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Neutron Star Equation of State

- The Equation of State (EoS) of dense matter:
relation between pressure p and (mass) density p

p=pp)

- Essential ingredients for neutron star theory;
characterizes neutron star structure

- Should be derived from QCD in principle,
but many difficulties.such as...
- sign problem; no lattice data

- renormalization scale dependence in pQCD



Current Status of the EoS

- Many nuclear theory calculations
...but reliability of these models decline with growing p
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Current Status of the EoS

- Many nuclear theory calculations

...but reliability of these models decline with growing p

- Perturbative QCD calculation also has large uncertainty
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Current Status of the EoS

- Many nuclear theory calculations
...but reliability of these models decline with growing p

- Perturbative QCD calculation also has large uncertainty

- Need systematic way to interpolate these two regions

Pressure %
p
Nuclear%
matter

— » Densit

~ o ~10p,  ~ 100, !
—)

Relevant for NSs



Systematic Way of EoS Inference

- Growing number of observables of NSs:
e.g.) LIGO-Virgo, NICER experiment

- Utilize NS masses (M) and radii (R)
To date 14 simultaneous measurement is provided;
given in terms of likelihood dlstrlbutlon

in (R, M) plane
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- Infer EoS from M-R:
Use machine learning (ML)
with deep neural network (NN)
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Method of Machine Learning

Input

Answer

Training data
l

we want to extract
the relation between
input and answer




Method of Machine Learning
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Method of Machine Learning
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Tune these parameters inside NN
to minimize the error




EoS & M-R: TOV Mapping ¥,

If M-R curve is given,
there is one-to-one correspondence

Lindblom (1992)

Mass-Radius

Tolman-Oppenheimer-Volkoff (TOV) equation fpressure dp

General relativistic structural equation év%r

for stars at hydrostatic equilibrium gravity
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If M-R curve is given,
there is one-to-one correspondence

Lindblom (1992)

Mass-Radius

Tolman-Oppenheimer-Volkoff (TOV) equation }pressure dp

General relativistic equation for év%r

hydrostatic equilibrium gravity
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EoS & M-R: TOV Mapping ¥,y

The operation of the TOV equation can be regarded as

one-to-one mapping: TOV mapping ¥,

Mass-Radius
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Regression Analysis of TOV Mapping

In reality... M-R is point-like and has finite extent
— finding ¥, becomes non-trivial!
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Express V-, in terms of NN
— problem becomes regression analysis finding
EoS = W, (M-R)
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Schematic of TOV Regression

Finding the function EoS = ¥/, (M-R) using deep learning
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Training Data Generation

For regression, good training data sets are needed...

EoS data
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EoS parametrization

Here, we use piecewise polytrope with 5 parameters c;

c? = dpldp
EoS is interpolated by polytrope p « p'
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Uncertainty Estimation

- Partial contribution to the uncertainty is estimated in the

following way (bootstrapping):

- Set up 10 copies of NN
independently but trained
with the same procedure

- We take the average and
standard deviation of
predicted result; identify them
as most probable value and
the prediction uncertainty
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Performance Test with Mock Data

] YF-Fukushima-Murase (2018)
Typical two data:
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Performance Test with Mock Data

Typical two data:
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Performance Test with Mock Data

Typical two data:
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Performance Test with Mock Data

Typical two data: YF-Fukushima-Murase (2018)
E :
N > .Energy.Densi’;y(M.eV/f;n3). o
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: Reconstructed EoSs and M-R
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Performance Test with Mock Data

Typical two data: YF-Fukushima-Murase (2018)
AZ.O:— E :
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: Reconstructed EoSs and M-R
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Real Data: 14 M-R Observation
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Result: EoS estimation

Estimation by

Estimated EoS

deep learning

ChEFT constraint
Estimation by DL

X-ray observation
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Pressure p (MeV/fm3)

Comparison with nuclear EoSs
- seems consistent with APR, SLy, ENG, BSk20, etc...

- Our result does not have enough resolution to
distinguish the first order phase transition
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Result: Sound velocity

- Average sound velocity: Sound velocity:
W7 T = op/op
Y “-"'n.. | - Upper limit for ultra-
_ " mmm relativistic particle:
ol 2 =1/3
E (conformal limit)
> - Sound velocity

exceeds conformal
limit!

o
N
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Comparison with GW170817

Tidal deformability A : calculated from the EoS
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Summary & Perspectives

- Established the method to estimate EoS from mass and
radius observations

- Put significant constraint on EoS based on the real
observations

- Result seems to be consistent with independent study

- Need to rigorously quantify the uncertainty estimation;
bootstrapping is optimistic about uncertainty

- Also study the bias effect of other contributions
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Supplementary materials
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NN Structure

Layer index Neurons Activation Function

0 56 N/A
1 60 RelLU
2 40 RelLU
3 40 RelLU
4 S tanh
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Discussion with Bayesian Inference

Bayesian and neural network inference of E0S:

EoS 0:={c} Observation < = {(M;,R)}

B Bayesian Fuap = argmax[Pr(0)Pr(Z | 0)]
0 Pr(0 | 2)

B NN minimizes (¢[f]) = | d0d<2Pr(0)Pr(Z \H-K(H,f(g))

approximated ‘estimate — Bayesian

NN allows for more general choice of loss functions.
Bayesian assumes parametrized likelihood functions.
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Stellar Radius Measurement

- We need three observables to measure the radius:

Distance D
Brightness — Total flux from star F

Color — T+ (Assuming black body radiation)

2 2 4 r
AnD°F = 4nR“(oglx) — R = y D
GBTeff

- General relativistic correction (gravitational lensing):

2GM\ "
R, =1 R
= (%)
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TOV equation

dp m + 4nrp
dr ~(p+p) r(r — 2m)
% = 4nr?p

p(R) = 0 -> radius R

» pressure diff dp

—u

gravity

39



Marginalization
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Tidal Deformability
Q(tid) — ﬂ(tid) %(tid)

P,(cos 0)

73

O(r) = FO(1/r%)
r
L 5 3
+§%r Py(cos 0) + O(r”)

QY - tidally induce quadrupole moment (

gud) - tidal disturbing potential
Ad - fidal Love number (tidal deformability)

l(tid) ~ R5
dimensionless quantity: A = U/

A. E. H. Love

&
_
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Performance Test with Mock Data

Overall performance test with 200 data

YF-Fukushima-Murase (2018)

Mass (M) | 0.6 0.8 1.0 1.2 14 16 1.8
RMS (km) | 0.16 0.12 0.10 0.099 0.11 0.11 0.12

- RMS: standard deviation of reconstructed R(M) from the
original M-R

- (reconstruction accuracy) < (“observational error”) !
(Now we choose as fixed: ¢),; = 0.1M, og; = 0.5km )
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