number from
nucleon-nucleon bremsstrahlung. Our calculation of the bremsstrahlung production of dark photons predicts a rate that is
about a factor 10 smaller than that predicted in Ref. [7]. We trace this di�erence to an overly simplified treatment of the
nucleon-nucleon interaction based on one-pion-exchange, and the use of the Born approximation for strong interactions.

In section II we review the well known result for soft bremsstrahlung radiation and outline the calculation for the emissivity
of LVBs from the supernova core in this limit. We discuss the elastic neutron-neutron, proton-proton and neutron-proton
cross-sections and use experimental data to compute the emissivities in section III. In section IV we derive constraints on ‘B

and revise earlier constraints on ‘Q. Here we also discuss sources of opacity for LVBs that can suppress cooling arising from
inverse bremsstrahlung process, Compton scattering, and decay into electron–positron pairs.

II. NUCLEON-NUCLEON BREMSSTRAHLUNG IN THE SOFT LIMIT

We begin by briefly reviewing nucleon-nucleon bremsstrahlung in the soft limit where the energy radiated is small compared
to the energy associated with nucleon-nucleon interaction. It is well known that the amplitude for bremsstrahlung production
of particles can be related to the elastic scattering cross-section when expanded in powers of the energy Ê, carried away by
the radiated particles[18]. The amplitude for a generic bremsstrahlung process XY æ XY “ can be written as

MXY æXY “ = A(Ecm)
Ê

+ B(Ecm) + O(Ê) , (2)

where A(Ecm) and B(Ecm) are related directly to the elastic XY æ XY cross-section without radiation in the final state.
This result, called Low’s soft-photon theorem for bremsstrahlung was first derived by F. E. Low [19] and has been used to
study neutron-proton and proton-proton bremsstrahlung reactions since the pioneering work of [20, 21]. Calculations of the
bremsstrahlung rate in which only terms arising from on-shell elastic amplitudes A(Ecm) and B(Ecm) is generally referred
to as the soft-photon approximation or the soft radiation approximation (SRA).

The Feynman diagrams that contribute in the SRA are shown in Fig. 1. Here nucleons are represented by solid lines,
the LVB as the wavy-photon lines and the shaded circle represents the nucleon-nucleon interaction which contains both the
long-distance component arising from pion-exchanges and all of the e�ects of the short-distance components that contribute
to nucleon-nucleon scattering. The amplitude for the reaction pp æ pp“ is obtained by summing diagrams (a), (b), (c) and
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FIG. 1. Diagrams in which radiation denoted by the wavy-line attaches to the external nucleon legs (solid lines) dominates in the
low energy limit. The grey blob represents the anti-symmetrized nucleon-nucleon potential and contains both the direct and exchange
contributions.

(d), while for the reaction np æ np“ only two of these diagrams contribute in which the photon couples only to the proton at
leading order in this expansion. The four momenta of the initial state nucleons is denoted P1 and P2, and by P3 and P4 in the
final state. K = (Ê, k̨) is the four momentum of the radiated quanta and ‘µ is its polarization. These diagrams dominate at
small Ê because the intermediate nucleon is close to being on-shell and makes a contribution to the bremsstrahlung amplitude
at order Ê≠1. In this limit, when the energy radiated is small compared to Ecm of the nucleon pair, the unpolarized di�erential
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Eqns. 3, 4, and 5. For the process np æ np“Q and np æ np“B they are given by
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is the final state phase space of the nucleons, d‡np/d◊ is the di�erential elastic np scattering cross-section, vrel = |p̨1 ≠ p̨2|/M
is the relative speed, and ◊cm is the scattering angle. fi(E) = 1/(1+exp ((E ≠ µi)/T )) is the Fermi distributions functions for
neutrons and protons. Eq. 10 includes Pauli blocking factors for the final state nucleons and is important under degenerate
conditions. However, in the supernova core, matter is partially degenerate with µ(n/p)/T ƒ 1 and under these conditions the
suppression due to Pauli blocking is small. The emission rates due to the reactions nn æ nn“B and pp æ pp“B are obtained
by replacing d‡np in Eq. 9 by d‡nn and d‡pp, respectively and introduce the relevant distribution functions. Similarly to
obtain the contribution for the reaction pp æ pp“Q we replace d‡np in Eq. 8 by d‡pp and fn by fp. In section III we discuss
our calculations of the elastic nucleon-nucleon cross-sections and find that since d‡np is larger at the energies of interest
and because “Q radiation occurs at dipole order in the np reaction, the quadrupole order contribution from the pp æ pp“Q

reaction is small.
Despite the high density and temperature in the supernova core the typical nucleon velocity v . 1/3 and it is useful to

expand in powers of v as this leads to simplifications that allows us to do the phase space integrals needed to calculate the
emissivities. We find that under non-degenerate conditions the emissivities are given by the following compact formulae
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The derivation of these results is discussed in Appendix A. Albeit cumbersome, numerical calculations of the emissivity
including relativistic dispersion relations for the nucleons and corrections due to matter degeneracy can be performed directly
using Eqs. 8 and 9. At T = 30 MeV and nucleon number density n ƒ n0 = 0.16 fm≠3 we have estimated these corrections
to be small ƒ 30% compared to order ‰ corrections neglected in the SRA, which could be about factor of 2 as mentioned
earlier.
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We calculate the rate of production of hypothetical light vector bosons (LVBs) from nucleon-
nucleon bremsstrahlung reactions in the soft radiation limit directly in terms of the measured
nucleon-nucleon elastic cross sections. We use these results and the observation of neutrinos from
supernova SN1987a to deduce constraints on the couplings of vector bosons with masses . 200 MeV
to either electric charge (dark photons) or to baryon number. We establish for the first time strong
constraints on LVB that couple only to baryon number, and revise earlier constraints on the dark
photon. For the latter, we find that the excluded region of parameter space is diminished by about
a factor of 10.

I. INTRODUCTION

The detection of about 20 neutrinos over about 10 seconds from supernova SN87a confirmed in broad-brush the paradigm
for core-collapse supernova in which the neutrinos carry away the bulk of the gravitational binding energy ƒ 3 ≠ 5 ◊ 1053

ergs of the neutron star. The time scale associated with this intense neutrino emission is determined by neutrino di�usion in
the hot and dense core of the newly born neutron star called the proto-neutron star[1]. During this phase, the emission of
other weakly interacting particles, were they to exist, could sap energy from the core and reduce the number and time scale
over which neutrinos would be detectable. This allows one to extract useful constraints on the coupling of these hypothetical
particles for masses up to about 200 MeV from the neutrino signal observed from SN87a. Now widely referred to as the
supernova cooling constraint [2], it has provided stringent constraints on the properties of QCD axions [3], the size of large
gravity-only extra-dimensions into which light Kaluza-Klein gravitons could be radiated [4, 5], light supersymmetric particles
such as neutralinos [6], and more recently on the properties of dark photons [7–9].

Observations of galaxy rotation curves, the motion of galaxies in clusters, gravitational lensing, and the remarkable success
of the �CDM model of the early universe (see Ref. [10] for a pedagogic review), combined with the direct empirical evidence
from the bullet cluster [11] indicates the existence of dark matter (DM) which interacts with ordinary matter through
gravitational interactions. This has spurred much recent research in particle physics and a plethora of DM models have been
proposed that also naturally predict non-gravitational interactions. In a class of these models, DM is part of neutral hidden
sector which interacts with standard model (SM) particles through the exchange of light vector bosons (LVBs) that couple
to SM conserved currents [12–15]. Here, DM is charged under a local U(1) and from a phenomenological perspective, it is
convenient to consider two possibilities. One in which the mediator couples to the SM electric charge Q, called the dark
photon “Q and is described by the spin-one field AÕ

µ. The other in which the mediator couples only to baryon number, which
is sometimes referred to as the leptophobic gauge boson “B and is described by the field Bµ.

At low energy it su�ces to consider minimal coupling of the LVBs to charge and baryon number described by the lagrangian

L ∏ gQAÕ
µJEM

µ + gBBµJB
µ ≠

1
2m2

“Q
AÕ

µAÕµ
≠

1
2m2

“B
BµBµ , (1)

which also includes mass terms for the gauge bosons. Of the two LVBs, the dark photon has been studied extensively and is
usually discussed as arising from kinetic mixing of a dark sector gauge boson with the photon [16]. This mixing is described
by the term ‘QF Õ

µ‹F µ‹ in the low energy lagrangian where F µ‹ and F Õ
µ‹ are the field tensors associated with the ordinary

photon field and dark photon field, respectively. The Yukawa coupling in Eq. 1 gQ = ‘Qe where e =
Ô

4fi–em is the electric
charge. To simplify notation, and for later convenience, we shall also introduce the parameter ‘B and write the Yukawa
coupling of leptophobic gauge boson as gB = ‘Be.
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When the mass of the LVBs is less than or comparable to few times TSN ƒ 30 MeV, the temperature encountered
in the supernova core, they can be produced copiously through nucleon-nucleon bremsstrahlung and electron-position pair-
annihilation reactions. For both types of LVB, the bremsstrahlung production rate is expected to be the dominant contribution
given the abundance of nucleons and the strong nature of nuclear interactions. In this article we calculate this production rate
using the soft-radiation theorem and obtain a model independent estimate, related directly to the nucleon-nucleon elastic
scattering data. A similar method was used in earlier work in [4] to estimate low energy neutrino and axion production
and in [17] to estimate the rate of production of Kaluza-Kelin gravitons and dilatons from nucleon-nucleon bremsstrahlung.
Here we present for the first time a calculation of the rate of emission of the LVB “B which couples to baryon number from
nucleon-nucleon bremsstrahlung. Our calculation of the bremsstrahlung production of dark photons predicts a rate that is
about a factor 10 smaller than that predicted in Ref. [7]. We trace this di�erence to an overly simplified treatment of the
nucleon-nucleon interaction based on one-pion-exchange, and the use of the Born approximation for strong interactions.

In section II we review the well known result for soft bremsstrahlung radiation and outline the calculation for the emissivity
of LVBs from the supernova core in this limit. We discuss the elastic neutron-neutron, proton-proton and neutron-proton
cross-sections and use experimental data to compute the emissivities in section III. In section IV we derive constraints on ‘B

and revise earlier constraints on ‘Q. Here we also discuss sources of opacity for LVBs that can suppress cooling arising from
inverse bremsstrahlung process, Compton scattering, and decay into electron–positron pairs.

II. NUCLEON-NUCLEON BREMSSTRAHLUNG IN THE SOFT LIMIT

We begin by briefly reviewing nucleon-nucleon bremsstrahlung in the soft limit where the energy radiated is small compared
to the energy associated with nucleon-nucleon interaction. It is well known that the amplitude for bremsstrahlung production
of particles can be related to the elastic scattering cross-section when expanded in powers of the energy Ê, carried away by
the radiated particles[18]. The amplitude for a generic bremsstrahlung process XY æ XY “ can be written as

MXY æXY “ = A(Ecm)
Ê

+ B(Ecm) + O(Ê) , (2)

where A(Ecm) and B(Ecm) are related directly to the elastic XY æ XY cross-section without radiation in the final state.
This result, called Low’s soft-photon theorem for bremsstrahlung was first derived by F. E. Low [19] and has been used to
study neutron-proton and proton-proton bremsstrahlung reactions since the pioneering work of [20, 21]. Calculations of the
bremsstrahlung rate in which only terms arising from on-shell elastic amplitudes A(Ecm) and B(Ecm) is generally referred
to as the soft-photon approximation or the soft radiation approximation (SRA).

The Feynman diagrams that contribute in the SRA are shown in Fig. 1. Here nucleons are represented by solid lines,
the LVB as the wavy-photon lines and the shaded circle represents the nucleon-nucleon interaction which contains both the
long-distance component arising from pion-exchanges and all of the e�ects of the short-distance components that contribute
to nucleon-nucleon scattering. The amplitude for the reaction pp æ pp“ is obtained by summing diagrams (a), (b), (c) and
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FIG. 1. Diagrams in which radiation denoted by the wavy-line attaches to the external nucleon legs (solid lines) dominates in the
low energy limit. The grey blob represents the anti-symmetrized nucleon-nucleon potential and contains both the direct and exchange
contributions.

(d), while for the reaction np æ np“ only two of these diagrams contribute in which the photon couples only to the proton at
leading order in this expansion. The four momenta of the initial state nucleons is denoted P1 and P2, and by P3 and P4 in the
final state. K = (Ê, k̨) is the four momentum of the radiated quanta and ‘µ is its polarization. These diagrams dominate at
small Ê because the intermediate nucleon is close to being on-shell and makes a contribution to the bremsstrahlung amplitude
at order Ê≠1. In this limit, when the energy radiated is small compared to Ecm of the nucleon pair, the unpolarized di�erential

Nucleon-nucleon Bremsstrahlung 
dominant production mechanism: 

Soft radiation or Low’s theorem for photon Bremsstrahlung 
can be used to estimate these rates in hot and dense matter. 

Rrapaj and Reddy  (2016)
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Figure 7. Systematic uncertainties (green region) encompassing our “robustly excluded zone” (blue).
The true boundary likely lies somewhere in the green region; we show our fiducial profile as the dotted
black line. The blue area is excluded regardless of the perturbations we make to the physical inputs. We
compare to bounds from other stars [17], decays to three photons on cosmological timescales [51, 52],
and beam dumps, meson decays, and other terrestrial experiments [4]. The comparison of the electron
anomalous magnetic moment in two di↵erent systems is shown in the hatched region, which has not
previously been shown in this mass range.

this model and rescale by the abundance from resonant production in the early Universe [51],

we obtain the lower bound of this region. Requiring ⌧  1 sec so that decays do not inter-

rupt nucleosynthesis gives the upper line of this gray region [51]. We caution that threshold
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nucleon bremsstrahlung reactions in the soft radiation limit directly in terms of the measured
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ergs of the neutron star. The time scale associated with this intense neutrino emission is determined by neutrino di�usion in
the hot and dense core of the newly born neutron star called the proto-neutron star[1]. During this phase, the emission of
other weakly interacting particles, were they to exist, could sap energy from the core and reduce the number and time scale
over which neutrinos would be detectable. This allows one to extract useful constraints on the coupling of these hypothetical
particles for masses up to about 200 MeV from the neutrino signal observed from SN87a. Now widely referred to as the
supernova cooling constraint [2], it has provided stringent constraints on the properties of QCD axions [3], the size of large
gravity-only extra-dimensions into which light Kaluza-Klein gravitons could be radiated [4, 5], light supersymmetric particles
such as neutralinos [6], and more recently on the properties of dark photons [7–9].

Observations of galaxy rotation curves, the motion of galaxies in clusters, gravitational lensing, and the remarkable success
of the �CDM model of the early universe (see Ref. [10] for a pedagogic review), combined with the direct empirical evidence
from the bullet cluster [11] indicates the existence of dark matter (DM) which interacts with ordinary matter through
gravitational interactions. This has spurred much recent research in particle physics and a plethora of DM models have been
proposed that also naturally predict non-gravitational interactions. In a class of these models, DM is part of neutral hidden
sector which interacts with standard model (SM) particles through the exchange of light vector bosons (LVBs) that couple
to SM conserved currents [12–15]. Here, DM is charged under a local U(1) and from a phenomenological perspective, it is
convenient to consider two possibilities. One in which the mediator couples to the SM electric charge Q, called the dark
photon “Q and is described by the spin-one field AÕ

µ. The other in which the mediator couples only to baryon number, which
is sometimes referred to as the leptophobic gauge boson “B and is described by the field Bµ.

At low energy it su�ces to consider minimal coupling of the LVBs to charge and baryon number described by the lagrangian
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which also includes mass terms for the gauge bosons. Of the two LVBs, the dark photon has been studied extensively and is
usually discussed as arising from kinetic mixing of a dark sector gauge boson with the photon [16]. This mixing is described
by the term ‘QF Õ

µ‹F µ‹ in the low energy lagrangian where F µ‹ and F Õ
µ‹ are the field tensors associated with the ordinary

photon field and dark photon field, respectively. The Yukawa coupling in Eq. 1 gQ = ‘Qe where e =
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When the mass of the LVBs is less than or comparable to few times TSN ƒ 30 MeV, the temperature encountered
in the supernova core, they can be produced copiously through nucleon-nucleon bremsstrahlung and electron-position pair-
annihilation reactions. For both types of LVB, the bremsstrahlung production rate is expected to be the dominant contribution
given the abundance of nucleons and the strong nature of nuclear interactions. In this article we calculate this production rate
using the soft-radiation theorem and obtain a model independent estimate, related directly to the nucleon-nucleon elastic
scattering data. A similar method was used in earlier work in [4] to estimate low energy neutrino and axion production
and in [17] to estimate the rate of production of Kaluza-Kelin gravitons and dilatons from nucleon-nucleon bremsstrahlung.
Here we present for the first time a calculation of the rate of emission of the LVB “B which couples to baryon number from
nucleon-nucleon bremsstrahlung. Our calculation of the bremsstrahlung production of dark photons predicts a rate that is
about a factor 10 smaller than that predicted in Ref. [7]. We trace this di�erence to an overly simplified treatment of the
nucleon-nucleon interaction based on one-pion-exchange, and the use of the Born approximation for strong interactions.

In section II we review the well known result for soft bremsstrahlung radiation and outline the calculation for the emissivity
of LVBs from the supernova core in this limit. We discuss the elastic neutron-neutron, proton-proton and neutron-proton
cross-sections and use experimental data to compute the emissivities in section III. In section IV we derive constraints on ‘B

and revise earlier constraints on ‘Q. Here we also discuss sources of opacity for LVBs that can suppress cooling arising from
inverse bremsstrahlung process, Compton scattering, and decay into electron–positron pairs.

II. NUCLEON-NUCLEON BREMSSTRAHLUNG IN THE SOFT LIMIT

We begin by briefly reviewing nucleon-nucleon bremsstrahlung in the soft limit where the energy radiated is small compared
to the energy associated with nucleon-nucleon interaction. It is well known that the amplitude for bremsstrahlung production
of particles can be related to the elastic scattering cross-section when expanded in powers of the energy Ê, carried away by
the radiated particles[18]. The amplitude for a generic bremsstrahlung process XY æ XY “ can be written as

MXY æXY “ = A(Ecm)
Ê

+ B(Ecm) + O(Ê) , (2)

where A(Ecm) and B(Ecm) are related directly to the elastic XY æ XY cross-section without radiation in the final state.
This result, called Low’s soft-photon theorem for bremsstrahlung was first derived by F. E. Low [19] and has been used to
study neutron-proton and proton-proton bremsstrahlung reactions since the pioneering work of [20, 21]. Calculations of the
bremsstrahlung rate in which only terms arising from on-shell elastic amplitudes A(Ecm) and B(Ecm) is generally referred
to as the soft-photon approximation or the soft radiation approximation (SRA).

The Feynman diagrams that contribute in the SRA are shown in Fig. 1. Here nucleons are represented by solid lines,
the LVB as the wavy-photon lines and the shaded circle represents the nucleon-nucleon interaction which contains both the
long-distance component arising from pion-exchanges and all of the e�ects of the short-distance components that contribute
to nucleon-nucleon scattering. The amplitude for the reaction pp æ pp“ is obtained by summing diagrams (a), (b), (c) and

K
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P4P2
K

P2

P1 P3

P4
P4

P3

K
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P1
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FIG. 1. Diagrams in which radiation denoted by the wavy-line attaches to the external nucleon legs (solid lines) dominates in the
low energy limit. The grey blob represents the anti-symmetrized nucleon-nucleon potential and contains both the direct and exchange
contributions.

(d), while for the reaction np æ np“ only two of these diagrams contribute in which the photon couples only to the proton at
leading order in this expansion. The four momenta of the initial state nucleons is denoted P1 and P2, and by P3 and P4 in the
final state. K = (Ê, k̨) is the four momentum of the radiated quanta and ‘µ is its polarization. These diagrams dominate at
small Ê because the intermediate nucleon is close to being on-shell and makes a contribution to the bremsstrahlung amplitude
at order Ê≠1. In this limit, when the energy radiated is small compared to Ecm of the nucleon pair, the unpolarized di�erential

Nucleon-nucleon Bremsstrahlung 
dominant production mechanism: 

Soft radiation or Low’s theorem for photon Bremsstrahlung 
can be used to estimate these rates in hot and dense matter. 

Rrapaj and Reddy  (2016)

Effective coupling in the plasma is resonantly enhanced 
when dark photon mass ~ plasma frequency. 
An, Pospelov, Pradler (2013)
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First, we determine the SN87a constraints on “B , which is the leptophobic LVB that couples to baryon number. The total
energy loss rate per gram due to “B radiation is

ĖB(fl, T, Yp) = (‘̇npænp“B + ‘̇nnænn“B + ‘̇ppæpp“B )/fl , (21)

where fl is the matter mass density, T is the temperature and Yp = np/(nn + np) is the fraction of protons. As already noted
we choose fl = 3 ◊ 1014 g/cm3, T = TSN = 30 MeV and we set the proton fraction Yp = 0.3 to reflect typical conditions
encountered in proto-neutron star simulations[26, 27].

In Fig. 5 we show the constraint on the coupling strength defined as –B = ‘2
B–em where –em = 1/137 is the fine structure

constant. We have opted to work with –B rather ‘B because this is widely used in the context of discussing LVBs that couple
to baryon number. The solid blue curve is obtained by setting ĖB(fl = 3◊1014 g/cm3, T = 30 MeV, Yp = 0.3) = 1019 erg/g/s
and solving for ‘B for a range of LVB masses mB = 1 eV ≠ 200 MeV. For value of –B larger than those defined by the blue
curve the supernova would cool too rapidly to produce the neutrino events detected from SN87a. For lighter masses when
mB π 1 eV the exchange of the LVB leads to macroscopic forces, collectively referred as fifth forces, and have been probed
by a host experiments (for a review see Ref. [28]). These have strongly constrained –B to values that are several orders of
magnitude smaller than can be accessed by the SN cooling constraint. At intermediate values in the range mB ƒ few eV≠MeV
neutron scattering and neutron optics provide the strongest experimental constraints [29, 30] and these are also shown in
Fig. 5.
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SRA: Cooling
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Neutron Optics [Leeb et al. 1992]
Neutron Scattering [Barbieri & Ericson, 1975]

SN87a Excluded Region

FIG. 5. Cooling and trapping constraints in the parameter space of the LVB that couples to baryon number. The solid blue line is the
lower limit set by cooling, and the dashed blue line is the upper limit set by trapping. Experimental constraints derived from neutron
scattering from Ref. [29] (black dot-dashed curve) and from neutron optics from Ref. [30] (red dashed curve) are also shown.

While it is remarkable that the SN cooling constraint in Fig. 5 is several orders of magnitude more stringent than the
experimental constraints it relies on the assumption that once produced the LVBs can free stream out of the proto-neutron
star. Clearly this will not be true for large values of the coupling –B . At these larger values of –B LVBs will be trapped in
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We calculate the rate of production of hypothetical light vector bosons (LVBs) from nucleon-
nucleon bremsstrahlung reactions in the soft radiation limit directly in terms of the measured
nucleon-nucleon elastic cross sections. We use these results and the observation of neutrinos from
supernova SN1987a to deduce constraints on the couplings of vector bosons with masses . 200 MeV
to either electric charge (dark photons) or to baryon number. We establish for the first time strong
constraints on LVB that couple only to baryon number, and revise earlier constraints on the dark
photon. For the latter, we find that the excluded region of parameter space is diminished by about
a factor of 10.

I. INTRODUCTION

The detection of about 20 neutrinos over about 10 seconds from supernova SN87a confirmed in broad-brush the paradigm
for core-collapse supernova in which the neutrinos carry away the bulk of the gravitational binding energy ƒ 3 ≠ 5 ◊ 1053

ergs of the neutron star. The time scale associated with this intense neutrino emission is determined by neutrino di�usion in
the hot and dense core of the newly born neutron star called the proto-neutron star[1]. During this phase, the emission of
other weakly interacting particles, were they to exist, could sap energy from the core and reduce the number and time scale
over which neutrinos would be detectable. This allows one to extract useful constraints on the coupling of these hypothetical
particles for masses up to about 200 MeV from the neutrino signal observed from SN87a. Now widely referred to as the
supernova cooling constraint [2], it has provided stringent constraints on the properties of QCD axions [3], the size of large
gravity-only extra-dimensions into which light Kaluza-Klein gravitons could be radiated [4, 5], light supersymmetric particles
such as neutralinos [6], and more recently on the properties of dark photons [7–9].

Observations of galaxy rotation curves, the motion of galaxies in clusters, gravitational lensing, and the remarkable success
of the �CDM model of the early universe (see Ref. [10] for a pedagogic review), combined with the direct empirical evidence
from the bullet cluster [11] indicates the existence of dark matter (DM) which interacts with ordinary matter through
gravitational interactions. This has spurred much recent research in particle physics and a plethora of DM models have been
proposed that also naturally predict non-gravitational interactions. In a class of these models, DM is part of neutral hidden
sector which interacts with standard model (SM) particles through the exchange of light vector bosons (LVBs) that couple
to SM conserved currents [12–15]. Here, DM is charged under a local U(1) and from a phenomenological perspective, it is
convenient to consider two possibilities. One in which the mediator couples to the SM electric charge Q, called the dark
photon “Q and is described by the spin-one field AÕ

µ. The other in which the mediator couples only to baryon number, which
is sometimes referred to as the leptophobic gauge boson “B and is described by the field Bµ.

At low energy it su�ces to consider minimal coupling of the LVBs to charge and baryon number described by the lagrangian

L ∏ gQAÕ
µJEM

µ + gBBµJB
µ ≠

1
2m2

“Q
AÕ

µAÕµ
≠

1
2m2

“B
BµBµ , (1)

which also includes mass terms for the gauge bosons. Of the two LVBs, the dark photon has been studied extensively and is
usually discussed as arising from kinetic mixing of a dark sector gauge boson with the photon [16]. This mixing is described
by the term ‘QF Õ

µ‹F µ‹ in the low energy lagrangian where F µ‹ and F Õ
µ‹ are the field tensors associated with the ordinary

photon field and dark photon field, respectively. The Yukawa coupling in Eq. 1 gQ = ‘Qe where e =
Ô

4fi–em is the electric
charge. To simplify notation, and for later convenience, we shall also introduce the parameter ‘B and write the Yukawa
coupling of leptophobic gauge boson as gB = ‘Be.

ú ermalrrapaj@gmail.com
† sareddy@uw.edu
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• Nucleon-nucleon bremsstrahlung is the 
dominant  production channel.  

• Quadrupolar radiation is modestly 
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Axions 
Introduced to solve the strong CP problem in QCD.  

Couples to photons:   

Couples to fermions (quarks and leptons):   

ℒagg =
g2

32π2

a
fa

GμνG̃μν

Axion mass in QCD:   



Axion Production in NSs  

For conserved currents  [Tnn,Γµ(q)] ∝
q

M
- radiation needs acceleration 

The axion emissivity  (energy radiated/unit volume/unit time)   Ea =
C2

i

48π2 f2
a

∫
dω ω4 Sσ(ω)

Axions couple to the nucleon spin.
Nuclear interactions do not conserve 
nucleon spin due to strong tensor and 
spin-orbit interactions.    

[Tnn,Γµ(q → 0)] ̸= 0 Radiation without acceleration. 
Driven by spin flips due to tensor 
interactions.  

Sσ(ω) =

∫

[

∏

i=1..4

d3pi

(2π)3

]

(2π)4δ3(p1 + p2 − p3 − p4)

δ(E1 + E2 − E3 − E4 − ω) F
1

s
Hii , (7)

which is called the dynamical spin structure function of
the medium. It is related to the νν̄ emissivity via:

Eνν̄ =
G2

F c2
a

16π4

1

30

∫

dω ω6 Sσ(ω) , (8)

where ω is the total energy of the emitted νν̄ pair.
In the two-body approximation considered here we

evaluate Hii using Eqs. (3) and (5). For the case of
emission from the nn system, only the spin-triplet two-
nucleon state contributes, and the trace is:

Hii = 16
1

ω2

∑

MsM ′

s

|⟨1M ′
s,p

′| [Si,TNN ] |p, 1Ms⟩|
2
, (9)

where Si is the total spin of the two-nucleon system. It is
straightforward to generalize this formula for Hii to the
np case, although the NN spin singlet then contributes.
(The np case, and the failure of the OPE approximation
there, is discussed in Ref. [13].) From Eqs. (9) and (7)
we can calculate Sσ, and thus the νν̄ emissivity.

The emission of any radiation which couples to the
nucleon spin will be described by the same function Sσ.
Thus, as mentioned above, with Sσ in hand we may de-
rive the axion emissivity Ea. The effective theory for
axion-nucleon interactions is described by the Lagrange
density Lann = −gann aN̄γ5N , where a is the axion field,
and gann = 10−8(ma/1 eV) is the effective axion coupling
(ma is the axion mass) [14]. The calculation of the ax-
ion emissivity in this effective theory is analogous to the
above calculation of the neutrino emissivity, and yields

Ea =
g2
ann

16π2M2

1

3

∫

dω ω4 Sσ(ω) . (10)

Before proceeding to our results we note that Sσ can
be defined in a much more general way, where it describes
the response of a many-body system to an external spin-
dependent perturbation. Equations (8) and (10) remain
true if this definition is adopted. To obtain Eq. (7) for Sσ

in this general case one takes the long-wavelength limit
of the leading term in the density expansion.

Results & Discussion: We present results for the dy-
namic spin structure function Sσ(ω), since it includes
the density, temperature, and nuclear dynamics depen-
dence of the neutrino and axion emissivities. During the
evolution of neutron stars, one encounters varying de-
grees of nucleon degeneracy, with µn/T ∼ 1 at birth, but
µn/T ≫ 10 at late times. Earlier investigations have
shown that analytic approximations to the phase-space
integrals in Eq. (7) work poorly at intermediate degen-
eracy [11]. Therefore, in this work these integrals are

all performed numerically. In order to investigate the
effect of our model-independent treatment of the NN in-
teraction we plot the ratio Rσ(ω) ≡ SSNA

σ (ω)/Sref
σ (ω),

where SSNA
σ (ω) is calculated as described above. The

denominator, Sref
σ (ω), is the dynamic spin structure func-

tion found when a hadronic tensor trace of the form
Hii = c/ω2 is inserted into Eq. (7). We adjust the con-
stant c so that when Sref

σ is employed in Eq. (8) the neu-
trino emissivity thereby obtained is equal to that found if
the full OPE matrix element is used in evaluating Hii

3.
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FIG. 2. A plot showing the ratio Rσ = SSNA
σ /Sref

σ for nn
pairs in neutron matter at a density of 0.16 fm−3. The region
where multiple scattering suppression due to the LPM effect
is negligible (ω > γ, see below), and the SNA is expected to
be valid (ω < mπ) is delineated by thicker curves. The regions
probed by the neutrino and axion emissivities are different,
as indicated on the plot.

Figure 2 shows the resulting ratio Rσ(ω) for neutron
matter at a range of temperatures and a baryon density
equal to the nuclear saturation density. The results are
plotted as a function of the dimensionless ratio ω/T (note
Sσ(ω) has significant strength only for ω/T <∼ 15).

The most striking feature of the results is that the one-
pion-exchange approximation significantly overestimates
the rate for neutrino (or axion) production. The large re-
duction in the response functions over those obtained in
the OPE approximation occurs for two reasons. Firstly,
one-pion exchange over-estimates the strength of the NN
tensor force, and so even replacing the VOPE employed
previously with the full VNN would lead to a reduction
in Sσ. Secondly, the unitarity of our NN T-matrix leads
to an NN amplitude which is, in general, significantly
smaller than that found in the OPE approximation, and

3We could have followed Refs. [8,11] and adopted a reference
Sσ(ω) in which the full OPE-approximation matrix element
is replaced by its value in the mπ → 0 limit. However, this
is a poor approximation to the actual result for one-pion ex-
change, since it over-estimates the OPE-approximation emis-
sivities by as much as a factor of two (see also Refs. [6,11]).
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FIG. 2. A plot showing the ratio Rσ = SSNA
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is negligible (ω > γ, see below), and the SNA is expected to
be valid (ω < mπ) is delineated by thicker curves. The regions
probed by the neutrino and axion emissivities are different,
as indicated on the plot.

Figure 2 shows the resulting ratio Rσ(ω) for neutron
matter at a range of temperatures and a baryon density
equal to the nuclear saturation density. The results are
plotted as a function of the dimensionless ratio ω/T (note
Sσ(ω) has significant strength only for ω/T <∼ 15).
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previously with the full VNN would lead to a reduction
in Sσ. Secondly, the unitarity of our NN T-matrix leads
to an NN amplitude which is, in general, significantly
smaller than that found in the OPE approximation, and
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matter at a range of temperatures and a baryon density
equal to the nuclear saturation density. The results are
plotted as a function of the dimensionless ratio ω/T (note
Sσ(ω) has significant strength only for ω/T <∼ 15).

The most striking feature of the results is that the one-
pion-exchange approximation significantly overestimates
the rate for neutrino (or axion) production. The large re-
duction in the response functions over those obtained in
the OPE approximation occurs for two reasons. Firstly,
one-pion exchange over-estimates the strength of the NN
tensor force, and so even replacing the VOPE employed
previously with the full VNN would lead to a reduction
in Sσ. Secondly, the unitarity of our NN T-matrix leads
to an NN amplitude which is, in general, significantly
smaller than that found in the OPE approximation, and

3We could have followed Refs. [8,11] and adopted a reference
Sσ(ω) in which the full OPE-approximation matrix element
is replaced by its value in the mπ → 0 limit. However, this
is a poor approximation to the actual result for one-pion ex-
change, since it over-estimates the OPE-approximation emis-
sivities by as much as a factor of two (see also Refs. [6,11]).

3

itly calculating the emissivity due to NN → NNνν̄. The
νν̄ coupling to non-relativistic baryons at low energies is
given by the Lagrange density

LW = −
GF

2
√

2
lµ N † (cvδµ,0 − caδµ,iσi)N , (2)

where lµ = ν̄γµ(1 − γ5)ν is the leptonic current, GF =
1.166×10−5 GeV−2, N is the nucleon field, and cv and ca

are the nucleon neutral-current vector and axial-vector
coupling constants. Some Feynman diagrams for the
bremsstrahlung process are shown in Fig. 1.
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FIG. 1. Feynman diagrams for the bremsstrahlung process.
The radiation is represented by the dashed line, and nucleons
by solid lines. TNN is the NN transition matrix and J(2)

µ5 is
a two-body axial current.

The incoming (outgoing) nucleon momenta are labeled
p1,p2 (p3,p4). The dashed line represents radiation—
a neutrino-anti-neutrino pair in this case—which carries
energy ω and momentum q. In general we are interested
in cases where the radiated energy is small compared
to the incoming nucleon energy. In the limit ω → 0 the
amplitudes corresponding to diagrams (a) and (b) in Fig.
1 are dominant, as they contain pieces proportional to
1/ω. On the other hand, the contributions from the re-
scattering diagram Fig. 1(c), and from meson-exchange
currents such as Fig. 1(d), remain finite in the ω → 0
limit. Thus, for the reaction nn → nnνν̄ the matrix
element can be written as

M = 2
GF

2
√

2

1

ω
lµ⟨p′|[TNN , Γµ]|p⟩ + O(ω0) , (3)

where p (p′) is the initial (final) relative momentum of
the two-nucleon system. We refer to results which retain
only this leading term, of O(ω−1), in M as “true in the
soft-neutrino approximation (SNA)”. In general the NN
T-matrix appearing in Eq. (3), TNN , will be half off-
shell 1. But, in the SNA we can take TNN to be the on-

1As used here, it should involve a sum over the allowed
partial-waves of the NN system. This, together with the
factor of two in front of the matrix element, accounts for the
exchange graphs which must be included in M.

shell NN amplitude. We can also neglect the difference
between the magnitude of the initial and final-state rela-
tive momenta. We expect these approximations to break
down when ω ∼ mπ, since mπ sets the scale for varia-
tions of TNN in the off-shell direction 2. So, in the SNA,
the NN interaction is described by the on-shell T-matrix
TNN , evaluated at a center-of-mass energy which, for
reasons of symmetry, is chosen to be (p2 +p′2)/(2M) (M
is the nucleon mass). This T-matrix can be constructed
from phase shifts deduced from NN scattering data [12].
Note that the OPE approximation used in most previous
calculations involves substituting VOPE , the one-pion-
exchange potential, for TNN in Eq. (3). Meanwhile, Γµ

is the vertex which couples the radiation to the nucleons.
For νν̄ radiation Γµ follows straight from Eq. (2). Only
its three-vector part contributes to M at O(ω−1). Equa-
tion (3) then gives us a model-independent result for M,
which is correct in the SNA.

If only two-body collisions are taken into account then
the neutrino emissivity from a neutron gas is given by
Fermi’s golden rule

Eνν̄ =

∫

d3q1

(2π)32ω1

d3q2

(2π)32ω2
(2π)4δ(Ein − Efn)

ω δ3(pin − pfn)

∫

[

∏

i=1..4

d3pi

(2π)3

]

F
1

s

∑

spin

|M|2 , (4)

where F = f1f2(1 − f3)(1 − f4), with fi = 1/(1 +
exp (Ei − µi)/T ) being the Fermi-Dirac distribution
function for the nucleons, and s = 4 the symmetry fac-
tor accounting for identical nucleons. The spin-summed
square of the matrix element can be factored into leptonic
and hadronic tensors, and then represented by

∑

spin

|M|2 =
G2

F c2
a

8
Tr (lilj) Hi,j . (5)

The trace over the lepton tensor is easily evaluated. Fur-
ther, since we are interested in soft radiation, we may
safely ignore q⃗ in the momentum delta function [3]. This
allows us to directly integrate the leptonic trace over neu-
trino angles to obtain

∫

dΩ1

∫

dΩ2Tr (lilj) = 8 (4π)2ω1ω2 δi,j . (6)

Therefore, only the trace of the hadronic tensor Hij con-
tributes to the emissivity, and so we define a scalar func-
tion,

2At very low relative momenta the scale of breakdown is set
by the NN scattering length, since that gives the variation in
the on-shell direction. However, aNN does not really play a
role here, since typical nucleon momenta in neutron stars are
at least 100 MeV.

2

Hanhart, Phillips & Reddy (2001)
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Figure 2: Exclusion ranges as described in the text.
The dark intervals are the approximate CAST and
ADMX search ranges, with green regions indicating the
planned reach of future upgrades. Limits on coupling
strengths are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the coupling
strengths. The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or variant
axions. The “Globular Clusters” and “White Dwarfs”
ranges uses the DFSZ model with an axion-electron
coupling corresponding to cos2 β = 1/2. The Cold Dark
Matter exclusion range is particularly uncertain; ranges
for pre-inflation and post-inflation Peccei-Quinn transi-
tions are shown. Figure adapted from [49].
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If CDOs exist, capture by neutron stars in our galaxy would produce 
detectable gravitational waves during final inspiral. 
Common-envelope phase with frequency of the GW emission set by the 
neutron star core density can last for hours. 

3

FIG. 1. (Color online) Orbital radius r in units of the NS
radius RNS (blue dashed curve), gravitational wave frequency
fGW (red curve, in kHz), and GW strain h0 (solid black curve,
arbitrarily scaled) for a mD = 10�3M� dark matter object
in a circular orbit around, and then in, a NS of radius 12 km
and mass 1.4 M� as a function time t. For t > 0 the orbit of
the dark object resides inside the NS.

For times t < 0, in Fig. 1, the object is outside the NS
and one has a normal chirp where fGW and h0 increase
with time. Then when r = RNS at t = 0 the character of
the evolution changes so that h0 starts to decrease and
the evolution of fGW with time depends on the density
profile of the NS. If the density inside the NS was assumed
to be constant, fGW = 2⌫c would also be constant. As
noted earlier, we have chosen a simple but realistic ansatz
for the density profile, and this is reflected in the time
dependence of fGW . The maximum value of h0 in Fig. 1
occurs when r = RNS and is given by Eq. 8

hmax
0 = 3.3⇥ 10�17

�mD

M�

�� RNS

12 km

�2� fGW

3.3 kHz

�2�kpc
d

�
.

(10)
The characteristic lifetime T ⇤ is given by Eq. 6 with r =
RNS ,

T ⇤ = 1.7ms
�M�
mD

��12 km
RNS

�2�3.3 kHz

fGW

�4
. (11)

For Fig. 1 with mD = 10�3 M� the peak in h0 has a
width T ⇤ ⇡ 1.7 s.

We emphasize the extraordinary information that
might be contained in a single observation similar to
Fig. 1. The small chirp mass by itself, if less than the
⇡ 0.1M� minimum mass of a NS, implies the presence

of an exotic compact object as NSs below this mass are
not bound. Possibilities include self bound QCD matter
(presumably strange matter), primordial black holes, or
an object of dark matter. Self-bound QCD matter will
interact strongly with the NS and lead to an h0 that, af-
ter the peak, is likely much smaller than what is shown
in Fig. 1. It may be possible to distinguish between CDO
that are primordial black holes (PBH) and those that are
not because, as we discuss later, a PBH that merges with
a NS will accrete matter and eventually cause the NS to
collapse, and this collapse may be observable in GW. Al-
ternatively, the merger of a PBH with a stellar mass BH
will have a GW signal that fades away more rapidly after
the merger than the signal from a non-BH CDO merg-
ing with a NS. Finally, the post merger frequency of the
GW signal provides direct information about the density
profile of the NS (and thus the equation of state).
The detectability of a nearly continuous GW signal

may depend primarily upon the amplitude hmax
0 and

somewhat on the observation time Tobs. If one could
coherently integrate the signal over a full time Tobs the

signal to noise ratio might improve with T 1/2
obs . In practise

this could be computationally too expensive and a com-
putationally easier, but somewhat less sensitive search
would be employed.
For simplicity, we discuss the detectability of a signal

in terms of the sensitivity depth D of a search that is
necessary for detection [21–23]. The sensitivity depth D
is defined as the square root of the noise amplitude spec-
tral density

p
Sn(fGW ) divided by the strain amplitude

h0 (see Eq. 22 of ref. [21]),

D(fGW ) =

p
Sn(fGW )

h0
. (12)

The lower the value of D the easier it is to find a sig-
nal. Advanced LIGO, at target sensitivity, may havep
Sn(3 kHz) ⇡ 3 ⇥ 10�23 Hz�1/2 [24, 25]. Note that

LIGO has not yet reached this sensitivity but increasing
the laser power and the use of squeezed light [26] should
reduce

p
Sn(f) at these high frequencies. Using this sen-

sitivity and hmax
0 from Eq. 10 we have,

D(3.3 kHz) ⇡ 9.1⇥ 10�7 Hz�1/2
⇣M�
mD

⌘⇣ d

kpc

⌘
. (13)

As a rough guide, a signal could likely be found if D < 50
Hz�1/2 [23]. This suggests a sensitivity to CDO masses
larger than,

mD > 1.8⇥ 10�8M� , (14)

at a distance of 1 kpc or mD > 1.8⇥ 10�7M� at 10 kpc.
Thus LIGO is potentially sensitive to very small CDO
masses much less than a solar mass.
We now consider small amplitude motion of dark mat-

ter objects in a NS with r ⌧ RNS . For example, a dark

νc =
Gρc

3π
≃ 2.7 ( ρc

1015 g/cm3 )
1/2

kHz
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Dark Rattles: Perturbations of a neutron star (for eg. kicks during the 
supernova) with a CDO inside would produce detectable GWs if energy   
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FIG. 1: Exclusion regions of the asymmetric bosonic dark
matter as a function of the WIMP mass and the WIMP-
nucleon cross section for an isolated neutron star at local DM
density ⇢dm = 0.3GeV/cm3 (such as J0437-4715 and J0108-
1431) and for a neutron star in the core of a globular cluster
with ⇢dm = 103GeV/cm3.

m > 2 keV [6]. If the accreted dark matter mass within
a billion years Macc is larger than Mcrit of Eqs. (2), and
(7), (9), and (11) are satisfied, the WIMPs form a black
hole that can destroy the star. There are some subtle is-
sues regarding how fast the black hole consumes the star
that have been addressed to some extend in [6]. The con-
straints on asymmetric bosonic dark matter are depicted
in Fig. 1. As it can be seen, depending on the WIMP-
nucleon cross section, WIMP candidates from 100 keV up
to roughly 16 GeV are severely constrained by the exis-
tence of nearby old neutron stars. The constrained region
is bound at 100 keV due to the fact that below that mass
accretion is not su⇥cient to acquire Mcrit from Eq. (2).
These constraints can be enlarged down to 2 keV (the
limit from WIMP evaporation we mentioned before) as
long as we consider old neutron stars in globular clusters
with ⇥dm & 30 GeV/cm3.

Now we can consider the case where the WIMP mass
is larger than 10 TeV and therefore self-gravitation of
the WIMP sphere happens before BEC formation. As
we mentioned above, black holes of critical mass (2) with
WIMP masses roughly larger than ⇥ 16 GeV, do not
survive due to Hawking radiation. Therefore one should
expect that black holes of Mcrit (of Eq. (2)) formed out
of 10 TeV WIMPs (or heavier) would evaporate quite
fast. However, since self-gravitation takes place before
BEC, and the self-gravitating mass of Eq. (6) for m > 10
TeV is much larger than the crucial mass for the survival
of the black hole of Eq. (11), there were speculations in
the literature [7, 9, 10] that constraints can be imposed
also for m > 10 TeV. The claim was that instead of
forming a black hole of Mcrit that is below the surviving
threshold for Hawking radiation, a much larger black hole
coming from the collapse of the self-gravitating WIMP
sphere Msg forms, that due to its larger mass can grow

and destroy the star, thus imposing constraints on this
part of the parameter space of asymmetric bosonic dark
matter. However we review here the argument that was
put forward in [23] that demonstrates that the formation
of smaller (non-surviving) black holes of mass Mcrit is
unavoidable and therefore the Msg instead of collapsing
to a single large black hole, it forms a series of black holes
of Mcrit that evaporate one after the other, thus resulting
to no constraint for WIMP masses with m > 10 TeV.

In order for the WIMP sphere to collapse,
the whole mass should be confined within the
Schwarzschild radius rs = 2GM of the black hole.
The density of WIMPs just before forming the
black hole would be nBH ⇥ 3(32�G3M2

sgm)�1 ⇥
1074 cm�3(GeV/m)(Msg/1040GeV)�2. It is easy to see
that this density is higher from the density required for
BEC formation of Eq. (7). This means that unless the
WIMP sphere collapses violently and rapidly, it should
pass from a density where BEC is formed. As the self-
gravitating WIMP sphere of mass Msg contracts, at some
point it will reach the density where BEC is formed. Any
further contraction of the WIMP sphere will not lead
to an increase in the density of the sphere. The density
remains that of BEC. The formation of BEC happens
on time scales of order [22] tBEC ⇥ ~/kBT ⇥ 10�16s,
i.e. practically instantaneously. Further shrinking of
the WIMP sphere results in increasing the mass of the
condensate rather than the density of non-condensed
WIMPs. This process happens at a time scale which is
determined by the cooling time of the WIMP sphere as
discussed below. As we shall show, this cooling time
is the relevant time scale for the BEC formation. As
in the previous case, the ground state will start being
populated with WIMPs which at some point will become
self-gravitating themselves. This of course will happen
not when Eq. (9) is satisfied. Eq. (9) was derived
as the WIMP ground state becomes denser than the
surrounding nuclear matter (since the dark matter that
is not in the ground state of the BEC is less dense).
Here, the condition is that the density of the ground
state of the BEC should be larger than the density of the
surrounding dark matter (that is already denser than
the nuclear matter at this point). The condition reads

MBEC, sg =
4�

3
nBECmr3BEC = 9.6�1021GeV

� m

10TeV

⇥�7/8
.

(12)
Once the BEC ground state obtains this mass, the ground
state starts collapsing within the collapsing WIMP
sphere. Any contraction of the WIMP sphere does not
change the density of the sphere but only the density
of the ground state. MBEC, sg is smaller than Mcrit and
therefore the BEC ground state cannot form a black hole
yet. However as the ground state gets populated at some
point it reaches the point where its mass is Mcrit and this
leads to the formation of a black hole of mass Mcrit and
not Msg. The evaporation time for such a black hole of
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FIG. 1: Exclusion regions of the asymmetric bosonic dark
matter as a function of the WIMP mass and the WIMP-
nucleon cross section for an isolated neutron star at local DM
density ⇢dm = 0.3GeV/cm3 (such as J0437-4715 and J0108-
1431) and for a neutron star in the core of a globular cluster
with ⇢dm = 103GeV/cm3.

m > 2 keV [6]. If the accreted dark matter mass within
a billion years Macc is larger than Mcrit of Eqs. (2), and
(7), (9), and (11) are satisfied, the WIMPs form a black
hole that can destroy the star. There are some subtle is-
sues regarding how fast the black hole consumes the star
that have been addressed to some extend in [6]. The con-
straints on asymmetric bosonic dark matter are depicted
in Fig. 1. As it can be seen, depending on the WIMP-
nucleon cross section, WIMP candidates from 100 keV up
to roughly 16 GeV are severely constrained by the exis-
tence of nearby old neutron stars. The constrained region
is bound at 100 keV due to the fact that below that mass
accretion is not su⇥cient to acquire Mcrit from Eq. (2).
These constraints can be enlarged down to 2 keV (the
limit from WIMP evaporation we mentioned before) as
long as we consider old neutron stars in globular clusters
with ⇥dm & 30 GeV/cm3.

Now we can consider the case where the WIMP mass
is larger than 10 TeV and therefore self-gravitation of
the WIMP sphere happens before BEC formation. As
we mentioned above, black holes of critical mass (2) with
WIMP masses roughly larger than ⇥ 16 GeV, do not
survive due to Hawking radiation. Therefore one should
expect that black holes of Mcrit (of Eq. (2)) formed out
of 10 TeV WIMPs (or heavier) would evaporate quite
fast. However, since self-gravitation takes place before
BEC, and the self-gravitating mass of Eq. (6) for m > 10
TeV is much larger than the crucial mass for the survival
of the black hole of Eq. (11), there were speculations in
the literature [7, 9, 10] that constraints can be imposed
also for m > 10 TeV. The claim was that instead of
forming a black hole of Mcrit that is below the surviving
threshold for Hawking radiation, a much larger black hole
coming from the collapse of the self-gravitating WIMP
sphere Msg forms, that due to its larger mass can grow

and destroy the star, thus imposing constraints on this
part of the parameter space of asymmetric bosonic dark
matter. However we review here the argument that was
put forward in [23] that demonstrates that the formation
of smaller (non-surviving) black holes of mass Mcrit is
unavoidable and therefore the Msg instead of collapsing
to a single large black hole, it forms a series of black holes
of Mcrit that evaporate one after the other, thus resulting
to no constraint for WIMP masses with m > 10 TeV.

In order for the WIMP sphere to collapse,
the whole mass should be confined within the
Schwarzschild radius rs = 2GM of the black hole.
The density of WIMPs just before forming the
black hole would be nBH ⇥ 3(32�G3M2

sgm)�1 ⇥
1074 cm�3(GeV/m)(Msg/1040GeV)�2. It is easy to see
that this density is higher from the density required for
BEC formation of Eq. (7). This means that unless the
WIMP sphere collapses violently and rapidly, it should
pass from a density where BEC is formed. As the self-
gravitating WIMP sphere of mass Msg contracts, at some
point it will reach the density where BEC is formed. Any
further contraction of the WIMP sphere will not lead
to an increase in the density of the sphere. The density
remains that of BEC. The formation of BEC happens
on time scales of order [22] tBEC ⇥ ~/kBT ⇥ 10�16s,
i.e. practically instantaneously. Further shrinking of
the WIMP sphere results in increasing the mass of the
condensate rather than the density of non-condensed
WIMPs. This process happens at a time scale which is
determined by the cooling time of the WIMP sphere as
discussed below. As we shall show, this cooling time
is the relevant time scale for the BEC formation. As
in the previous case, the ground state will start being
populated with WIMPs which at some point will become
self-gravitating themselves. This of course will happen
not when Eq. (9) is satisfied. Eq. (9) was derived
as the WIMP ground state becomes denser than the
surrounding nuclear matter (since the dark matter that
is not in the ground state of the BEC is less dense).
Here, the condition is that the density of the ground
state of the BEC should be larger than the density of the
surrounding dark matter (that is already denser than
the nuclear matter at this point). The condition reads

MBEC, sg =
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(12)
Once the BEC ground state obtains this mass, the ground
state starts collapsing within the collapsing WIMP
sphere. Any contraction of the WIMP sphere does not
change the density of the sphere but only the density
of the ground state. MBEC, sg is smaller than Mcrit and
therefore the BEC ground state cannot form a black hole
yet. However as the ground state gets populated at some
point it reaches the point where its mass is Mcrit and this
leads to the formation of a black hole of mass Mcrit and
not Msg. The evaporation time for such a black hole of
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