Microscopic equation of state for astrophysical simulations

<u>H. Togashi</u> (Kyushu Univ.)

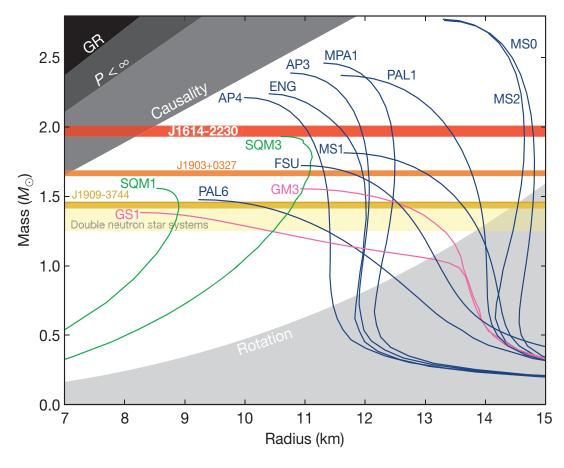
Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, K. Sumiyoshi, E. Hiyama

Outline

1: Introduction

2: Supernova EOS with realistic nuclear forces

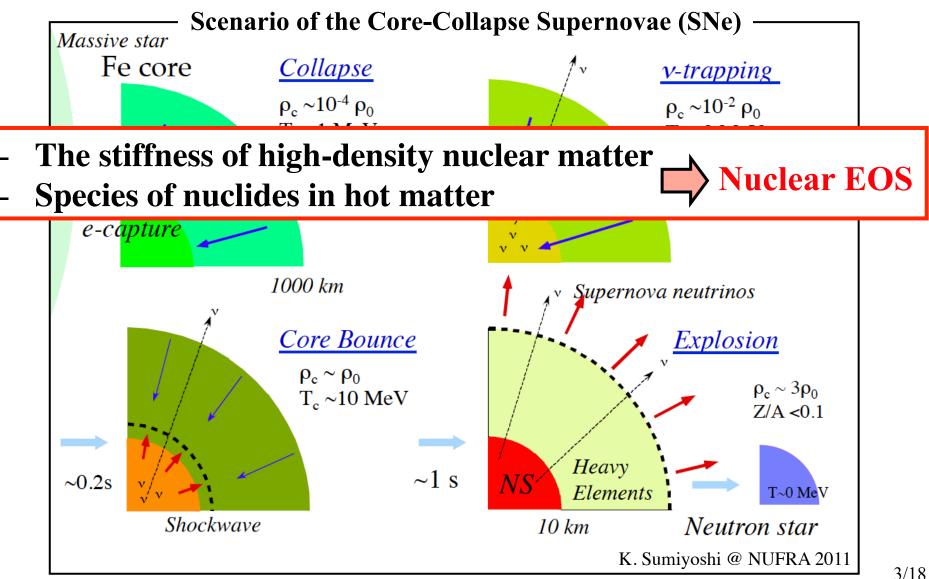
3: Hyperon mixing in hot dense matter


4: Summary

8th Huada school on QCD @ Wuhan, China, May 6, 2019

1. Introduction

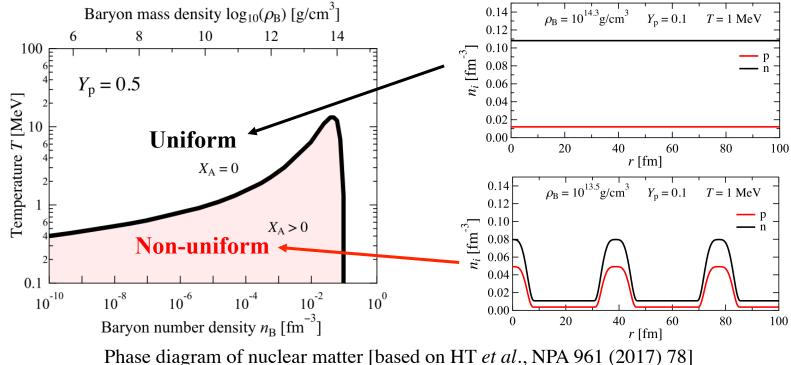
Neutron Star: governed by the nuclear EOS at zero temperature


Supported against gravitational collapse by nucleon degeneracy pressure and NUCLEAR FORCE

Mass-radius relation of cold neutron stars P. B. Demorest et al., NATURE 467 (2010)

Core-Collapse Supernovae

Nuclear EOS at finite temperature is one of the crucial ingredients for the numerical simulations of **Core-Collapse Supernovae**.


Nuclear EOS for core-collapse simulations

- SN-EOS should provide thermodynamic quantities in the wide ranges.

- Temperature $T: 0 \le T \le 100 \text{ MeV}$
- Density $\rho: 10^{5.1} \le \rho_{\rm B} \le 10^{16.0} {\rm g/cm^3}$

• Proton fraction
$$Y_p: 0 \le Y_p \le 0.65$$

- SN matter contains uniform and non-uniform phases.

Current Status of Nuclear EOS for Simulations

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

Model	Nuclear	Degrees	$M_{\rm max}$	$R_{1.4M_{\odot}}$	Ξ	publ.	. References
	Interaction						
H&W	SKa	Effective intera	ctior	18 (DF	kyrı	me	or RMF model)); Hillebrandt <i>et al.</i> (1984)
LS180	LS180	$n, p, \alpha, (A, Z)$	1.84	12.2	0.27	у	Lattimer and Swesty (1991)
LS220	LS220	n,p,lpha,(A,Z)	2.06	12.7	0.28	У	Lattimer and Swesty (1991)
LS375	LS375	n, p, lpha, (A, Z)	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	n,p,lpha,(A,Z)	2.23	14.5	0.26	у	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	у	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.74	12.6	0.23	У	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.79	14.8	0.31	У	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.42	13.2	0.30	У	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.95	12.7	0.25	У	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
SFHx	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	у	Steiner et al. (2013a)
SHT(NL3)	NL3	$n, p, \alpha, \{(A_i, Z_i)\}$	2.78	14.9	0.31	У	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

Microscopic EOS with bare nuclear potentials

Uniform EOS: cluster variational method with AV18 + UIX potentials

Non-uniform EOS: Thomas-Fermi method (Single nucleus approximation)

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA961 (2017) 78)

- Extended to Nuclear statistical equilibrium (NSE) model

(S. Furusawa, HT, H. Nagakura, K. Sumiyoshi, S. Yamada, H. Suzuki, M. Takano, J. Phys. G 44 (2017) 094001)

Nuclear EOS with microscopic calculations

- Fermi Hypernetted Chain (FHNC) variational method

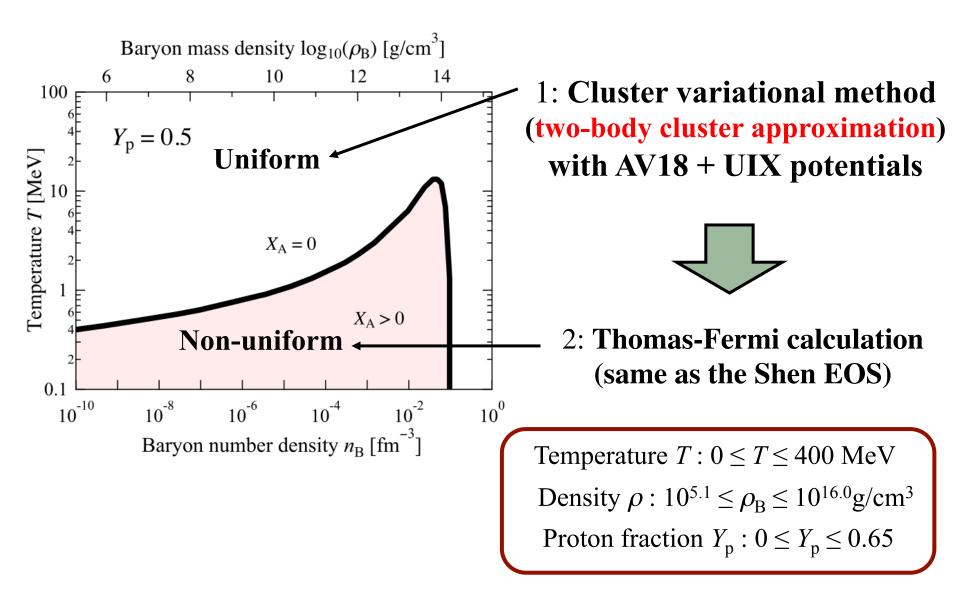
APR (A. Akmal, V. R. Pandharipande, D. G. Ravenhall, PRC 58 (1998) 1804)

Potential: <u>AV18</u> two-body pot. + UIX three-body pot.

Trial wave function: Jastrow (central, tensor, spin-orbit correlations)

Nuclear Matter: <u>Pure neutron matter and Symmetric nuclear matter</u>

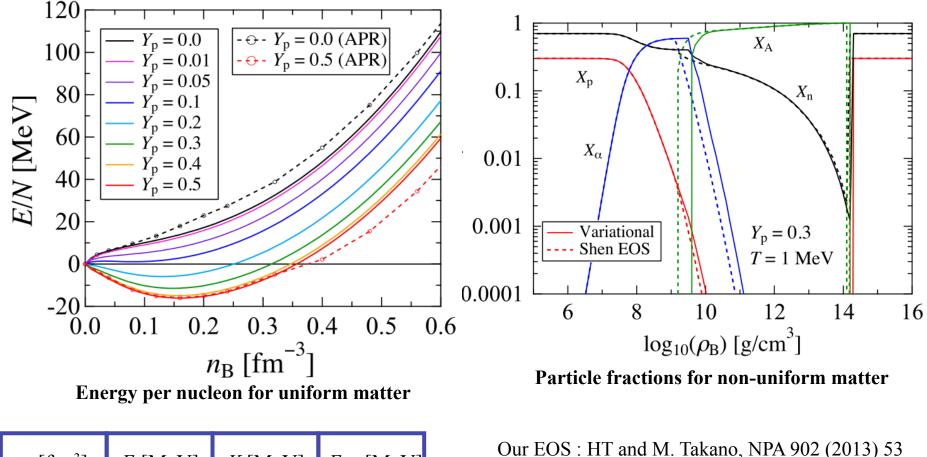
- Quantum Monte Carlo method


Auxiliary field diffusion Monte Carlo (S. Gandolfi et al., PRC 85 (2012) 032801(R))

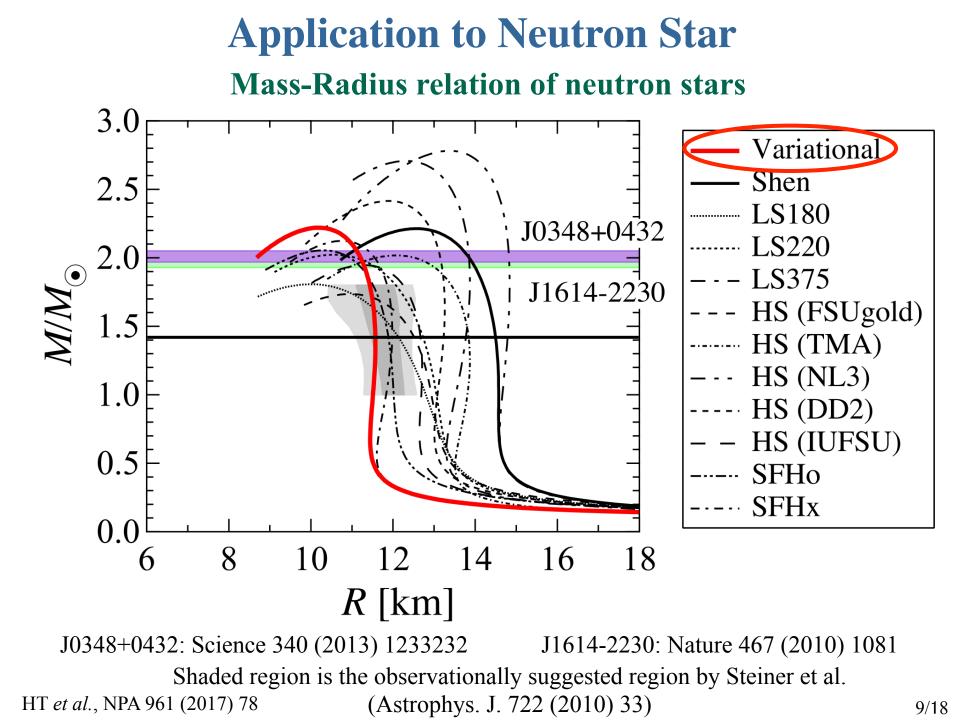
Potential: <u>V8</u> two-body pot. + UIX (or Illinois) three-body pot.

Trial wave function: Jastrow (central and tensor correlations)

Nuclear Matter: <u>Pure neutron matter</u>

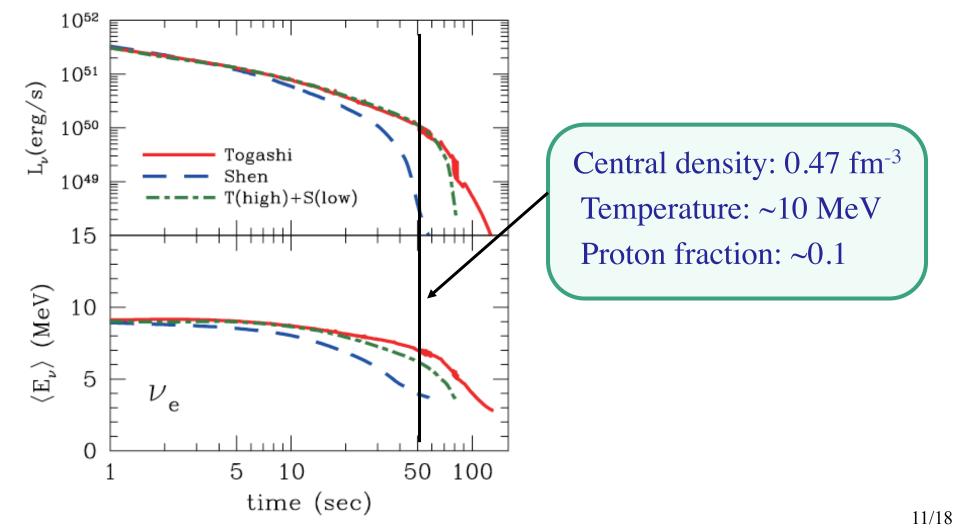

New EOS table for core-collapse simulations

http://www.np.phys.waseda.ac.jp/EOS/


2. Supernova EOS with realistic nuclear forces

Uniform EOS: Cluster variational method with AV18 + UIX potentials Non-uniform EOS: Thomas-Fermi method

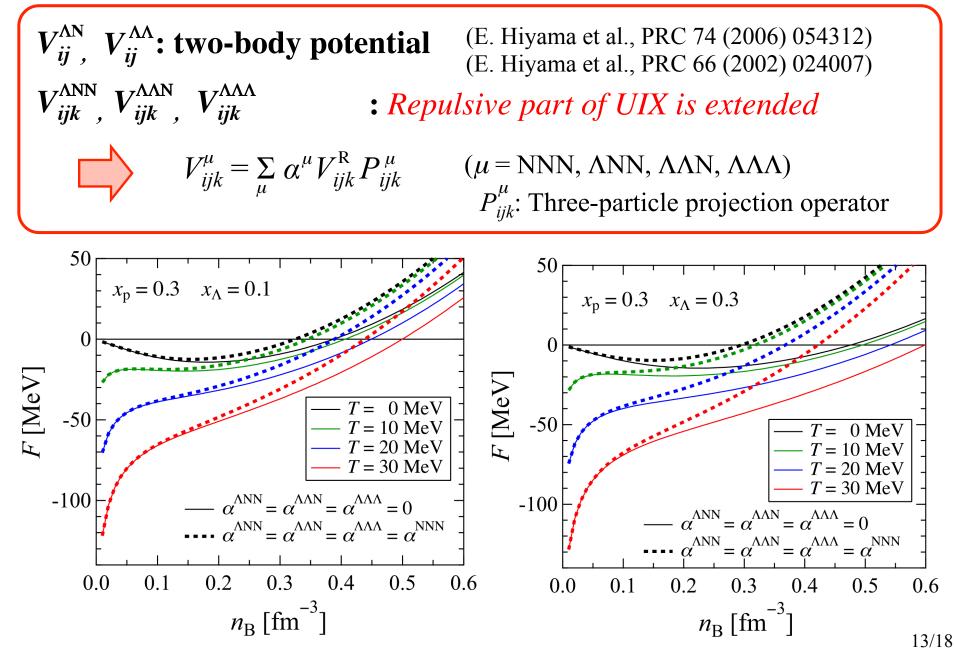
n_0 [fm ⁻³]	E_0 [MeV]	<i>K</i> [MeV]	$E_{\rm sym}[{\rm MeV}]$	1
0.16	-16.1	245	30.0	


APR : A. Akmal, V. R. Pandharipande, D. G. Ravenhall, PRC 58 (1998) 1804 Shen EOS : APJS 197 (2011) 20

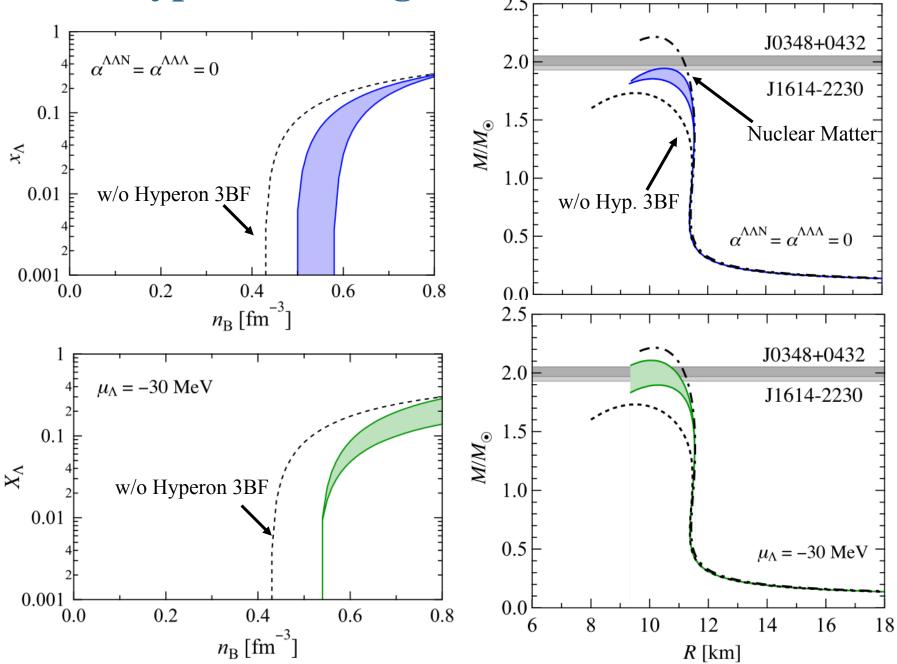
Application to Proto-Neutron Star Cooling

K. Nakazato, H. Suzuki, and HT, Phys. Rev. C 97 (2018) 035804

1D neutrino-radiation hydrodynamics simulations (until 300 ms) → Quasi-static evolutionary calculation of PNS cooling

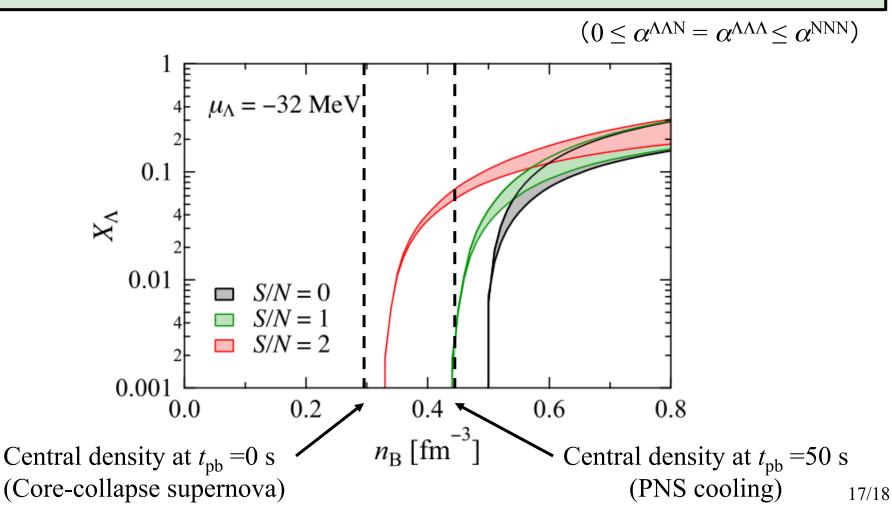


3. Hyperon mixing in hot dense matter


Nuclear	n_{sat}	BE/A	K	Q	J	L	type of int.	used in
Interaction	(fm^{-3})	(MeV)	(MeV)	$\left(\frac{\text{MeV}}{\text{fm}^3}\right)$	(MeV)	(MeV)		SN-EOS list by M. Hempel
\mathbf{SKa}	0.155	16.0	263	-300	32.9	74.6	Skyrme	H&W Hyperon EOS
LS180	0.155	16.0	180	-451	28.6	73.8	Skyrme	LS180 Hyperon LOS
LS220	0.155	16.0	220	-411	28.6	73.8	Skyrme	LS220, LS220A, LS220π
LS375	0.155	16.0	375	176	28.6	73.8	Skyrme	LS375
TMA	0.147	16.0	318	-572	30.7	90.1	RMF	HS(TMA)
NL3	0.148	16.2	272	203	37.3	118.2	RMF	SHT, HS(NL3)
FSUgold	0.148	16.3	230	-524	32.6	60.5	RMF	SHO(FSU1.7), HS(FSUgold)
FSUgold2.1	0.148	16.3	230	-524	32.6	60.5	RMF	SHO(FSU2.1)
IUFSU	0.155	16.4	231	-290	31.3	47.2	RMF	HS(IUFSU)
DD2	0.149	16.0	243	169	31.7	55.0	RMF	$HS(DD2), BHB\Lambda, BHB\Lambda\phi$
SFHo	0.158	16.2	245	-468	31.6	47.1	RMF	SFHo
SFHx	0.160	16.2	239	-457	28.7	23.2	RMF	SFHx
TM1	0.145	16.3	281	-285	36.9	110.8	RMF	STOS, FYSS, HSTM1, STOSA
								STOSY, STOSY π , STOS π , STOS π Q,
								STOSQ, STOSB139, STOSB145,
								STOSB155, STOSB162, STOSB165

- Shen EOS with Λ , Σ , Ξ [$M_{\text{max}} = 1.67 M_{\odot}$] (C. Ishizuka et al., JPG 35 (2008) 085201)
- Shen EOS with Λ $[M_{\text{max}} = 1.75 M_{\odot}]$
 - LS EOS with Λ
- $[M_{\text{max}} = 1.75 M_{\odot}]$ (H. Shen et al., APJS 197 (2011) 20) $[M_{\text{max}} = 1.91 M_{\odot}]$ (M. Oertel et al., PRC 85 (2012) 055806)
- **DD2 EOS with A** $[M_{\text{max}} = 2.11 M_{\odot}]$ (S. Banik et al., APJS 214 (2014) 22)
- **DD2 EOS with** Λ , Σ , $\Xi [M_{\text{max}} = 2.04 M_{\odot}]$ (M. Marques et al., PRC 96 (2017) 045806)

Free energy for Λ hyperon matter


Hyperon mixing in neutron-star matter

Hyperon mixing in supernova matter

Supernova matter

- Charge neutral and Isentropic matter (The entropy per baryon $S \sim 1-2$)
- Neutrino-free β -stable matter

Summary

Nuclear EOS for supernova simulations is constructed with realistic nuclear forces (AV18 + UIX).

Uniform nuclear matter : Cluster variational method Non-uniform nuclear matter : Thomas-Fermi approximation

 \rightarrow We are extending our microscopic EOS table to consider Λ hyperon mixing in dense nuclear matter.

Our SN-EOS is available at

http://www.np.phys.waseda.ac.jp/EOS/

Future Plans

- Construction of the hyperon EOS table for simulations
- Taking into account mixing of other hyperons $(\Sigma^{-}, \Sigma^{0}, \Sigma^{+}, \Xi^{0}, \Xi^{-})$
- Employing more sophisticated baryon interactions (e.g. Nijmegen)