Probing Neutron Star Equation of State with Deep Learning

Yuki Fujimoto

The Univ. of Tokyo

in collaboration with: Kenji Fukushima, Koichi Murase

YF, K. Fukushima, K. Murase, Phys. Rev. D **98**, 023019 (2018) **YF**, K. Fukushima, K. Murase, arXiv:1903.03400 [nucl-th].

6 May 2019, The 8th Huada school

Neutron Star Equation of State

- The Equation of State (EoS) of dense matter: relation between pressure p and (mass) density ρ

 $p = p(\rho)$

- Essential ingredients for neutron star theory; characterizes neutron star structure
- Should be derived from QCD in principle, but many difficulties such as...
 - sign problem; no lattice data
 - renormalization scale dependence in pQCD

Current Status of the EoS

- Many nuclear theory calculations
 - ...but reliability of these models decline with growing p

Current Status of the EoS

- Many nuclear theory calculations
 ...but reliability of these models decline with growing p
- Perturbative QCD calculation also has large uncertainty

Current Status of the EoS

- Many nuclear theory calculations
 ...but reliability of these models decline with growing p
- Perturbative QCD calculation also has large uncertainty
- Need systematic way to interpolate these two regions

Systematic Way of EoS Inference

 Growing number of observables of NSs: e.g.) LIGO-Virgo, NICER experiment

Method of Machine Learning

Training data

we want to extract the relation between input and answer

Method of Machine Learning

$$x_i^{(k+1)} = a^{(k+1)} \left(\sum_{i=1}^{N_k} W_{ij}^{(k+1)} x_j^{(k)} + b_i^{(k+1)} \right)$$

Method of Machine Learning

EoS & M-R: TOV Mapping Ψ_{TOV}

The operation of the TOV equation can be regarded as one-to-one mapping: **TOV mapping** Ψ_{TOV}

Regression Analysis of TOV Mapping

In reality... *M-R* is point-like and has finite extent \rightarrow finding Ψ_{TOV}^{-1} becomes non-trivial!

Express Ψ_{TOV}^{-1} in terms of NN \rightarrow problem becomes regression analysis finding $\text{EoS} = \Psi_{\text{TOV}}^{-1}(M-R)$

Schematic of TOV Regression

Finding the function $EoS = \Psi_{TOV}^{-1}(M-R)$ using deep learning

Training Data Generation

For regression, good training data sets are needed...

EoS parametrization

Here, we use **piecewise polytrope** with 5 parameters c_s^2

 $c_{\rm s}^2 = dp/d\rho$

EoS is interpolated by polytrope $p \propto \rho^{\Gamma}$

Uncertainty Estimation

- Partial contribution to the uncertainty is estimated in the following way (bootstrapping):
- Set up 10 copies of NN
 independently but trained
 with the same procedure
- We take the average and standard deviation of predicted result; identify them as most probable value and the prediction uncertainty

YF-Fukushima-Murase (2018)

Typical two data:

Real Data: 14 M-R Observation

Shows the 68% credibility contour

Result: EoS estimation

Hebeler-Lattimer-Pethick-Schwenk (2013) 24

Comparison with nuclear EoSs

- seems consistent with APR, SLy, ENG, BSk20, etc...
- Our result does not have enough resolution to distinguish the first order phase transition

25

Result: Sound velocity

Comparison with GW170817

Tidal deformability Λ : calculated from the EoS

Summary & Perspectives

- Established the method to estimate EoS from mass and radius observations
- Put significant constraint on EoS based on the real observations
- Result seems to be consistent with independent study
- Need to rigorously quantify the uncertainty estimation; bootstrapping is optimistic about uncertainty
- Also study the bias effect of other contributions

Supplementary materials

観測データと予測結果 (M-R)

NN Structure

Layer index	Neurons	Activation Function
0	56	N/A
1	60	ReLU
2	40	ReLU
3	40	ReLU
4	5	tanh

Discussion with Bayesian Inference

Bayesian and neural network inference of EoS:

EoS $\boldsymbol{\theta} := \{c_{s,i}^2\}$ **Observation** $\mathcal{D} = \{(M_i, R_i)\}$

Bayesian
$$f_{MAP} = \operatorname{argmax}[\Pr(\theta)\Pr(\mathcal{D} \mid \theta)]$$

 θ $\Pr(\theta \mid \mathcal{D})$

NN minimizes
$$\langle \ell[f] \rangle = \int d\theta d \mathscr{D} \Pr(\theta) \Pr(\mathscr{D} \mid \theta) \ell(\theta, f(\mathscr{D}))$$

approximated estimate \rightarrow Bayesian

NN allows for more general choice of loss functions. Bayesian assumes parametrized likelihood functions.

Stellar Radius Measurement

- We need three observables to measure the radius:
 - Distance D Brightness \rightarrow Total flux from star F
 - Color $\rightarrow T_{\text{eff}}$ (Assuming black body radiation)

$$4\pi D^2 F = 4\pi R^2 (\sigma_B T_{\text{eff}}^4) \rightarrow R = \sqrt{\frac{F}{\sigma_B T_{\text{eff}}^4}} D$$

- General relativistic correction (gravitational lensing):

$$R_{\infty} = \left(1 - \frac{2GM}{Rc^2}\right)^{-1/2} R$$

TOV equation

$$\frac{dp}{dr} = -(\rho + p) \frac{m + 4\pi r^3 p}{r(r - 2m)}$$
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

 $p(R) = 0 \rightarrow radius R$

Marginalization

Tidal Deformability

$$Q^{(\text{tid})} = -\lambda^{(\text{tid})} \mathscr{E}^{(\text{tid})}$$

$$\Phi(r) = -\frac{M}{r} - Q\frac{P_2(\cos\theta)}{r^3} + \mathcal{O}(1/r^4) + \frac{1}{3}\mathscr{E}r^2P_2(\cos\theta) + \mathcal{O}(r^3)$$

- $Q^{(tid)}$: tidally induce quadrupole moment
- $\mathscr{E}^{(tid)}$: tidal disturbing potential
- $\lambda^{(tid)}$: tidal Love number (tidal deformability)

$$\lambda^{\rm (tid)} \simeq R^5$$

dimensionless quantity: $\Lambda = \lambda^{(\text{tid})} / M^5$

Overall performance test with 200 data

YF-Fukushima-Murase (2018)

Mass (M_{\odot}) 0.60.81.01.21.41.61.8RMS (km)0.160.120.100.0990.110.110.12

- RMS: standard deviation of reconstructed R(M) from the original M-R
- (reconstruction accuracy) < ("observational error") ! (Now we choose as fixed: $\sigma_{M,i} = 0.1 M_{\odot}$, $\sigma_{R,i} = 0.5$ km)