

The Kavli Institute for Astronomy and Astrophysics at Peking University 北京大学科维理天文与天体物理研究所

第八届华大QCD讲习班 [The 8th Huada (CCNU) School on QCD]

6-10 May 2019, CCNU (Wuhan, China)

Degeneracy in Studying the Supra-nuclear Equation of State and Modified Gravity

Lijing Shao (邵立晶)

Kavli Institute for Astronomy and Astrophysics, Peking University

QCD diagram

Why we need EOS?

Normalized amplitude 0 2 $\mathbf{4}$ 6 **Tidal deformability** 500 LIGO-Hanford 3000 $|\chi| \le 0.05$ 100 -2500 50 2000 500 900 LIGO-Livingston Frequency (Hz) MIST Less Compact $\stackrel{\sim}{\swarrow}$ 1500 MEIB 00 -50 1000 More Compact 500 Virgo MPAI 500 -100 -0 -500 1000 15002000 25000 50 Λ_1 -20 -10 -30 0 Time (seconds) **GW170817**

Abbott et al. 2017

3000

Extrapolation is an enemy

Dense nuclear matters

$$\rho_s \rightarrow 2\rho_s$$
 / $3\rho_s$ / $4\rho_s$

General relativity

NSs' EOS is not given, but earned

Tolman-Oppenheimer-Volkoff (TOV)

$$\begin{aligned} \frac{\mathrm{d}p}{\mathrm{d}r} &= -G\frac{\epsilon+p}{r^2}\frac{m+4\pi r^3 p}{1-2Gm/r}, \\ \frac{\mathrm{d}m}{\mathrm{d}r} &= 4\pi r^2\epsilon, \end{aligned}$$

Key ingredient: EOS $\epsilon = \epsilon(p)$

Tolman 1939 Oppenheimer & Volkoff 1939

EOSs and NSs

Lattimer & Prakash 2001

7

General relativity assumed

$$S = \frac{1}{16\pi G} \int dx^4 \sqrt{-g} R + S_{\text{matter}} \left[\psi; g_{\mu\nu} \right]$$

The gravitational "force" as experienced locally while standing on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (accelerated) frame of reference.

General relativity

John A. Wheeler: "Matter tells spacetime how to curve, and spacetime tells matter how to move."

Example: scalar-tensor gravity

$$S = \frac{c^{4}}{16\pi G_{*}} \int \frac{d^{4}x}{c} \sqrt{-g_{*}} \left[R_{*} - 2g_{*}^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi - V(\varphi) \right] + S_{m} \left[\psi_{m}; A^{2} \right]$$

$$V(\varphi) = 0$$

$$V(\varphi) = 0$$

$$A(\varphi) = \exp\left(\beta_{0}\varphi^{2}/2\right)$$

$$\alpha_{0} = \beta_{0}\varphi_{0}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-5}$$

$$1.0$$

As example, we consider a class of cosmologically well-motivated scalar-tensor theories $T(\alpha_0, \beta_0)$, that are solely described by two theory parameters: $\alpha_0 \& \beta_0$

Damour & Esposito-Farèse 1993 Damour & Esposito-Farèse 1996

Nonperturbative spontaneous scalarization could happen for isolated NSs

Damour & Esposito-Farèse 1993 Damour & Esposito-Farèse 1996 Shao & Wex 2016

Shao [arXiv:1901.07546]

In the numerical simulation of BNS mergers, *dynamical scalarization* happens when two NSs reach a critical point

Barausse et al. 2013 Sennett & Buonanno 2016 Shao et al. 2017

Strong-field behavior is analogous to Landau's phase transition after a critical point

Damour & Esposito-Farèse 1996 Esposito-Farèse 2004 Sennett, Shao, Steinhoff 2017

Scalarized NSs

Shao [arXiv:1901.07546]

Scalarized NSs

Doneva et al. 2013

NS mass in scalar-tensor gravity

Sotani & Kokkotas 2017

f(R) theory

PEKING UNIVERSITY

More examples

Glampedakis et al. 2015

20

Remarks

- There could still be a noticeable deviation in the strong field, though
 - 1. GR was tested to a very high precision
 - 2. We all love GR
- There could be degeneracy between (uncertain) EOS and (uncertain) gravity in the strong-field regime
- One should not take GR as given everywhere, instead she has to earn it!

Parameterized post-Newtonian (PPN)

Metric

$$g_{00} = -1 + 2U - 2\beta U^2 - 2\xi \Phi_W + (2\gamma + 2 + \alpha_3 + \zeta_1 - 2\xi)\Phi_1 + 2(3\gamma - 2\beta + 1 + \zeta_2 + \xi)\Phi_2 + 2(1 + \zeta_3)\Phi_3 + 2(3\gamma + 3\zeta_4 - 2\xi)\Phi_4 - (\zeta_1 - 2\xi)\mathcal{A} - (\alpha_1 - \alpha_2 - \alpha_3)w^2U - \alpha_2w^iw^jU_{ij} + (2\alpha_3 - \alpha_1)w^iV_i + \mathcal{O}(\epsilon^3),$$

$$g_{0i} = -\frac{1}{2}(4\gamma + 3 + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)V_i - \frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi)W_i - \frac{1}{2}(\alpha_1 - 2\alpha_2)w^iU - \alpha_2w^jU_{ij} + \mathcal{O}(\epsilon^{5/2}),$$

 $g_{ij} = (1+2\gamma U)\delta_{ij} + \mathcal{O}(\epsilon^2).$

PPN parameter

Parameter	What it measures relative to GR	Value in GR	Value in semi- conservative theories	Value in fully conservative theories
γ	How much space-curva- ture produced by unit rest mass?	1	γ	γ
eta	How much "nonlinearity" in the superposition law for gravity?	1	eta	eta
ξ	Preferred-location effects?	0	ξ	ξ
α_1	Preferred-frame effects?	0	$lpha_1$	0
$lpha_2$		0	$lpha_2$	0
$lpha_3$		0	0	0
α_3	Violation of conservation	0	0	0
ζ_1	of total momentum?	0	0	0
ζ_2		0	0	0
ζ_3		0	0	0
ζ4		0	0	0

Potential

$$U = \int \frac{\rho'}{|\mathbf{x} - \mathbf{x}'|} d^3 x',$$

$$U_{ij} = \int \frac{\rho'(x - x')_i(x - x')_j}{|\mathbf{x} - \mathbf{x}'|^3} d^3 x',$$

$$\Phi_W = \int \frac{\rho'\rho''(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}''}{|\mathbf{x} - \mathbf{x}''|} - \frac{\mathbf{x} - \mathbf{x}''}{|\mathbf{x}' - \mathbf{x}''|}\right) d^3 x' d^3 x'',$$

$$\mathcal{A} = \int \frac{\rho'[\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')]^2}{|\mathbf{x} - \mathbf{x}'|^3} d^3 x',$$

$$\Phi_1 = \int \frac{\rho' v'^2}{|\mathbf{x} - \mathbf{x}'|} d^3 x',$$

$$\Phi_2 = \int \frac{\rho'U'}{|\mathbf{x} - \mathbf{x}'|} d^3 x',$$

$$\Phi_3 = \int \frac{\rho'\Pi'}{|\mathbf{x} - \mathbf{x}'|} d^3 x',$$

$$\Psi_4 = \int \frac{p'}{|\mathbf{x} - \mathbf{x}'|} d^3 x',$$

$$W_i = \int \frac{\rho' v'}{|\mathbf{x} - \mathbf{x}'|} d^3 x',$$

$$W_i = \int \frac{\rho'[\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')](x - x')_i}{|\mathbf{x} - \mathbf{x}'|^3} d^3 x'.$$

Matter

Æ

$$T^{00} = \rho (1 + \Pi + v^2 + 2U),$$

$$T^{0i} = \rho v^i \left(1 + \Pi + v^2 + 2U + \frac{p}{\rho} \right),$$

$$T^{ij} = \rho v^i v^j \left(1 + \Pi + v^2 + 2U + \frac{p}{\rho} \right) + p \delta^{ij} (1 - 2\gamma U).$$

Will & Nordtvedt 1972 Will 1993

TOV with **PPN**

$$\begin{aligned} \frac{\mathrm{d}p}{\mathrm{d}r} &= -\frac{Gm\rho}{r^2} \left[1 + \Pi + \frac{p}{\rho} + (5 + 3\gamma - 6\beta + \zeta_2) \frac{Gm}{r} + (\gamma + \zeta_4) 4\pi \frac{r^3 p}{m} \right], \\ \frac{\mathrm{d}m}{\mathrm{d}r} &= 4\pi r^2 \rho \left[1 + (1 + \zeta_3) \Pi - \frac{1}{2} (11 + \gamma - 12\beta + \zeta_2 - 2\zeta_4) \frac{Gm}{r} \right]. \end{aligned}$$

Wagoner & Malone 1974 Ciufolini & Ruffini 1983 Glampedakis et al. 2015

M(R) relation at 1 PN (GR)

Shao, unpublished

Therefore, naive post-Newtonian expansion for TOV eqs will NOT be useful...

post-TOV formalism

$$\frac{\mathrm{d}p}{\mathrm{d}r} = -G\frac{\epsilon + p}{r^2}\frac{m + 4\pi r^3 p}{1 - 2Gm/r} - \frac{Gm\rho}{r^2}\left(\mathcal{P}_1 + \mathcal{P}_2\right),$$

$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi r^2\epsilon + 4\pi r^2\rho\left(\mathcal{M}_1 + \mathcal{M}_2\right),$$

Use post-Newtonian expansion for corrections, but keep GR *resummed*

Glampedakis et al. 2015 Glampedakis et al. 2016

$$\mathcal{P}_{1} = \delta_{1} \frac{Gm}{r} + 4\pi \delta_{2} \frac{r^{3}p}{m},$$

$$\mathcal{M}_{1} = \delta_{3} \frac{Gm}{r} + \delta_{4}\Pi,$$

$$\mathcal{P}_{2} = \pi_{1} \frac{G^{2}m^{3}}{r^{5}\rho} + \pi_{2} \frac{G^{2}m^{2}}{r^{2}} + \pi_{3}Gr^{2}p + \pi_{4} \frac{\Pi p}{\rho},$$

$$\mathcal{M}_{2} = \mu_{1} \frac{G^{2}m^{3}}{r^{5}\rho} + \mu_{2} \frac{G^{2}m^{2}}{r^{2}} + \mu_{3}Gr^{2}p + \mu_{4} \frac{\Pi p}{\rho} + \mu_{5}\Pi^{3} \frac{r}{Gm},$$

$$\mathcal{O}(2PN)$$

M(R) relation with post-TOV

Two random examples...

Shao [arXiv:1901.07546]

Possible approaches

- 1. Assume the gravity, then probe the EOS
- 2. Assume the EOS, then probe the gravity
- 3. Pin down the gravity (from elsewhere), then probe the EOS
- 4. Pin down the EOS (from elsewhere), then probe the gravity
- 5. Investigate the gravity and EOS together

Pulsar timing

Timing model

Example: Shapiro delay

Cromartie et al. 2019

Example: Shapiro delay

PSRs J0348+0432 and J1738+0333

Due to their asymmetry, neutron-star white-dwarf systems provide stringent limits on *dipole radiation* $\dot{P}_{b}^{\text{dipole}} \propto (\alpha_{\text{NS}} - \alpha_{0})^{2}$

Combination of five NS-WDs

Strong-field effects could happen at different NS masses for different EOSs

Shibata et al. 2014

Combining five best-timed NS-WD binaries put the best limits on a class of scalar-tensor theories for different EOSs

Shao et al. 2017

Gravitational waves (GWs)

Shao et al. 2017

Can NSs still be scalarized?

The maximum scalar charges of NSs that are still compatible with *all* binary pulsar observations

Shao et al. 2017

GWs: post-merger signal

Merger-ringdown signal encodes vital information for the end product of merger and the EOS of NSs

Shao et al. 2017, PRX 7:041025

PEKING UNIVERSITY

Remarks

- ✦ We should view the degeneracy as an opportunity, instead of a trouble
- Think about universal relations: I-Love-Q, et cetera

Yagi & Yunes 2013 Doneva & Pappas 2017

 It provides us a wider window to look at EOSs, to think about strongfield gravity, as well as to probe unknowns with new precision experiments

quark-hybrid

traditional neutron sta

NSs' EOS is not given, but earned

At least, there is a way!

Probably many ways, as we are learning from the new GW window!

