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Neutron Star Equation of State

 2Hester et al. (2002)

- The Equation of State (EoS) of dense matter: 
relation between pressure    and (mass) density  

- Essential ingredients for neutron star theory; 
characterizes neutron star structure 

- Should be derived from QCD in principle, 
but many difficulties such as… 
 ・sign problem; no lattice data 
 ・renormalization scale dependence in pQCD

p ρ
p = p(ρ)



Current Status of the EoS
- Many nuclear theory calculations 

…but reliability of these models decline with growing ρ
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ρ0( ≃ 0.16 fm−3)



Current Status of the EoS
- Many nuclear theory calculations 

…but reliability of these models decline with growing ρ 

- Perturbative QCD calculation also has large uncertainty
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Current Status of the EoS
- Many nuclear theory calculations 

…but reliability of these models decline with growing ρ 

- Perturbative QCD calculation also has large uncertainty 

- Need systematic way to interpolate these two regions
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Systematic Way of EoS Inference
- Growing number of observables of NSs: 

e.g.) LIGO-Virgo, NICER experiment 

- Utilize NS masses (M) and radii (R)  
To date 14 simultaneous measurement is provided; 
given in terms of likelihood distribution 
in (R, M) plane 

- Infer EoS from M-R: 
Use machine learning (ML)  
with deep neural network (NN)
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Method of Machine Learning
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Tune these parameters inside NN 
to minimize the error
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EoS & M-R: TOV Mapping
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Lindblom (1992)

Tolman-Oppenheimer-Volkoff (TOV) equation
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pressure dp
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drGeneral relativistic structural equation 

 for stars at hydrostatic equilibrium
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EoS & M-R: TOV Mapping
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EoS & M-R: TOV Mapping
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Regression Analysis of TOV Mapping
In reality… M-R is point-like and has finite extent  
→ finding          becomes non-trivial!
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Schematic of TOV Regression
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Training Data Generation
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EoS parametrization
Here, we use piecewise polytrope with 5 parameters  

EoS is interpolated by polytrope 
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Uncertainty Estimation
- Partial contribution to the uncertainty is estimated in the 

following way (bootstrapping):
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- Set up 10 copies of NN 
independently but trained 
with the same procedure 

- We take the average and 
standard deviation of 
predicted result; identify them 
as most probable value and 
the prediction uncertainty



Performance Test with Mock Data

Typical two data:
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: Reconstructed EoSs and M-R
: Original EoSs and M-R



Performance Test with Mock Data
Typical two data:
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Performance Test with Mock Data
Typical two data:
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YF-Fukushima-Murase (2018)  

: Reconstructed EoSs and M-R
: Original EoSs and M-R



Performance Test with Mock Data
Typical two data:
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: Reconstructed EoSs and M-R
: Original EoSs and M-R



Performance Test with Mock Data
Typical two data:
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YF-Fukushima-Murase (2018)  

: Reconstructed EoSs and M-R
: Original EoSs and M-R



Real Data: 14 M-R Observation

Shows the 68% credibility contour
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Result: EoS estimation
Estimation by 
deep learning

X-ray observation

Estimated EoS
ChEFT constraint

We assume SLy4 up to 
normal nuclear density
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 24Hebeler-Lattimer-Pethick-Schwenk (2013)



Comparison with nuclear EoSs
- seems consistent with APR, SLy, ENG, BSk20, etc… 

- Our result does not have enough resolution to 
distinguish the first order phase transition
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Result: Sound velocity
- Average sound velocity:
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c2
s = ∂p/∂ρ

- Sound velocity:

c2
s = 1/3

Bedaque-Steiner (2015)
Tews-Carlson-Gandolfi-Reddy (2018)

- Upper limit for ultra- 
relativistic particle:

- Sound velocity 
exceeds conformal 
limit!

(conformal limit)



Comparison with GW170817
Tidal deformability Λ：calculated from the EoS

- Our result:
Λ(1.4M⊙) = 320+ 120

−110

- GW170817:

Λ(1.4M⊙) = 190+ 390
−120

Consistent with  
each other

Abbott et al. (2018)
Mass

Ti
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DL estimation
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Summary & Perspectives
- Established the method to estimate EoS from mass and 

radius observations 

- Put significant constraint on EoS based on the real 
observations 

- Result seems to be consistent with independent study 

- Need to rigorously quantify the uncertainty estimation; 
bootstrapping is optimistic about uncertainty 

- Also study the bias effect of other contributions
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Supplementary materials



観測データと予測結果 (M-R)
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NN Structure
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48 Chapter. 3 Numerical Analysis

Layer index Neurons Activation Function
0 56 N/A
1 60 ReLU
2 40 ReLU
3 40 ReLU
4 5 tanh

Table 3.3: Our modified neural network architecture in the extension of our method. In the input
layer, 56 neurons correspond to input 14 points of the mass and radius; and their errors. In the other
layers, it is kept the same as before.

properties of these 14 stars are summarized in the Tab. 2.1 and Tab. 2.2). In our method, the obser-
vational errors were taken into account during the training. Once the training is done, however, when
predicting an equation of state from the input—observational “points”—the errors were not used any-
more. Thus we need to extend our method to incorporate the observational errors as an input. Our
strategy is, by and large, the same as the that outlined above: We setup the neural network and train
them with the randomly generated data. The obtained neural network can be regarded as the regres-
sion function of the inverse TOV mapping Ψ−1

TOV, therefore with this function we predict the equation
of state from the observational data input. By modifying the data generation scheme and the training
procedure, the observational errors are embodied in our method. We will explain this modification in
detail as well as the credibility quantification of the obtained result.

Modifications in the Training Procedure First we specify the modifications in the training proce-
dure that occurs when extending our methods to the real observational data.

The architecture of our neural network is modified to adopt the observational errors in the input
layer. In the previous method, the input layer comprises 30 neurons i.e. 15 pairs of (Mi, Ri) (i = 1−15).
Since this choice of the number 15 was simply for demonstration, here we adjust it as 14 in accordance
with the currently available neutron stars. We made a control experiment on this number. Namely,
we altered 15 to 14 in the previous method with no other changes, and we found out that the accuracy
of the reconstruction is not seriously affected by this alteration. Now our purpose is to make neural
network to have the observational errors as an input, so the variables (Mi, Ri) are modified to (Mi,
Ri; σM,i, σR,i) (i = 1 − 14). σM,i and σR,i correspond to the observational errors, whose meaning will
be clarified later in the explanation of the data generation. As a result, the number of neurons in the
input layer now becomes 56(= 4 × 14). The index i of star is sorted by their masses in ascending
order as before, and input data are normalized as Mi/Mnorm, Ri/Rnorm, σM,i/σM norm and σR,i/σR norm

with Mnorm = 3M⊙, Rnorm = 20 km, σM norm = 1M⊙ and σR norm = 5 km. Aside from the input layer,
the other design including the output layer, the intermediate hidden layers as well as the choice of
the activation function are kept the same as before since we showed previously that this network is
capable of expressing the inverse TOV mapping correctly. It is summarized in Tab. 3.3.



Discussion with Bayesian Inference
Bayesian and neural network inference of EoS:
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θ := {c2
s,i} * = {(Mi, Ri)}

fMAP = argmax
θ

[Pr(θ)Pr(* |θ)]

⟨ℓ[ f ]⟩ = ∫ dθd*Pr(θ)Pr(* |θ)ℓ(θ, f(*))

EoS Observation

Bayesian

NN minimizes

NN allows for more general choice of loss functions. 
Bayesian assumes parametrized likelihood functions.

Pr(θ |*)

approximated estimate → Bayesian



Stellar Radius Measurement
- We need three observables to measure the radius: 

- General relativistic correction (gravitational lensing):
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Distance D
Brightness → Total flux from star F
Color → Teff (Assuming black body radiation)

4πD2F = 4πR2(σBT4
eff) → R = F

σBT4
eff

D

R∞ = (1 − 2GM
Rc2 )

−1/2
R



TOV equation
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Marginalization
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Tidal Deformability
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Q(tid) = −λ(tid)ℰ(tid)

Q(tid)

ℰ(tid)
: tidally induce quadrupole moment
: tidal disturbing potential

λ(tid) : tidal Love number (tidal deformability)

Φ(r) = − M
r

− Q
P2(cos θ)

r3 + 2(1/r4)

+ 1
3 ℰr2P2(cos θ) + 2(r3)

Φ(r) = − M
r

− Q
P2(cos θ)

r3 + 2(1/r4) + 1
3 ℰr2P2(cos θ) + 2(r3)

λ(tid) ≃ R5

Λ = λ(tid)/M5

A. E. H. Love

dimensionless quantity:



Performance Test with Mock Data
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YF-Fukushima-Murase (2018)

- RMS: standard deviation of reconstructed R(M) from the 
original M-R 

- (reconstruction accuracy) < (“observational error”) ! 
 (Now we choose as fixed:                                             )

Overall performance test with 200 data

σM,i = 0.1M⊙, σR,i = 0.5 km

3.5 Extension to the Real Observational Data 47

Mass (M⊙) 0.6 0.8 1.0 1.2 1.4 1.6 1.8
RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

Table 3.2: Root mean square of radius deviations for fixed masses.

Equation of State Reconstruction Once the loss function converges, we can use the trained neural
network to infer an equation of state from an observation of 15 M-R points. We picked two typical
examples for Fig. 3.3. Later, we will quantify the overall performance and for the moment we shall
discuss these specific examples. In Fig. 3.3 (Left) the dashed lines represent randomly generated
equations of state. We see that two equations of state are identical in the low density region because
SLy is employed at ρ ≤ ρ0. We sampled 15 points as shown in Fig. 3.3 (Right), which mimic
an observation with error deviations from the genuine M-R relation (which is shown by the dashed
lines). Thus, each set of 15 points is considered as mock data of the neutron star observation. Since
the neural network learns through the training data that the observation contains errors, the most likely
equation of state is reconstructed from one observation of 15 points with errors. The reconstructed
equations of state are depicted by ellipses—major and minor axes correspond to the errors in the R
and M directions—in Fig. 3.3 (Left). We can see that the reconstructed equations of state agree quite
well with the original equations of state for these examples. It would also be interesting to make a
comparison of the M-R relations corresponding to the original and reconstructed equations of state.
The solid and dashed lines in Fig. 3.3 (Right) represent the M-R relations calculated with the original
and reconstructed equations of state, respectively. Since the equations of state look consistent in
Fig. 3.3 (Left), the original and reconstructed M-R relations are close to each other.

Overall Reconstruction Accuracies for Whole Validation Data For other equations of state in
validation data, the corresponding M-R curves are reconstructed well similarly to examples discussed
above. To quantify the overall reconstruction accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data at fixed masses ranging from 0.6 M⊙ to 1.8 M⊙ with an
interval of 0.2 M⊙. This result is summarized in Tab. 3.2. We defined the RMS from the deviations
between not the observational data points but the genuine and reconstructed M-R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 3.3 (Right)), that is, δR(M) = R(rec)(M)−R(0)(M).
The RMS values in Tab. 3.2 are around ∼ 0.1 km for all masses! This indicates that our method works
surprisingly good; remember that data points have random fluctuations by ∆R ∼ 0.5 km. It should
be noticed that, even without neutron stars around M = 0.6–0.8M⊙ in our setup, the RMS of the
corresponding radii are still reconstructed within the accuracy of the order ∼ 0.1 km.

3.5 Extension to the Real Observational Data

Following the success of our method mentioned above, here we apply the method to the currently
obtained M-R data for 14 neutron stars (these M-R measurements were elaborated in Sec. 2.3, and


