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QCD diagram
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Why we need EOS?

GW170817

Tidal deformability

Abbott et al. 2017
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Extrapolation is an enemy

✦ Dense nuclear matters 

✦ General relativity

ρs → 2ρs / 3ρs / 4ρs

Laboratory exp. 

Solar system                → highly dynamical spacetime 

Binary pulsars
}
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NSs’ EOS is not given, but earned

NSs’ EOS
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Tolman-Oppenheimer-Volkoff (TOV)

Tolman 1939 
Oppenheimer & Volkoff 1939

ϵ = ϵ(p)Key ingredient: EOS
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EOSs and NSs

Lattimer  &  Prakash 2001
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General relativity assumed

The gravitational “force” as experienced locally while standing on a massive 
body (such as the Earth) is the same as the pseudo-force experienced by an 

observer in a non-inertial (accelerated) frame of reference.
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General relativity

Gμν = 8πGTμν

John A. Wheeler: “Matter tells spacetime how to curve, 
and spacetime tells matter how to move.”

EOS goes here
Tμν = (ϵ + p) uμuν + p gμν
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Strong-field gravity

G1 — Quasi-stationary weak-field regime 
G2 — Quasi-stationary strong-field regime 
G3 — Highly dynamical strong-field regime 
GW — Radiation regime

Solar System Binary Pulsar BBH Merger LIGO/Virgo Sites

Strong-field gravity

Wex 2014
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Example: scalar-tensor gravity

2

II. NONPERTURBATIVE STRONG-FIELD PHENOMENA
IN SCALAR-TENSOR GRAVITY

In this paper we focus on the class of mono-scalar-tensor
theories that are defined by the following action in the
Einstein-frame [4, 5, 14, 15],

S =
c4

16πG∗

∫
d4x
c
√−g∗

[
R∗ − 2gµν∗ ∂µϕ∂νϕ − V(ϕ)

]

+S m
[
ψm; A2(ϕ)g∗µν

]
, (1)

where G∗ is the bare gravitational coupling constant, g∗µν is
the Einstein metric with its determinant g∗, R∗ ≡ gµν∗ R∗µν is the
Ricci scalar, ψm collectively denotes the matter content, and
A(ϕ) is the (conformal) coupling function that depends on the
scalar field, ϕ. Henceforth, for simplicity, we assume that the
potential, V(ϕ), is a slowly varying function that changes on
scales much larger than typical length scales of the system that
we consider, thus, we set V(ϕ) = 0 in our calculation.

The field equations are derived with the least-action princi-
ple [7, 8] for g∗µν and ϕ,

R∗µν = 2∂µϕ∂νϕ +
8πG∗

c4

(
T ∗µν −

1
2

T ∗g∗µν

)
, (2)

!g∗ϕ = −
4πG∗

c4 α(ϕ)T∗ , (3)

with the energy-momentum tensor of matter fields, T µν∗ ≡
2c (−g∗)−1/2 δS m/δg∗µν, and the field-dependent coupling
strength between the scalar field and the trace of the energy-
momentum tensor of matter fields, α(ϕ) ≡ ∂ ln A(ϕ)/∂ϕ.

Following Damour and Esposito-Farèse [7, 15], we con-
sider a polynomial form for ln A(ϕ) up to quadratic order, that
is A(ϕ) = exp

(
β0ϕ2/2

)
, and denote α0 ≡ α(ϕ0) = β0ϕ0

with ϕ0 the asymptotic value of ϕ at infinity. This partic-
ular scalar-tensor theory (henceforth, DEF theory) is com-
pletely characterized by two parameters (α0, β0) and for sys-
tems dominated by strong-field gravity, such as NSs, can give
rise to potentially observable, nonperturbative physical phe-
nomena [14, 23]. Weak-field Solar-system experiments, gen-
erally, only probe the α0-dimension or the combination β0α2

0
in the (α0, β0) parameter space (see Refs. [10, 27] and refer-
ences therein).

Using a perfect-fluid description of the energy-momentum
tensor for NSs in the Jordan frame, in 1993 Damour and
Esposito-Farèse derived the Tolman-Oppenheimer-Volkoff
(TOV) equations [14] for a NS in their scalar-tensor gravity
theory. Interestingly, they discovered a phase-transition phe-
nomenon when β0 " −4, largely irrespective of the α0 value
(a nonzero α0 tends to smooth the phase transition [15]). The
phenomenon was named spontaneous scalarization. With a
suitable (α0, β0), the “effective scalar coupling” that a NS de-
velops, αA ≡ ∂ ln mA/∂ϕ0 (the baryonic mass of NS is fixed
while taking the derivative), could be O(1) when the NS mass,
mA, is within a certain EOS-dependent range. For masses
below and above this range, the effective scalar coupling is

FIG. 1. Illustration of spontaneous scalarization in the DEF gravity,
in comparison to individual binary-pulsar limits, for a NS with EOS
SLy4 and |α0| = 10−5. The blue curves correspond to (from top to
bottom) β0 = −4.5,−4.4,−4.3, and −4.2; the grey curves in between
differ in β0 in steps of 0.01. We indicate with triangles the 90% CL
upper limits on the effective scalar coupling |αA| from the individual
pulsars listed in Table I. We can clearly see a “scalarization mass
gap” at mA ∼ 1.7 M⊙.

much smaller 1. In Fig. 1 we show an example of spontaneous
scalarization for a NS with the realistic EOS SLy4, and com-
pare it to existing individual binary-pulsar constraints.

In general, if two compact bodies in a binary have effective
scalar couplings, αA and αB, they produce gravitational dipo-
lar radiation ∝ (∆α)2, with ∆α ≡ αA − αB, which is at a lower
post-Newtonian (PN) order than the canonical quadrupolar ra-
diation in GR [15] 2. In Ref. [16], Damour and Esposito-
Farèse for the first time compared limits on the DEF grav-
ity arising from Solar system and binary pulsar experiments
with expected limits from ground-based GW detectors like
LIGO and Virgo. The analysis in Ref. [16] is based on soft
(by now excluded [28, 29]), medium and stiff EOSs, and for
the LIGO/Virgo experiment it assumes a BNS merger with
PSR B1913+16 like masses (1.44 M⊙ and 1.39 M⊙), as well
as a 1.4 M⊙-10 M⊙ NS-BH merger. Damour and Esposito-
Farèse come to the conclusion that binary-pulsar experiments
would generally be expected to put more stringent constraints
on the parameters (α0, β0) than ground-based detectors, such
as LIGO and Virgo. Since then, several analyses have fol-

1 For sufficiently negative β0 (" −4.6), NSs do not de-scalarize before reach-
ing their maximum mass, i.e. spontaneous scalarization is found for all NSs
above a certain critical mass, which depends on the actual value of β0 and
the EOS [14, 15].

2 In this paper, generally we denote with nPN the O(v2n/c2n) corrections
to the leading Newtonian dynamics (equations of motion). Therefore, the
gravitational dipolar radiation reaction is at 1.5 PN, and the quadrupolar
radiation is at 2.5 PN. Here in the GW phasing, when there is no poten-
tial confusion we sometimes refer to the quadrupolar (dipolar) radiation as
0 PN (−1 PN), as typically done in the literature.
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As example, we consider a class of cosmologically well-motivated 
scalar-tensor theories T(α0,β0), that are solely described by two theory 
parameters: α0 & β0

2

II. NONPERTURBATIVE STRONG-FIELD PHENOMENA
IN SCALAR-TENSOR GRAVITY

In this paper we focus on the class of mono-scalar-tensor
theories that are defined by the following action in the
Einstein-frame [4, 5, 14, 15],

S =
c4

16πG∗

∫
d4x
c
√−g∗

[
R∗ − 2gµν∗ ∂µϕ∂νϕ − V(ϕ)

]

+S m
[
ψm; A2(ϕ)g∗µν

]
, (1)

where G∗ is the bare gravitational coupling constant, g∗µν is
the Einstein metric with its determinant g∗, R∗ ≡ gµν∗ R∗µν is the
Ricci scalar, ψm collectively denotes the matter content, and
A(ϕ) is the (conformal) coupling function that depends on the
scalar field, ϕ. Henceforth, for simplicity, we assume that the
potential, V(ϕ), is a slowly varying function that changes on
scales much larger than typical length scales of the system that
we consider, thus, we set V(ϕ) = 0 in our calculation.

The field equations are derived with the least-action princi-
ple [7, 8] for g∗µν and ϕ,

R∗µν = 2∂µϕ∂νϕ +
8πG∗

c4

(
T ∗µν −

1
2

T ∗g∗µν

)
, (2)

!g∗ϕ = −
4πG∗

c4 α(ϕ)T∗ , (3)

with the energy-momentum tensor of matter fields, T µν∗ ≡
2c (−g∗)−1/2 δS m/δg∗µν, and the field-dependent coupling
strength between the scalar field and the trace of the energy-
momentum tensor of matter fields, α(ϕ) ≡ ∂ ln A(ϕ)/∂ϕ.

Following Damour and Esposito-Farèse [7, 15], we con-
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FIG. 1. Illustration of spontaneous scalarization in the DEF gravity,
in comparison to individual binary-pulsar limits, for a NS with EOS
SLy4 and |α0| = 10−5. The blue curves correspond to (from top to
bottom) β0 = −4.5,−4.4,−4.3, and −4.2; the grey curves in between
differ in β0 in steps of 0.01. We indicate with triangles the 90% CL
upper limits on the effective scalar coupling |αA| from the individual
pulsars listed in Table I. We can clearly see a “scalarization mass
gap” at mA ∼ 1.7 M⊙.

much smaller 1. In Fig. 1 we show an example of spontaneous
scalarization for a NS with the realistic EOS SLy4, and com-
pare it to existing individual binary-pulsar constraints.

In general, if two compact bodies in a binary have effective
scalar couplings, αA and αB, they produce gravitational dipo-
lar radiation ∝ (∆α)2, with ∆α ≡ αA − αB, which is at a lower
post-Newtonian (PN) order than the canonical quadrupolar ra-
diation in GR [15] 2. In Ref. [16], Damour and Esposito-
Farèse for the first time compared limits on the DEF grav-
ity arising from Solar system and binary pulsar experiments
with expected limits from ground-based GW detectors like
LIGO and Virgo. The analysis in Ref. [16] is based on soft
(by now excluded [28, 29]), medium and stiff EOSs, and for
the LIGO/Virgo experiment it assumes a BNS merger with
PSR B1913+16 like masses (1.44 M⊙ and 1.39 M⊙), as well
as a 1.4 M⊙-10 M⊙ NS-BH merger. Damour and Esposito-
Farèse come to the conclusion that binary-pulsar experiments
would generally be expected to put more stringent constraints
on the parameters (α0, β0) than ground-based detectors, such
as LIGO and Virgo. Since then, several analyses have fol-

1 For sufficiently negative β0 (" −4.6), NSs do not de-scalarize before reach-
ing their maximum mass, i.e. spontaneous scalarization is found for all NSs
above a certain critical mass, which depends on the actual value of β0 and
the EOS [14, 15].

2 In this paper, generally we denote with nPN the O(v2n/c2n) corrections
to the leading Newtonian dynamics (equations of motion). Therefore, the
gravitational dipolar radiation reaction is at 1.5 PN, and the quadrupolar
radiation is at 2.5 PN. Here in the GW phasing, when there is no poten-
tial confusion we sometimes refer to the quadrupolar (dipolar) radiation as
0 PN (−1 PN), as typically done in the literature.

2

II. NONPERTURBATIVE STRONG-FIELD PHENOMENA
IN SCALAR-TENSOR GRAVITY

In this paper we focus on the class of mono-scalar-tensor
theories that are defined by the following action in the
Einstein-frame [4, 5, 14, 15],

S =
c4

16πG∗

∫
d4x
c
√−g∗

[
R∗ − 2gµν∗ ∂µϕ∂νϕ − V(ϕ)

]

+S m
[
ψm; A2(ϕ)g∗µν

]
, (1)

where G∗ is the bare gravitational coupling constant, g∗µν is
the Einstein metric with its determinant g∗, R∗ ≡ gµν∗ R∗µν is the
Ricci scalar, ψm collectively denotes the matter content, and
A(ϕ) is the (conformal) coupling function that depends on the
scalar field, ϕ. Henceforth, for simplicity, we assume that the
potential, V(ϕ), is a slowly varying function that changes on
scales much larger than typical length scales of the system that
we consider, thus, we set V(ϕ) = 0 in our calculation.

The field equations are derived with the least-action princi-
ple [7, 8] for g∗µν and ϕ,

R∗µν = 2∂µϕ∂νϕ +
8πG∗

c4

(
T ∗µν −

1
2

T ∗g∗µν

)
, (2)

!g∗ϕ = −
4πG∗

c4 α(ϕ)T∗ , (3)

with the energy-momentum tensor of matter fields, T µν∗ ≡
2c (−g∗)−1/2 δS m/δg∗µν, and the field-dependent coupling
strength between the scalar field and the trace of the energy-
momentum tensor of matter fields, α(ϕ) ≡ ∂ ln A(ϕ)/∂ϕ.

Following Damour and Esposito-Farèse [7, 15], we con-
sider a polynomial form for ln A(ϕ) up to quadratic order, that
is A(ϕ) = exp

(
β0ϕ2/2

)
, and denote α0 ≡ α(ϕ0) = β0ϕ0

with ϕ0 the asymptotic value of ϕ at infinity. This partic-
ular scalar-tensor theory (henceforth, DEF theory) is com-
pletely characterized by two parameters (α0, β0) and for sys-
tems dominated by strong-field gravity, such as NSs, can give
rise to potentially observable, nonperturbative physical phe-
nomena [14, 23]. Weak-field Solar-system experiments, gen-
erally, only probe the α0-dimension or the combination β0α2

0
in the (α0, β0) parameter space (see Refs. [10, 27] and refer-
ences therein).

Using a perfect-fluid description of the energy-momentum
tensor for NSs in the Jordan frame, in 1993 Damour and
Esposito-Farèse derived the Tolman-Oppenheimer-Volkoff
(TOV) equations [14] for a NS in their scalar-tensor gravity
theory. Interestingly, they discovered a phase-transition phe-
nomenon when β0 " −4, largely irrespective of the α0 value
(a nonzero α0 tends to smooth the phase transition [15]). The
phenomenon was named spontaneous scalarization. With a
suitable (α0, β0), the “effective scalar coupling” that a NS de-
velops, αA ≡ ∂ ln mA/∂ϕ0 (the baryonic mass of NS is fixed
while taking the derivative), could be O(1) when the NS mass,
mA, is within a certain EOS-dependent range. For masses
below and above this range, the effective scalar coupling is

FIG. 1. Illustration of spontaneous scalarization in the DEF gravity,
in comparison to individual binary-pulsar limits, for a NS with EOS
SLy4 and |α0| = 10−5. The blue curves correspond to (from top to
bottom) β0 = −4.5,−4.4,−4.3, and −4.2; the grey curves in between
differ in β0 in steps of 0.01. We indicate with triangles the 90% CL
upper limits on the effective scalar coupling |αA| from the individual
pulsars listed in Table I. We can clearly see a “scalarization mass
gap” at mA ∼ 1.7 M⊙.

much smaller 1. In Fig. 1 we show an example of spontaneous
scalarization for a NS with the realistic EOS SLy4, and com-
pare it to existing individual binary-pulsar constraints.

In general, if two compact bodies in a binary have effective
scalar couplings, αA and αB, they produce gravitational dipo-
lar radiation ∝ (∆α)2, with ∆α ≡ αA − αB, which is at a lower
post-Newtonian (PN) order than the canonical quadrupolar ra-
diation in GR [15] 2. In Ref. [16], Damour and Esposito-
Farèse for the first time compared limits on the DEF grav-
ity arising from Solar system and binary pulsar experiments
with expected limits from ground-based GW detectors like
LIGO and Virgo. The analysis in Ref. [16] is based on soft
(by now excluded [28, 29]), medium and stiff EOSs, and for
the LIGO/Virgo experiment it assumes a BNS merger with
PSR B1913+16 like masses (1.44 M⊙ and 1.39 M⊙), as well
as a 1.4 M⊙-10 M⊙ NS-BH merger. Damour and Esposito-
Farèse come to the conclusion that binary-pulsar experiments
would generally be expected to put more stringent constraints
on the parameters (α0, β0) than ground-based detectors, such
as LIGO and Virgo. Since then, several analyses have fol-

1 For sufficiently negative β0 (" −4.6), NSs do not de-scalarize before reach-
ing their maximum mass, i.e. spontaneous scalarization is found for all NSs
above a certain critical mass, which depends on the actual value of β0 and
the EOS [14, 15].

2 In this paper, generally we denote with nPN the O(v2n/c2n) corrections
to the leading Newtonian dynamics (equations of motion). Therefore, the
gravitational dipolar radiation reaction is at 1.5 PN, and the quadrupolar
radiation is at 2.5 PN. Here in the GW phasing, when there is no poten-
tial confusion we sometimes refer to the quadrupolar (dipolar) radiation as
0 PN (−1 PN), as typically done in the literature.

Damour & Esposito-Farèse 1993 
Damour & Esposito-Farèse 1996

non-minimal coupling
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Example: scalar-tensor gravity

Fractional grav. energy
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Damour & Esposito-Farèse 1993 
Damour & Esposito-Farèse 1996 
Shao & Wex 2016

Nonperturbative spontaneous scalarization could happen for isolated NSs

∼
GM
Rc2
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Example: scalar-tensor gravity

Shao [arXiv:1901.07546]
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Example: scalar-tensor gravity

dipolar emission (10) by giving the first star a charge close
to the maximum value allowed by the ST theory (!1 !
!max ), and an almost zero scalar charge to the second star
(!2 " 0), the scalar field grows rapidly inside the second
star, which quickly develops a charge !2 " !1 when the
binary becomes sufficiently close (cf. Fig. 2). This shuts off
the dipolar flux (10) but enhances the Newtonian pull (11).
Therefore, the earlier mergers are caused by the combina-
tion of dissipative [Eq. (10)] and conservative [Eq. (11)]
effects. As a qualitative test, we integrated the PN equations
of motion of GR with G replaced by Geff ¼ Gð1 þ !1!2Þ
[so as tomimic Eq. (11), with!1,!2 ! 0:2–0:4 set to values
compatible with our simulations] and confirmed that the
enhanced gravitational pull induces quicker mergers.

The growth of the scalar field and charge of nonscalar-
ized stars getting close to scalarized ones can be under-
stood in simple terms. The scalar field extends beyond the
radius of the baryonic matter [11,12]. Indeed, defining an
effective radius L for the scalar as that enclosing a fixed
fraction, e.g., 90%, of its mass, one gets L=RNS ! 4–5 for
isolated stars (cf. also Fig. 2). When the nonscalarized star
enters this scalar ‘‘halo’’ of the scalarized star, it grows a
significant charge. This can be seen by studying isolated
NSs [11,12] and imposing a nonzero asymptotic value ’0

for the scalar field, in order to mimic the effect of the
‘‘external’’ scalar field produced by the other (scalarized)
star. The effect of ’0 is shown in Fig. 3, where we used a
static, spherically symmetric code to calculate the scalar
charge of NSs as a function of the baryonic mass, for a ST
theory with "=ð4#GÞ ¼ ' 4:5. As can be seen, even mod-
est values of ’0 induce significant scalar charges. This
phenomenon, known as ‘‘induced scalarization’’ [11–13],
has also been observed for boson stars in ST theory [43]
and is similar, energetically, to the magnetization of a

ferromagnetic material in a sufficiently strong magnetic
field [11,12,44]. Here, the external scalar field makes the
configuration with nonzero charge energetically preferred
over the initial noncharged one.
Quite remarkably, the growth of the scalar field inside

stars that are sufficiently close seems quite robust, (though
its magnitude naturally depends on the values of" and’0).
In fact, it happens also in systems where induced scalari-
zation is likely unable to trigger the scalar’s initial growth,
e.g., in (at least) some binaries whose stars are initially
nonscalarized and far from the ‘‘critical mass’’ Mbar "
1:85M(, marking the onset of spontaneous scalarization
for small ’0 in Fig. 3. For instance, in Fig. 4 we show the
waveforms for an equal-mass binary whose stars have
baryon mass 1:625M(, gravitational mass 1:47M( and
radius RNS ¼ 13 km, for GR and a ST theory with
"=ð4#GÞ ¼ ' 4:5 and ’0

ffiffiffiffi
G

p
¼ 10' 5. Clear deviations

from GR arise at t! 10 ms, corresponding to a separation
R! 40 km and f! 645 Hz. These deviations will occur
at later (earlier) times for smaller (larger)’0. Wewill study
these smaller-mass systems more in future work, but this
result is not entirely surprising. The spontaneous scalariza-
tion of isolated stars occurs when a nonzero value’c of the
scalar at the center becomes energetically favored over
’c ¼ 0. References [11,12,44] noted indeed that the star’s

FIG. 2 (color online). The scalar field ’G1=2 (color code) and
the NS surfaces (solid black line) at t ¼ f1:8; 3:1; 4:0; 5:3g ms for
"=ð4#GÞ ¼ ' 4:5, and the binary of Fig. 1.
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FIG. 3 (color online). Effect of an external scalar field ’0, for
"=ð4#GÞ ¼ ' 4:5.
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FIG. 4 (color online). The dominant mode of the c 4 scalar,
with "=ð4#GÞ ¼ ' 4:5, ’0 ¼ 10' 5G' 1=2, for an equal-mass
binary with individual baryon masses of 1:625M(.

BARAUSSE et al. PHYSICAL REVIEW D 87, 081506(R) (2013)
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Barausse et al. 2013
Sennett & Buonanno 2016
Shao et al. 2017

In the numerical simulation of BNS mergers, dynamical scalarization 
happens when two NSs reach a critical point

a b

c d
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Example: scalar-tensor gravity

Scalar charge Radius

Damour & Esposito-Farèse 1996 
Esposito-Farèse 2004 
Sennett, Shao, Steinhoff 2017

Strong-field behavior is analogous to Landau’s phase transition after a critical point



�16

Scalarized NSs

Shao [arXiv:1901.07546]
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Scalarized NSs

Doneva et al. 2013

non-rotating

Max rotating
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NS mass in scalar-tensor gravity

Sotani & Kokkotas 2017
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f(R) theory

f(R) = R + aR2

Explaining the accelerated Universe

Yazadjiev et al. 2015
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More examples

Glampedakis et al. 2015
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Remarks

✦ There could still be a noticeable deviation in the strong field, though 

1. GR was tested to a very high precision 

2. We all love GR 

✦ There could be degeneracy between (uncertain) EOS and (uncertain) 
gravity in the strong-field regime 

✦ One should not take GR as given everywhere, instead she has to earn 
it!
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Parameterized post-Newtonian (PPN)

Metric

PPN parameter

Potential

Matter

Will & Nordtvedt 1972 
Will 1993
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TOV with PPN

Wagoner & Malone 1974 
Ciufolini & Ruffini 1983 
Glampedakis et al. 2015
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M(R) relation at 1 PN (GR)

Shao, unpublished

GR@1PN
full GR

Therefore, naive post-Newtonian expansion for TOV eqs will NOT be useful…
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post-TOV formalism

Glampedakis et al. 2015 
Glampedakis et al. 2016

Use post-Newtonian expansion for corrections, but keep GR resummed

@1PN

@2PN

}
}
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M(R) relation with post-TOV

δ3 = 0.5 μ1 = − 0.5

Two random examples…

Shao [arXiv:1901.07546]
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Possible approaches

1. Assume the gravity, then probe the EOS 

2. Assume the EOS, then probe the gravity 

3. Pin down the gravity (from elsewhere), then probe the EOS 

4. Pin down the EOS (from elsewhere), then probe the gravity 

5. Investigate the gravity and EOS together

entangles with
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Pulsar timing

Credit: N. Wex

Interstellar 
medium

Figure Credit: M. Kramer
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Timing model

  Norbert Wex / 2016-Jul-19 / Caltech

Pulsar timing - a spacetime view

24

©N. Wex
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Example: Shapiro delay

Cromartie et al. 2019
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Example: Shapiro delay

Cromartie et al. 2019 mPSR = 2.17+0.11
−0.10 M⊙
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PSRs J0348+0432 and J1738+0333

PSR J0348+0432 PSR J1738+0333

Ṗb
R

mcmc

Ṗb
R

Due to their asymmetry, neutron-star white-dwarf systems 
provide stringent limits on dipole radiation

Antoniadis et al. 2013 Freire et al. 2012

.
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Combination of five NS-WDs

Combining five best-timed NS-WD binaries put the best limits on a class of 
scalar-tensor theories for different EOSs

Shao et al. 2017

Strong-field effects could happen at different NS masses for different EOSs

Ex: EOS = SLy4
Sc
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"Scalarization window"

Shibata et al. 2014
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Gravitational waves (GWs)

Shao et al. 2017



�35

Can NSs still be scalarized?

The maximum scalar charges of NSs that are still compatible 
with all binary pulsar observations

Shao et al. 2017
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GWs: post-merger signal

Merger-ringdown 
signal encodes 
vital information 
for the end 
product of merger 
and the EOS of NSs

aLIGO: Advanced LIGO 
ET: Einstein Telescope 
CE: Cosmic Explorer

Shao et al. 2017, PRX 7:041025

Bernuzzi et al. 2015

Useful for probing dynamical scalarization!
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Remarks

✦ We should view the degeneracy as an opportunity, instead of a trouble 

✦ Think about universal relations: I-Love-Q, et cetera  

✦ It provides us a wider window to look at EOSs, to think about strong-
field gravity, as well as to probe unknowns with new precision 
experiments

Yagi & Yunes 2013 
Doneva & Pappas 2017

entangles with
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NSs’ EOS is not given, but earned

NSs’ EOS, gravity

At least, there is a way! 
Probably many ways, as we are learning from the new GW window!



Thank you!


