GW170817-like events: binary neutron stars or binary strange stars?

Ang Li 李昂 Department of Astronomy, Xiamen Univ. 厦门大学天文学系 liang@xmu.edu.cn

The 8th Huada School on QCD, CCNU, May 6-10 2019

Content

- Introduction of compact star in GW era
- Binary neutron star/strange star merger scenario for GW170817
- Future plans

Neutron star in multi-messenger/multi-scale era

- Finite nuclei (e.g., neutron skin width/isovector excitation/dipole polarizability)
- HIC (e.g., collective flow/transport/meson production);

- ★ PSR J1614-2230 (Demorest et al. 2010; Fonseca et al. 2016);
- ★ PSR J0348+0432 (Antoniadis et al. 2013);
- ★ MSP J0740+6620 (Cromartie et al. 2019);
- BH accretion disk, core-collapse SN, neutron star binary, etc

- Phase diagram at (T~0, μ≠0) is not achievable from HIC (experiment), LQCD (simulation) or pQCD (first-principle theory), but it is important for NS/QS:
 Model calculations.
- EOS uncertainty from QCD phase uncertainty and model uncertainty
 - Hyperon **puzzle**; $\Delta(1232)$ /hyperon/Kaon/quark **complication**
 - 1) Self-consistency from one nuclear force for core & crust; 2) High-density extrapolation

NS/QS two-branch picture?

Xia, Zhu, Zhou, AL*, to be submitted

GW170817

- GW
- Neutrino: none
- γ-ray: 1.7 s
- X-ray: 9 days +155 days?
- UV/Optical/IR (kilonova): 2 days
- Radio:16 days

First Cosmic Event Observed in Gravitational Waves and Light

GW signal

Pre-merger: Tidal deformability Post-merger: Hopefully O5 (202X) ?!

GW170817: GW signal

Finite size effects of NSs will alter the late inspiral GW signal;

• Dimensionless tidal deformability of each star, $\Lambda = \frac{2}{3}k_2(\frac{R}{M})^5$

Under different spin priors, assuming $\Lambda_{1,2}$ vary independently: Favor softer EoS;

• A combination of the tidal deformability for each star,

Assuming a uniform prior,
$$\tilde{\Lambda} = \frac{16}{13} \frac{(12q+1)\Lambda_1 + (12+q)q^4\Lambda_2}{(1+q)^5} \le 800 \text{ (low-spin case)}$$

 $\Lambda(1.4) \le 800 \text{ (low-spin case)}$ 190^{+390}_{-120}
LVC group, 2018 PRL

NS EOS in the light of GW170817: Systematic studies

NS EOS in the light of GW170817: Systematic studies

Supernovae

Heavy ion collision experiments

Observed properties of nuclear matter at saturation and beyond

Proto-neutron Neutron stars

stars

Binary mergers

Pulsar: $M_{TOV} \gtrsim 2.0$ GW: $A_{1.4} \lesssim 800$

NS EOS model from the quark level within QMF ($m_a \sim 300 \text{ MeV}$)

Step 1: Single nucleon

Zhu, Zhou & **AL*** 1802.05510, ApJ

$$\begin{aligned} \gamma^{0}(\epsilon_{q} - g_{\omega q}\omega - \tau_{3q}g_{\rho q}\rho) - \vec{\gamma} \cdot \vec{p} - (m_{q} - g_{\sigma q}\sigma) - U(r)]\psi_{q}(\vec{r}) &= 0 \\ U(r) &= \frac{1}{2}(1 + \gamma^{0})(ar^{2} + V_{0}) \quad V_{0} &= -62.257187 \text{ MeV} \\ a &= 0.534296 \text{ fm}^{-3} \end{aligned} \qquad \begin{vmatrix} M_{N} &= 939 \text{ MeV} \\ r_{N} &= 0.87 \text{ fm.} \end{aligned}$$

Step 2: Nucleon many-body system

$$\mathcal{L} = \overline{\psi} \left(i\gamma_{\mu} \partial^{\mu} - M_{N}^{*} - g_{\omega N} \omega \gamma^{0} - g_{\rho N} \rho \tau_{3} \gamma^{0} \right) \psi - \frac{1}{2} (\nabla \sigma)^{2} - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4} + \frac{1}{2} (\nabla \rho)^{2} + \frac{1}{2} m_{\rho}^{2} \rho^{2} + \frac{1}{2} (\nabla \omega)^{2} + \frac{1}{2} m_{\omega}^{2} \omega^{2} + \frac{1}{2} g_{\rho N}^{2} \rho^{2} \Lambda_{v} g_{\omega N}^{2} \omega^{2},$$

	L [MeV]	$[eV] \qquad g_{\sigma q}$		υq	$g_{ ho q}$	$g_2 [{\rm fm}^{-1}]$	g_3	$\overline{\Lambda}_v$
$K=240\pm20$ (Colo et al. 2014) $E_{sym}=31.6\pm2.66$ $L=58.9\pm16$	20	3.862036	6 2.917	74838 6	5.9588083	14.6179599	-66.3442468	1.1080665
	40	3.862036	6 2.917	74838 5	5.4129448	14.6179599	-66.3442468	0.7693664
	60 80	3.862036	6 2.917	74838 4	1.5830609	14.6179599	-66.3442468	0.4306662
		3.862036	6 2.917	74838 4	1.0459574	14.6179599	-66.3442468	0.0919661
			$ ho_0$	E/A	K	$E_{\rm sym}$	L	M_N^*/M_N
(Li & Han 2013)			$[{\rm fm}^{-3}]$	[MeV]	[MeV]	[MeV]	[MeV]	/
<i>L</i> ≳ 20 (Centelles et al. 2009)			0.16	-16	240	31	20/40/60/80	0.77
<i>L≲</i> 170 (Cozma 2013)		_					1 1 1	

NS EOS in the light of GW170817: Systematic studies

- CET(<1.1n₀)+pQCD(≥2.6GeV)
 ±24% uncertainty@1.1n₀
- Soft/hard hadronic component (0.6-1.1n₀; Hebeler et al. 2013): $\Lambda_{1.4}$ =(120/161, 1353/1504)
- $M_{TOV} \gtrsim 2.0$: $R_{1.4} > 9.9$ km $\Lambda_{1.4} \lesssim 800$: $R_{1.4} < 13.6$ km

Annala et al., 1711.02644, PRL

NS EOS in the light of GW170817: Systematic studies

Logarithm of the adiabatic index of the EoSs are treated as a polynomial of the pressure for the high density EoS,

 $R_1 = 11.9^{+1.4}_{-1.4} \text{ km}$

$$R_2 = 11.9^{+1.4}_{-1.4} \text{ km}$$

Note: With prior considering phase transition, results less constrained.

GW170817: SGRB GRB170817A (1.7 s)

M_{τov} ~2.2, the maximum (or the minimum?)

If originating from a BH central engine (See Gao's talk for the case of magnetar central engine)

Ruiz, Shapiro & Tsokaros, 1711.00473, PRD

Margalit & Metzger, 1710.05938, ApJL

If originating from a BH central engine (See Gao's talk for the case of magnetar central engine)

GW170817: SGRB (1.7 s)

M/M_o

M_{TOV} ~2.2, the maximum (or the minimum?)

GW170817: EM

- 3D relativistic smoothed particle hydrodynamics (SPH) code;
- Assuming no prompt collapse;
- A previous fitted formula for threshold binary mass:

 $M_{
m thres} = (-3.606 rac{M_{
m TOV}}{R_{1.6}} + 2.38) imes M_{
m TOV}$

• Conclusion:

 $R_{1.6} \geq 10.68^{+0.15}_{-0.04} {
m km}$

Bauswein et al., 1710.06843, ApJL

NS/QS two-branch picture?

 No hyperon puzzle for QS;
 Preferred by particular group of SGRB (e.g., AL et al., 1706.04720, ApJ; 1606.02934, PRD)

• QS merger scenario for GW170817 (e.g., Zhou, Zhou & AL*, 1711.04312, PRD)

 $M_{TOV} \le 2.18$ (2.32 with superfluid) for QS within MIT.

QS merger scenario for GW170817

Tidal deformability constraint of GW170817: Interquark interaction

QS merger scenario for GW170817

Short summary: One event of GW170817, small tidal upper limit (not too stiff), long-lived (stiff)? Ejecta (?)

- Post-merger remnant: long-lived/short lived?
- SGRB central engine: The minimum/maximum of M_{TOV} ~2.2?

- Post-merger GW signals/better EM signals
- Minimum: Two branch/Soften of phase transition (hyperon puzzle)? Identify QS from SGRB/GW/...? Phase transition?
- Maximum: Heavy pulsars?
 QS? Phase transition?

First Cosmic Event Observed in Gravitational Waves and Light

In this talk,

One event of GW170817, possibly from binary NS/QS/HS;

In the near future,

- More GW170817-like events;
- Post-merger GW signals/better EM signals.

⊠LIGO ^G

Thank you.