Conversion of hadronic matter to quark matter in compact stars

[1] Shock Induced Conversion: PRD 93, 043018 (2016)

●[2] Diffusion Induced Conversion: PRD 93, 043019 (2016)

[3] Relativistic Conversion: under calculation

Shun Furusawa

Tokyo University of Science (TUS) 東京理科大学 RIKEN iTHEMS

Shoichi Yamada (Waseda University)

Purpose of this project

To understand local process of quark matter formation with the help of combustion theory.

Compact Stars in astrophysics Strange quark Stars

Neutron Stars

Hybrid stars

Pure quark stars

HM: neutrons, protons (confined quarks)

3 quarks are confined p=uud n=udd

QM :deconfined quarks (up, down, strange)

- •Small Radius(RX J 1856.5-3754 R= 4-8 km? Drake '02)
- -Rapid Cooling curves 3C 58 (Slane '02), MXB 1659-29 (Brwon'18)
- Super Giant Glitches (Spin up) of pulsars (Ma+'96)
- Quark Novae make GRB (Staff'07) and FRB (Shand'15)

Compact Stars in astrophysics Mass Radius Relation

GW170817 \Rightarrow R_{1.4} \lesssim 13.4 km, M_{max} \sim 2.16 M \odot \pm 0.2 M \odot ,

Twin-stars scenario: Hadron@low ρ & Quark@high ρ (Alfold+'13, Baym+19...)

Two Family Scenario: Hadron ⇒ Quark(Hybrid)

(Drago+'14, Pietri+'19)

PIETRI+, '19

Combustion

 $C,H,O_2 \Rightarrow CO_2,H_2O$ (Chemical Reaction)

C,O ⇒ Ni (Nuclear Reaction, Type Ia SNe)

Energy obstacle: Thermal energy (Activation Energy)

Combustion to SQM

Energy obstacle: Chemical energies of ud quarks

Ignition Scenario

Energy

A. Shock induced Case

- Spin Down of (P)NS
- -Accretion on (P)NS
- Merger of compact stars

Fuel(HM) Pure 2QM Ash(3QM)

B. Diffusion induced Case

- Following Shock induced
- Capture of strangelets
- Hyperon deconfinement

Combustion in 1 dimensional steady flow

Initial States ⇒ Conservation laws ⇒ Final states

Mass flux

Momentum flux

Energy flux

$$\rho_i v_i = \rho_f v_f = j \tag{1}$$

$$P_i + \rho_i v_i^2 = P_f + \rho_f v_f^2 \tag{2}$$

$$\epsilon_i + P_i/\rho_i + \frac{1}{2}v_i^2 = \epsilon_f + P_f/\rho_f + \frac{1}{2}v_f^2$$
 (3)

Combustion modes

Exothermic case $\varepsilon_i(\rho_i, P_i) > \varepsilon_f(\rho_i, P_i)$

- Previous works
- •Type Ia SNe (C,O \Rightarrow Ni₅₆)
- Terrestrial Case (Hydrocarbon $+0_2 \Rightarrow C0_2$, H_20)

Combustion modes

- a: strong detonation $u_i > c_{si}$, $u_f < c_{sf}$
- b: weak detonation $u_i > c_{si}$, $u_f > c_{sf}$
- c: weak deflagration $u_i < c_{si}$, $u_f < c_{sf}$
- d: strong deflagration $u_i < c_{si}, u_f > c_{sf}$

Motivation of this work

- 1, What happens inside combustion front when quark phase is formed both in exothermic and endothermic cases?
- 2, Which combustion mode is realized?

Model of diffusion induced case

- •1D Steady flow (local analysis)
- Conservation Eq. of Hydrodynamics
- Diffusion Equation of Strange quarks

$$v\frac{df_s}{dx} - D\frac{d^2f_s}{dx^2} = \frac{f_{s,f} - f_s}{\tau}$$

$$\rho v = \text{Const.}$$

$$P + \rho v^2 = \text{Const.}$$

$$\epsilon + P/\rho + \frac{1}{2}v^2 = \text{Const.}$$

Hadronic Matter

Shen EOS '11

$$Y_{lep} = 0.3, T_0 = 10 \text{ MeV}$$

 $\rho_0 = 3.0 \times 10^{14} \text{ g/cm}^3$

Quark matter

Bag Model (B:Bagconstant) +
Strong interaction(α: coupling c.)
(T.Fischer 10)

Mixed Phase in the front

- Volume Fraction of QM and HMQM: HM= r: (1-r)
- Global Charge Neutrality

$$\mu_p = 2\mu_{up} + \mu_{dn}$$

$$\mu_n = \mu_{up} + 2\mu_{dn}$$

$$T^H = T^Q$$

Inside of Combustion front

QM EOS:

$$B^{1/4} = 140 \, [\text{MeV}]$$

 $\alpha_s = 0.4$

(endothermic regime)

Initial: PNS matter

$$T=10$$
 MeV

$$\rho = 3 \times 10^{14} \, [g/cm^3]$$

$$Y_1 = 0.3$$

$$u_i = 2.3 * 10^4 \text{ cm/s}$$

Initial State (HM)

Combustion lines in (V,P) for both cases

Endothermic

Exothermic

$$B^{1/4} = 140 \text{ [MeV] } \alpha_s = 0.4$$
 $B^{1/4} = 125 \text{ [MeV] } \alpha_s = 0.8$

$$B^{1/4} = 125 [\text{MeV}] \ \alpha_s = 0.8$$

Weak deflagrations are realized in both cases.

STABILITY OF THE COMBUSTION FRONT

ρ_{ash}/ρ_{fuel}<1

 (exothermic)

 Type Ia,
 Terrestrial Combustion
 ⇒unstable

ρ_{ash}/ρ_{fuel} >1(endothermic)⇒ stable

In Previous work, 3D simulation (Pagliara '13), the combustion is stopped by hand in Endothermic regime.

⇒ may be steady combustion in endothermic (future work)

Summary

We have cleared the structure of combustion front.

- The type of combustion
 - diffusion induced case: weak deflagration
- (-shock induced case: strong detonation see SF+ PRD 93,043018 '16)
 - Conversion front of deflagration is stable in Endothermic Case

Future Works

- Relativistic formulation (underway)
- dependence and update of HM EOS, QM EOS, Transition condition