Neutron Stars in the Multi-Messenger Era

Sanjay Reddy
Institute for Nuclear Theory,
University of Washington, Seattle

Lecture 1: Basic notions of dense matter. Nuclear interactions and nuclear matter, effective field theory.
Mass and radius.

Lecture 2: Phase transitions, linear response, proto-neutron star evolution, supernova neutrino
emission and detection.

Lecture 3: Late neutron star cooling: Thermal and transport properties of degenerate matter, cooling of
isolated neutron stars, heating and cooling in accreting neutron stars. Observational constraints.

Lecture 4: Neutron stars as laboratories for particle physics:Dark matter candidates (axions and other
light weakly interacting particles, WIMPs, compact dark objects). Constraints from observations of
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Dense Matter

Electron

Density of an Fe atom: p >~ & g/cm3

Density of an Fe nucleus: p = 2.9 X 1014g/(3m3
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Dense Matter

Density of iron at atmospheric pressure

0~ 8 g/Cm3

Electron

Density of an Fe atom: p >~ & g/cm3

3
Density of an Fe nucleus: p = 2.9 X 1014g/cm

We live iIn an empty world !

Nucleus
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Compressing matter begins with the compression of electrons.



Compressing Matter:

A tale of frustration and liberation

Densit Fermi Energy Phenomena
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Composition and Phases of Dense Matter in Neutron Stars
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Composition and Phases of Dense Matter in Neutron Stars
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Lecture 1: Basic Notions

- Nuclel as drops of nuclear matter.
- Nuclear interactions and Effective Field Theory.
- First-order phase transitions and heterogeneous phases.

- Neutron star structure
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Energy of uniform nucleonie matter
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Energy of uniform nucleonie matter
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Nuclear Interactions
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Nuclear Interactions

QCD (Lagrangian) is simple is write down

Gluons

Vertices

Makes
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6 flavors
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Nuclear Interactions

QCD (Lagrangian) is simple is write down

Gluons

Vertices

Makes
hfe
3 colors 1nteresting
6 flavors
(u,d, s, c, b, t)

F. Wilczek, Physics Today (2000)
but Is difficult to solve at low energy.

Sum rules

't gets simpler at high energy (asymptotic freedom).

X

bb threshold

gauge theory

PP, PPV +
Deep inelastic scattering

The low energy QCD vacuum is non-
perturbative:
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e |t confines quarks to color singlet states.

e Spontaneously breaks chiral symmetry.
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Nuclear Interactions

eBaryons and mesons are the relevant low energy degrees of freedom at low
energy. Interactions between them are strong, complex, and short-range.

ePions are special. They are the Goldstone bosons associated with chiral symmetry
breaking and provide the longest range force between nucleons.

e Other mesons are significantly heavier. It is not very useful to single them out as
mediators of the strong interaction between composite color singlet states.

eHow then can we write down a theory of strong interactions between nucleons at
low energy 7

Potential Models “ffective Field Theories (EFT)



Nucleon-Nucleon Potentials
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Nucleon-Nucleon Potentials

One-pion e V? Ja ,t _a a
exchange: LNNm =N (Zﬁt QMN) YN f YNT O VTN
N N
I 2
T _ [ YA 0194029
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Potential depends on spin and Iso-spin.

't has a tensor component: S5 = 3(o1 - 71) (09 - T9) — 01 - 09

. 1
't Is singular: V(ir—0)~ =
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Nuclear Forces at Short Distances
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A Realistic Potential Model
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Potential is Neither Unigue Nor Observable (in QM)

Potential Models: Relies on a set of (reasonable) assumptions about the short
distance behavior to solve the Schrédinger equation and fit observables.

Effective Field Theory: Relies on a separation of scales to Taylor expand potential In
powers of momenta or inverse radial separation. Coefficients of the expansion are
determined by fitting to observables.
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Potential is Neither Unigue Nor Observable (in QM)

Potential Models: Relies on a set of (reasonable) assumptions about the short
distance behavior to solve the Schrodinger equation and fit observables.

Effective Field Theory: Relies on a separation of scales to Taylor expand potential in
powers of momenta or inverse radial separation. Coefficients of the expansion are
determined by fitting to observables.

A simple (heuristic) EFT example:

-xchange of heavy bosons at
OW energy cannot be resolved.

When several heavy particles may be exchanged, or when the underlying
mechanism Is unknown, the general expansion IS

2
Vvshort(Q) :CO_|‘02 XQ ...




Nucleons are composite with internal excitations
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At low energy
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There are three and many-body forces:
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Chiral EFT

3N Force 4N Force

Systematic approach to low energy
nuclear interactions.

Expectation Is that the expansion

will remain valid up to nuclear
density.

Consistent treatment of two, three
and many-body forces.




Ground State Energy

vZ
Hpuclear = N/ - VN 4+ Ve 4

P ~

two-body nucleon-
nucleon potential is well
constrained by scattering
data.

three-neutron potential is
constrained by light
nuclel.

Quantum Many-Body
Theory:

Quantum Monte Carlo
Diagrammatic Methods
(perturbation theory)

E(pn, pp) . Energy per particle



Diagrammatic Methods

Sum certain classes of Feynman
diagrams to capture non-perturbative
aspects.

N \ nucleon-nucleon interaction

Eg. Bruckner or G-matrix Theory:

|| - rY
G| - +fY+ G|+ | G

1 1 1
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v|\kaky) +
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Quantum Monte Carlo

Uy | H|Wy
Variational Monte Carlo: Eyv = Wv[H W) > F
(v ¥y )
Greens Function Monte Carlo:
U(T) =exp|—(H — Eo)T|¥y = Z exp|—(En — Eo)T|antn
\II(T — OO) — ao”(,c';?()

* Evolve particle coordinates.

e MC Kinetic terms.

e Explicitly compute potential.
U(Rn,T) = /(; R, R, 1) - G(Ri,Ro)¥y(Ro)dRn_1 - - - dRo

Fermion sign problem - limits GFMC



Energy of Uniform Matter: Nucleons in a Large Box

Given a Hamiltonian and a many-body approximation we
can calculate the energy of N neutrons + M protons in a

box. EFT potentials allow us to estimate the error due to

unknown short-distance dynamics.
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Energy of Uniform Matter: Nucleons in a Large Box

Given a Hamiltonian and a many-body approximation we
can calculate the energy of N neutrons + M protons in a

box. EFT potentials allow us to estimate the error due to

unknown short-distance dynamics.
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Equation of State of Neutron Matter

Reliable calculations of neutron matter are
now possible using QMC and EFT inspired

Hamiltonians.

Order-by-order convergence is good at
n=0.16 fm-3 and reasonable at n=0.32 fm-3.

n=0.16 fm-3 | n=0.32 fm-3
Energy (MeV) 15+ 3 30 £ 15
Pressure (MeV/fm-3) 2.5+ 1 135

>

E/A M

45—

A0F
351
30F

25

AVE Tews et al. (2018)
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Akmal & Pandharipande 1998, Hebeler and Schwenk 2009, Gandolfi, Carlson, Reddy 2010, Tews, Kruger, Hebeler, Schwenk (2013),
Holt Kaiser, Weise (2013), Roggero, Mukherjee, Pederiva (2014), Wlazlowski, Holt, Moroz, Bulgac, Roche (2014), Tews et al. (2018)



Nuclear Saturation, (A)symmetry Energy & Neutron Matter

Symmetric matter has zero pressure and is self-bound at a characteristic
density no ~ 0.16 fm

Energy per particle of symmetric matter is about -16 MeV.
lts costs energy to make matter asymmetric.

Kinetic (Fermi) energy and potential energy costs are comparable. Total
cost at saturation is about 30 MeV.

't iIs possible to calculate the energy of pure neutron matter

up to about twice nuclear saturation density. Errors due to

uncertainties in nuclear Hamiltonian (especially three-body forces) grows
rapidly with density.




Why Is matter heterogeneous at sub-nuclear density?
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Thinking grand Canownteally
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First-oroer transitions with 2 conserved Charges
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Global charge neutrality Local charge neutrality
//{,;rh\\‘ \

Energy cost due to Coulomb
and surface energies.



Surface and Coulomb Energles
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Neuwtron-rich niclel

870 o ' ' | ' ' ' ' | ' ' ' '
Figure: http://www.nscl.msu.edu/~brown/|ina-workshop/BAB-
At ﬁxed A o |- )
(L) The nuclear symmetry energy 5 80 - -
favors small (N-Z). s | ‘
S g40 [~ .
o | _
(i) coulomb energy favors small Z. g0 - —
820 | |
35 40 45 50
I ) ‘£ %
nuelel with “excess” | A OB E( A, Z) | ‘ ;
neutrons or protons are | H = Hn = Hp = 07 - (mn = mp) »‘
unstable to weak A s A ) A |
| L o -\ | L ,‘
Lnteractions. ] = dasym ( A) AC /s (M —myp) |

 Problem : Show that for A=100, Z =44 Ls the most stable nucleus. _1’
| Use: Qgym = 28 MeV ac = 0.697 MeV

e e e ———— P— —— ——— —



http://www.nscl.msu.edu/~brown/Jina-workshop/BAB-lecture-notes.pdf
http://www.nscl.msu.edu/~brown/Jina-workshop/BAB-lecture-notes.pdf

mwmersed Ln a dense electron gas

Beta Equilibrivm:
e +p—n+ve, n—p+e +1,
Hn — fp = pe =24 agym (1 — 2 zp)

I €T Nl 1 e 1 4 AC A2/3 ;4
| P 2 4 Qsym | 1 Qsym )‘

Neutrow Fermt 2005y [(1 — 22,) — = (1 — 22,)7]

J———

levels rise :



mwmmersed Ln a oense electron gas

Beta Equilibrivm:
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BE(exp) - BE(liquid drop) (MeV)

what have we tgwnored thus far ?
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Figures: http://www.nscl.msu.edu/~brown/]ina-workshop/BAB-lecture-notes.pdf
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There s a gap n the stngle particle spectrum
Systems with odd number of neutrons or protons
have Lower relative binding energy.



Table 1 Nuclides in the ground state of cold matter as a function of
density, from Haensel & Pichon (21)

m— — m — —
i

P i Ap/p©

Element Z N Z/A (gcm™) (MeV) (%)
S f o Using experimental nuclear masses

equencg O hucied 36 Fe 26 30 04643 796 10° 0.95 29
encountered in the neutron 62N 8 34 04516 271 10° 261 3.1
4 Nj 28 36 04375  1.30107 4.31 3.1
star outer Crust. 66N 28 38 04242 148 10° 445 2.0
BOKr 36 S0 0418 3.2 100 5.66 3.3
Rige 34 50  0.4048 1.10 101 8.49 16
From °6Fe to 118Kr 82 Ge 1250 03902 28010 1144 3.9
07n 30 50 03750 5.44 10" 14.08 4.3

T8Nj 28 50 03590  9.64 10 16.78 4.0
Fr_f}m the mass fnrmy]a of Mdller (1992), unpublished results

126R 0 44 82 03492 12910 18.34 3.0
124 Mo 42 82 0.3387 1.88 101 20.56 3.2
1227, 40 82 03279  2.6710' 22.86 3.4
120gp 38 82 03167  3.79 10 25.38 3.6

1B g 6 82 0.305] {43310 ! ]'d (26.19)

! pnax is the maximum density at which the nuclide is present.
"It is the electron chemical potential (including electron rest mass) at that density.

“Ap/p is the fractional increase in the mass density in the transition to the next
nuclide.

“The lines with pg, in parentheses correspond to the neutron drip point.



Electron-nucleus Interaction and Lattice Energy

To good approximation, electron charge distribution
LS untform.

72 1 73
EC:3 Q | 3 r I r
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Nucleus becomes unstable to deformations

whewn
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C 5 S
B 3r 1 73 1 r
uwntt cell oy (1 57 T 5 R3) < 1 oy E > (.56

Bohr-Wheeler (19328)



Now—spheriaaL nuclel or Pasta

, , 3 7?2 3 1 3
For splaencaL nuclel Eco = - T@ (1 2; | 2;3)

For “d” dimenstonal structures:
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For small surface tenston Pasta s favored.

Baym, Bethe, Pethick (1971)



Energy gain Ls modest and wmodel dependent
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Depth (km) —_ Mass contained in the crust

0001 001 01 1 00 issmall ~ few percent.
10 118 /’-_- A
B 84 Kr -= 25 C .
g 13 66\ Se - L.,s Most of it Is In the Inner-
D 10 o — - © 2 crust as either spherical or
Lo — : T = non-spherical nuclei
10 o f =5 immersed in a neutron fluid.
c 8 82
@ =
e %E
c .0 = liquid core
%% 31 ngutrun-rich |
2D 52 |5| matter o Neutron Fraction:
center at 10 km
Outer Crust < 70%.

\ Inner Crust ~ 90%.

neutron Quter Core: > 90%
superfluid //. i
nuclel | l l ' )




Equation of State and Neutron Star Structure

P(e) + Gen.Rel. = M (R)



Equation of State and Neutron Star Structure

P(e) + Gen.Rel. = M (R)



Equation of State and Neutron Star Structure

P(¢) ' ' M(R)

P(e) + Gen.Rel. = M (R)




Equation of State and Neutron Star Structure

P(e) + Gen.Rel. = M (R)

A small radius and large maximum mass implies a rapid
transition from low pressure to high pressure with density.



Constraints on the Equation of State
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Constraints on the Equation of State
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Constraints on the Equation of State

A

™ P(2gss) = 13 £ 5 MeV/fm® -
E_'/ P(Ssat) =25+1 MeV/fm3 """"""""""""""""""""""""
o0 .

e,

neutron

drip
" relativistic
electrons crust
4
7 | 14 | 15

log € (g/cm?3)

- ; P
can calculate | can speculate



Constraints on the Equation o]‘o otate
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Constraints on the Equation o]‘o otate
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Dense matter EOS and NS structure

Neutron matter calculations and a
sound speed at higher density
constrained by 2 solar mass NS and
causality provide useful constraints on
the NS properties.

R1.4=9.5-12.5 km

Mmax =2.0-2.5 Msolar
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Neutron Star Structure: Observations

2 M. neutron stars exist.
PSR J1614-2230: M=1.93(2)

PSR J0348+0432: M=2.01(4) M

MSP J0740+6620: M=2.17(10) Me




Neutron Star Structure: Observations

2 M. neutron stars exist.
PSR J1614-2230: M=1.93(2)

PSR J0348+0432: M=2.01(4) M
MSP J0740+6620: M=2.17(10) M

— M28
M30

—— NGC 6304
NGC 6397
o Cen
47 Tuc X5

Inferred NS radii are small. " . | e
Despite poorly understood systematic
errors, x-ray observations suggest

R ~ 9-13 km. Perhaps even preferring a
smaller range R~ 10-12 km.

S5
Radius (km)




Bmary mspwa\ and Gravitational Waves

GWs are produced by fluctuating quadrupoles.

b (1,8) = 22 Ty (tR)

I

.I.U( ) M Rorblt f2 ~ M5/3 f2/3
1025 (Mas 3 f  \*? /100 Mpc
M@ 200 Hz I

- Advanced LIGO can detect GWs from binary
neutron stars out to about 200 Mpc at design
sensitivity. Detection rate ~ 1- 50 per year.
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Tidal Deformation: Measuring the Neutron Star Radius

Tidal forces deform neutron stars.
Induces a quadrupole moment.

/ 0°V;

v = yl Ex EFE = —
Q Y Y Ixy 0x0y

Rorbit ,S 10 RNS

tidal deformability  external field



Tidal Deformation: Measuring the Neutron Star Radius

Tidal forces deform neutron stars.
Induces a quadrupole moment.

/ 0°V;

" — /1 Ex E —
Q Y Y Ixy 0x0y

Rorblt ~ 10 RNS

tidal deformability  external field

117 s M

Tidal interactions change the rotational phase: 6@ = 756 " — A




Tidal Deformation: Measuring the Neutron Star Radius

Tidal forces deform neutron stars.
Induces a quadrupole moment.

/ 0°V;

v = Y Ex EFE = —
Q Y Y Ixy 0x0y

Rorblt ~ 10 RNS

tidal deformability  external field

117 s M

Tidal interactions change the rotational phase: 6@ = 756 " — A

S
Dimensionless binary tidal deformability: A = S (( 1) (1 | MQ)A1+ 1 <—>2>



Tidal Deformation: Measuring the Neutron Star Radius

Tidal forces deform neutron stars.
Induces a quadrupole moment.

/ 0°V;

v = Y Ex EFE = —
Q Y Y Ixy 0x0y

Rorblt ~ 10 RNS

tidal deformability  external field

117 s M

Tidal interactions change the rotational phase: 6@ = 756 " — A

S
Dimensionless binary tidal deformability: A = S ((Ml) (1 | %ﬂ A+1o 2)
|

j“i RZS
Tidal deformations are large for a large NS: A, =—- = sz



Tidal Effects at Late Times
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B. Lackey, L. Wade. PRD 91, 043002 (2015)



Neutron Stars are Small

A = 222.29+419.83 245.39+123.12 233.39+127-33

B Uniform distribution
B Double Neutron Stars
B Galactic Neutron Stars
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Tidal deformations observed
in GW170817 are small and

suggests that the NS radius:

R < 13 km

Requiring a maximum mass
greater than 2 Msun implies:

R > 9 km



Speed of Sound in Dense Matter

L arge observea Neutron stars
maximum mass
combined with small
radius and neutron matter
calculations suggests a
rapid Increase In pressure
IN the neutron star core. Conformal limit
Implies a large and non- Perturbative QCD
monotonic sound speed -
in dense QCD matter.

Causality: ¢ < 1




summary



Mixed Phase are generic to first-order transitions

Vacuum
to
nucelear matter

electrons

neutrons +
proto ns +

electrons

exotic

Nuclear meatter
to
Exotie Phase

huclear
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