GPU APPLICATION IN JUNO

WUMING LUO MAY 3OTH 2O19 高能物理计算和软件会议 南京大学

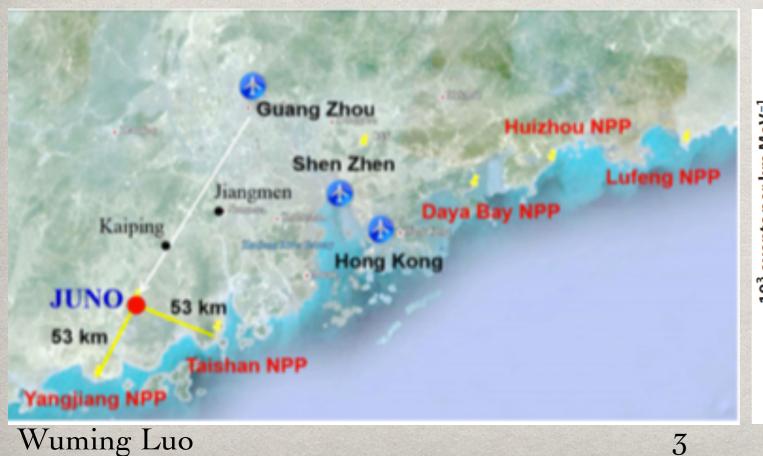


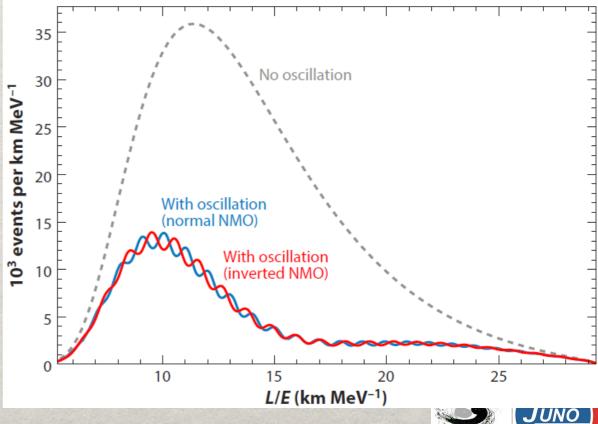
OUTLINE

- * Introduction to JUNO
- ***** Applications
 - **Wertex Reconstruction**
 - **Muon Simulation**
 - Deep Learning
- * Discussion
- * Summary

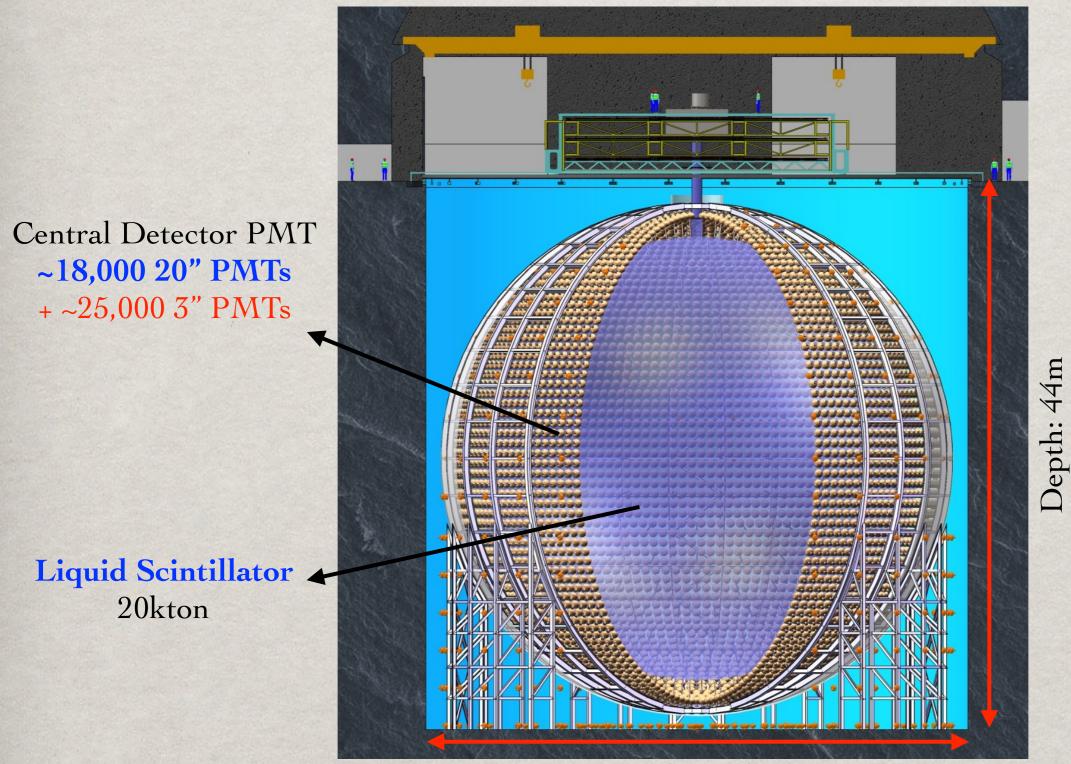
JUNO

- # Jiangmen Underground Neutrino Observatory(JUNO):
 - ** Largest liquid scintillator detector (20 kton)
- Primary physics goals:
 - * Determine the neutrino mass hierarchy
 - * Measure neutrino oscillation parameters precisely



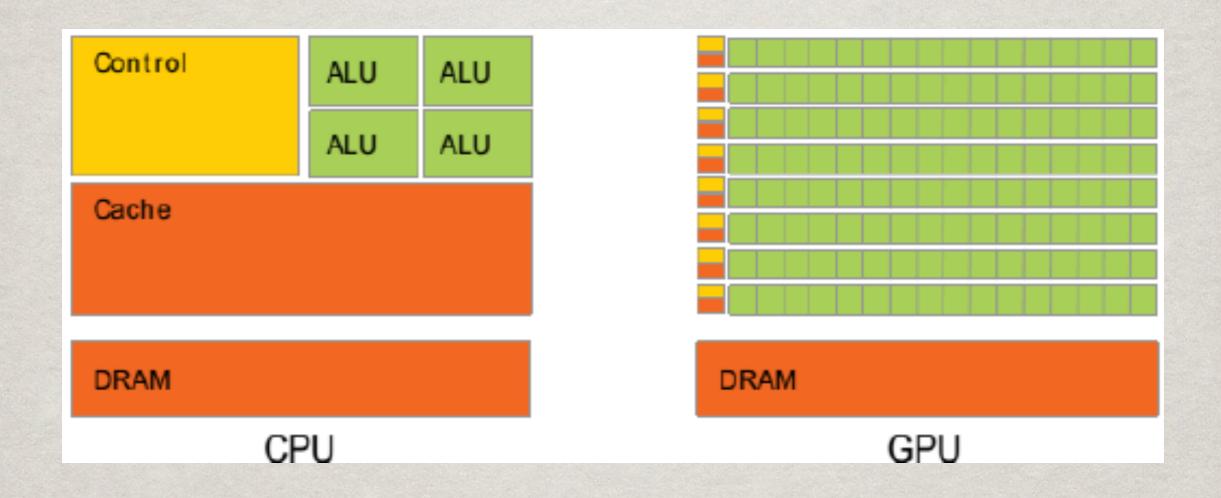


DETECTOR



φ: 43.5m

GPU VS CPU



Large Cache

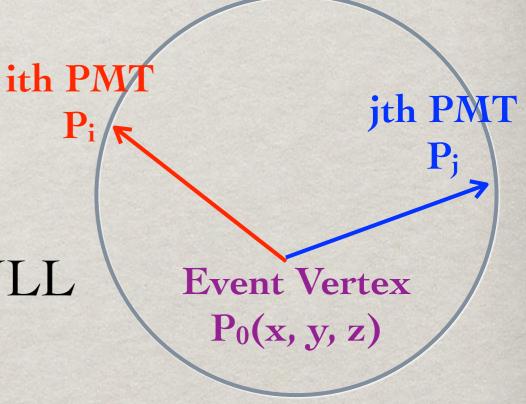
Optimized for serial operations

Many cores

Built for parallel operations

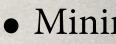
CASE 1: VERTEX RECONSTRUCTION

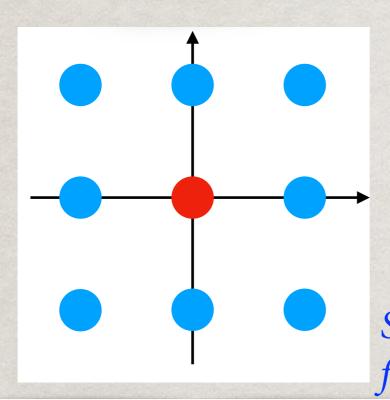
- ** Parameters to reconstruct: x, y, z, t_0
- **Algorithm: $-\ln \mathcal{L} = -\sum \ln f_{res}(t_{i,res}) = -\sum \ln f_{res}(t_i t_{i,tof} t_0)$
 - # ti: first hit time of ith fired PMT
 - ** ttof: time of flight
 - # to: event start time
 - $f_{res}: pdf of residual time$
- Scan 4D grid to minimize the NLL



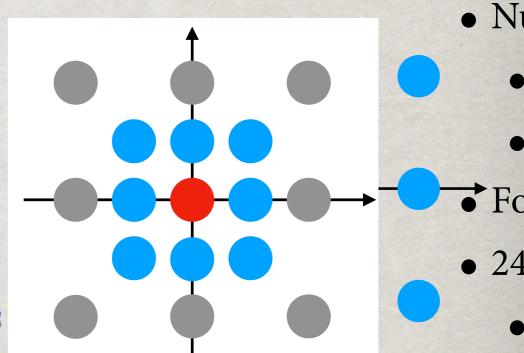
for 2-din

GRID SEARCH — 2D

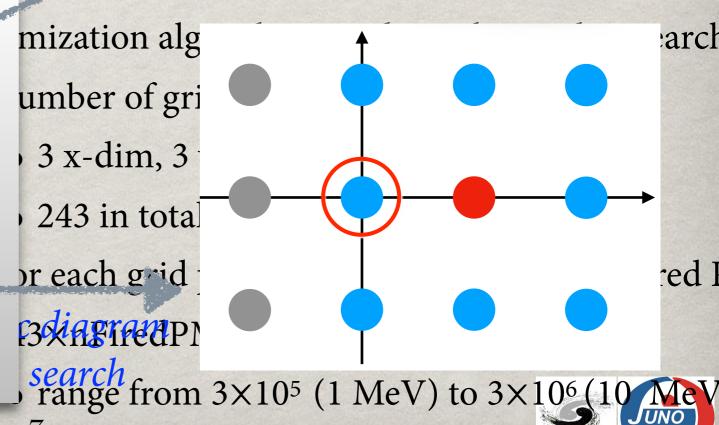




Schematic diagram for 2-dim search



```
if(Center is minimum) {
   step /= 1/2
}
else {
   move to NEW center
}
```



• Minimization algorithm: GridSearch, a 4-dim search

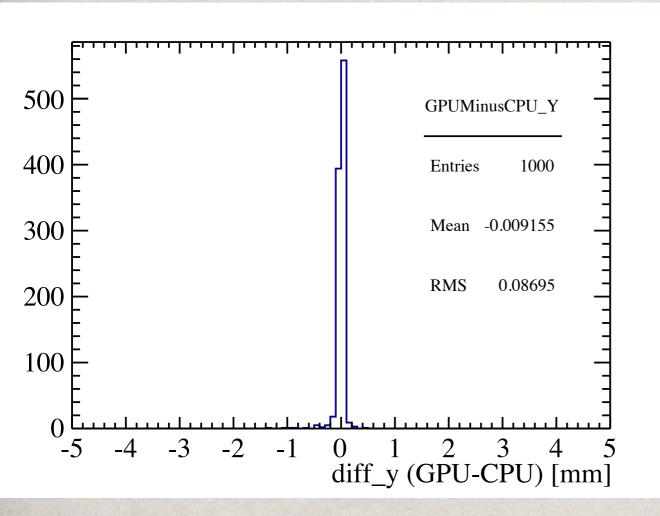
Wuming Luo

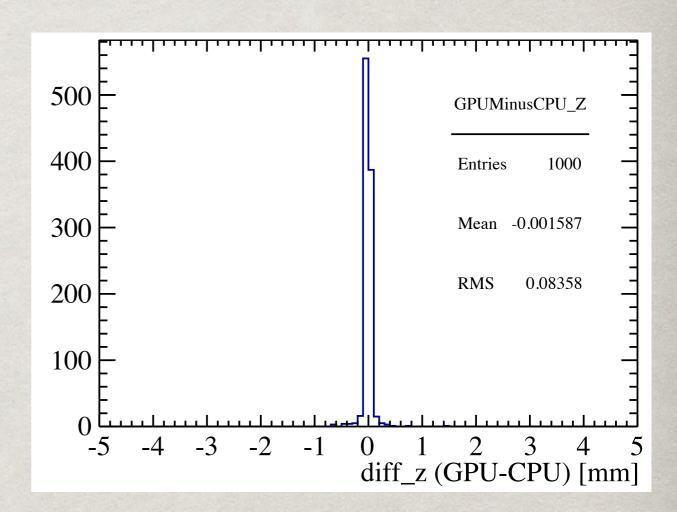
PARALLELIZATION ON GPU

```
for(t)
  for(x)
     for(y){
        for(z)
          for(ith PMT){
             calc. NLLi
              ON CPU
```

- #4D Grid Search
- % Number of loops: x-dim*ydim*z-dim*tdim*n_fired_PMTs =
 3*3*3*9*1200/MeV =
 3*105/MeV
- Parallelize the calculations on GPU

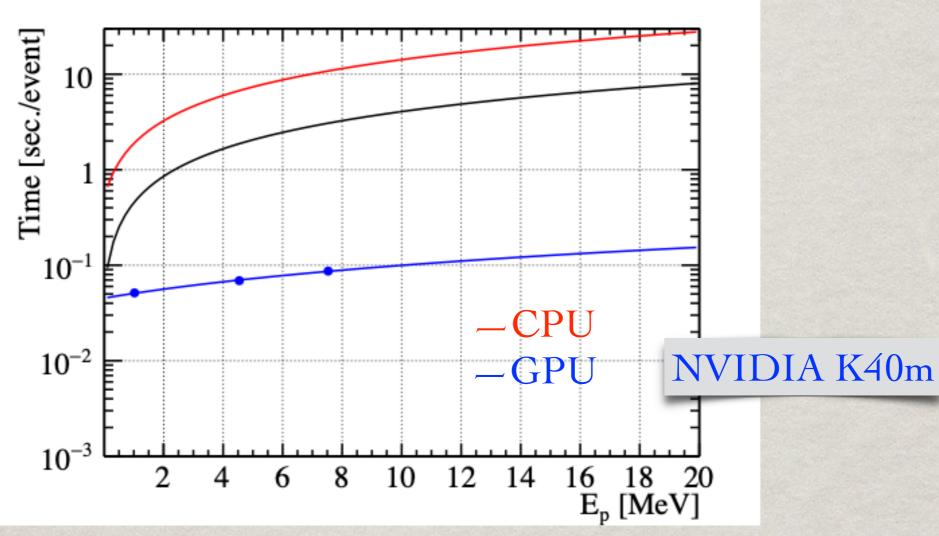
VALIDATION





- # GPU Rec was able to reproduce the CPU Rec results
- **Tiny difference (<0.5mm), negligible w.r.t. vertex resolution (60mm)

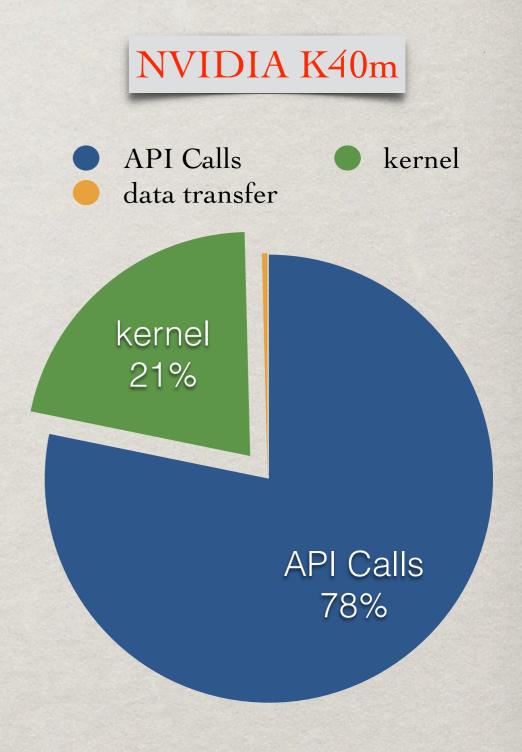
PERFORMANCE



	CPU	GPU	Ration: CPU/GPU
Time@1MeV(s)	1.88	0.05	~40
Time@10MeV(s)	14.19	0.095	~150
Gradiant	1.37	0.005	

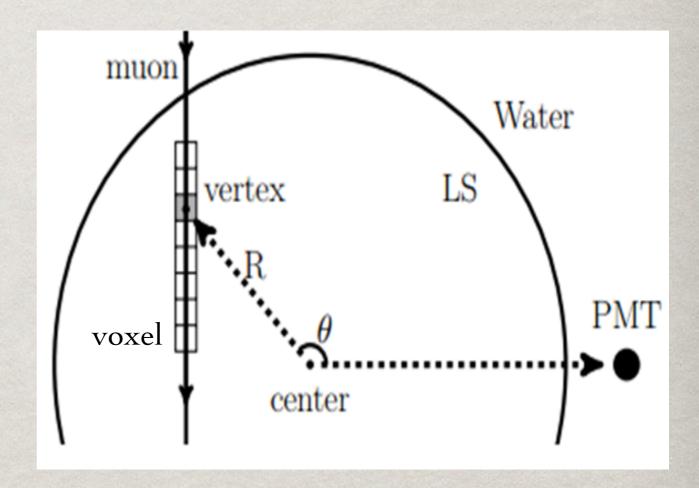
DISCUSSION

- Memory allocation and free, Synchronization etc... take up most of the time, room for future optimization
- Potential improvement with multiple GPUs
- Instead of Grid Search, divide the detector ROI to tiny units and parallelize with GPU(s)



CASE 2: MUON SIMULATION

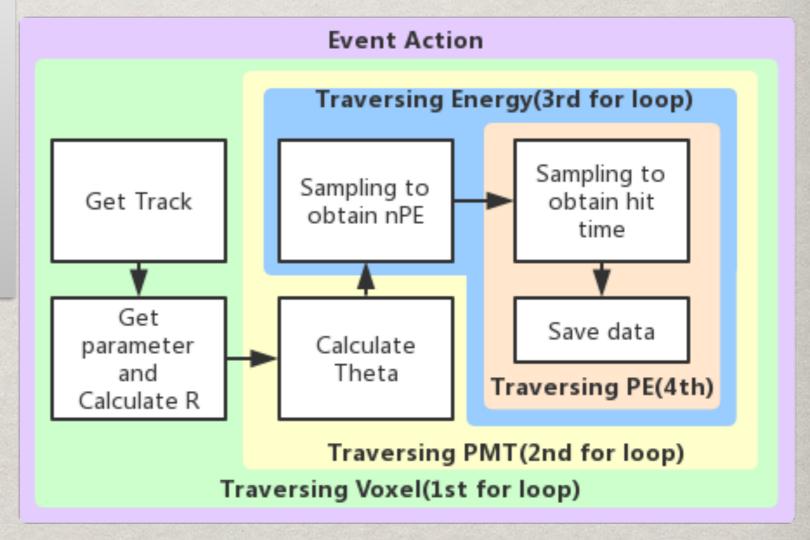
- Simulate the number of photons (nPE) and the corresponding hit time({t_i}) collected by each PMT for a traversing Muon
- Woxel: segments along the muon track
- For fixed (R, θ), sampling nPE and {t_i} from templates



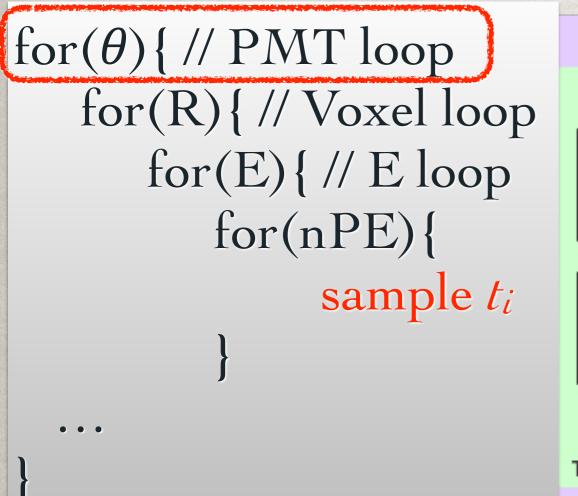
COMPUTATION FLOW

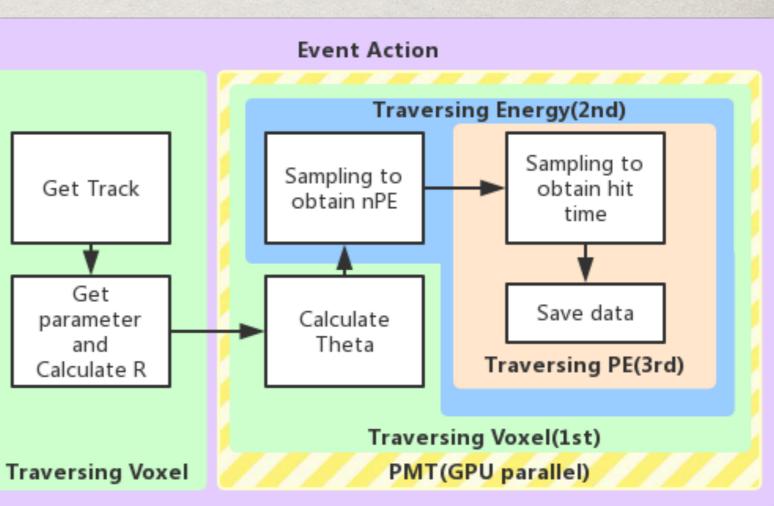
```
for(R) { // Voxel loop
for(\theta) { // PMT loop
for(E) { // E loop
for(nPE) {
sample t_i
}
...
```

~18,000 PMTs



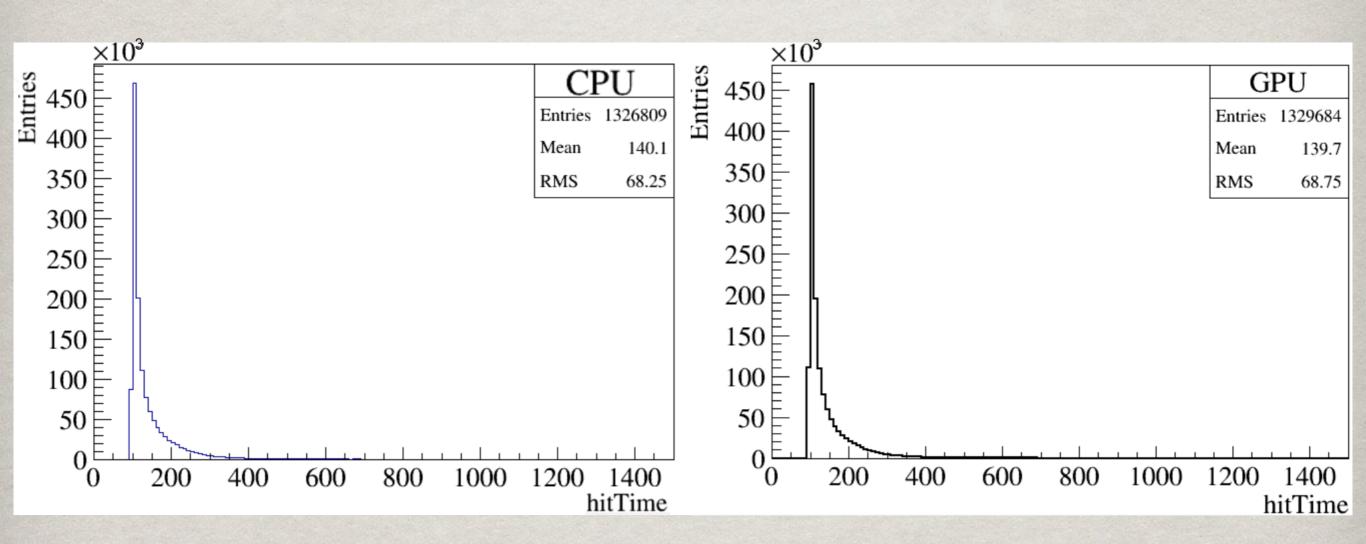
COMPUTATION FLOW





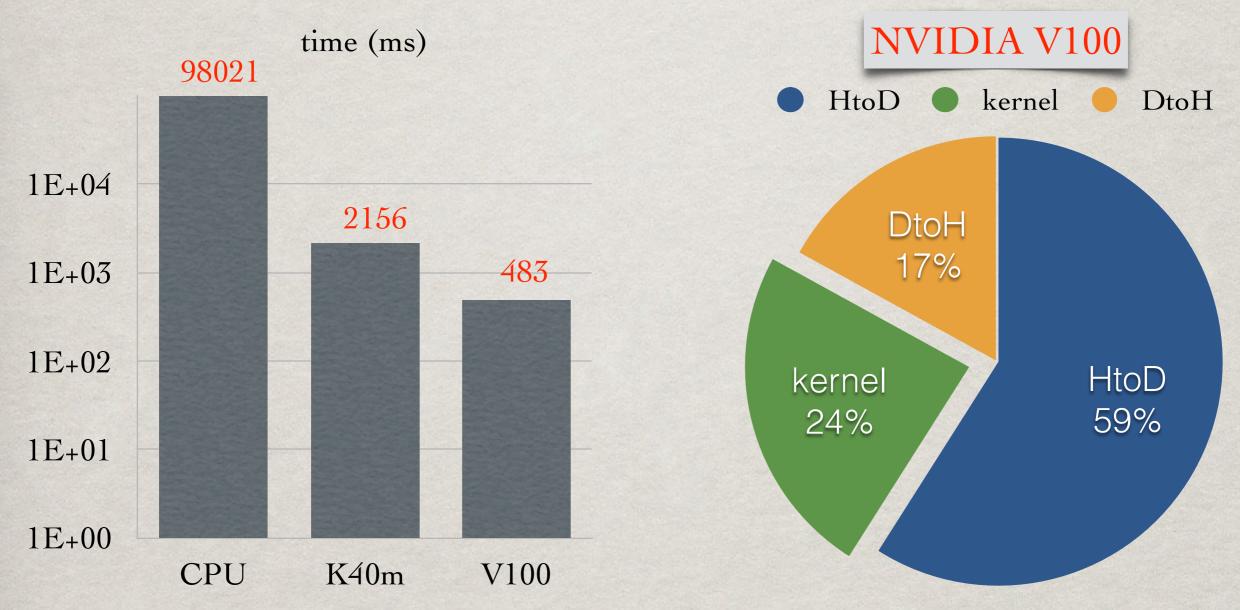
- Switch the Voxel loop and PMT loop levels
- ** Parallelize the PMT loop with GPU

VALIDATION



- # GPU Sim was able to reproduce the CPU Sim results
- * Negligible difference

PERFORMANCE



- **O(102)** improvement with V100
- Future optimization: data transfer, more levels, multi-GPUs,

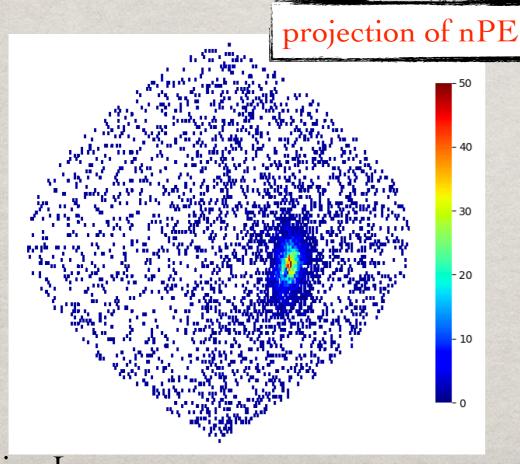
CASE 3: DEEP LEARNING

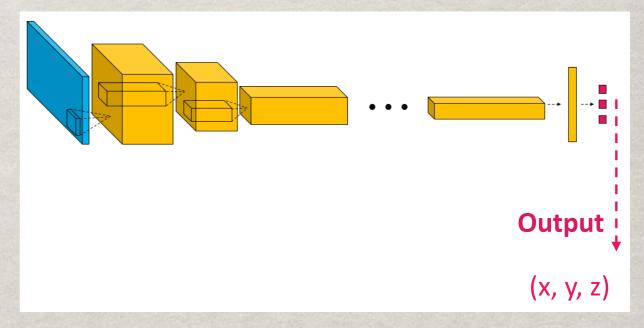
GPU is widely used for DL

**Try Vertex Reconstruction with CNN in JUNO

Input: hit time {ti}, numb

Output: event vertex (x,)

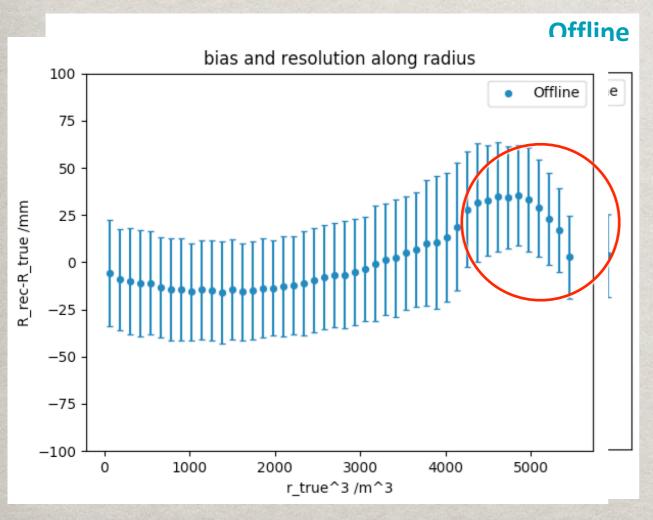


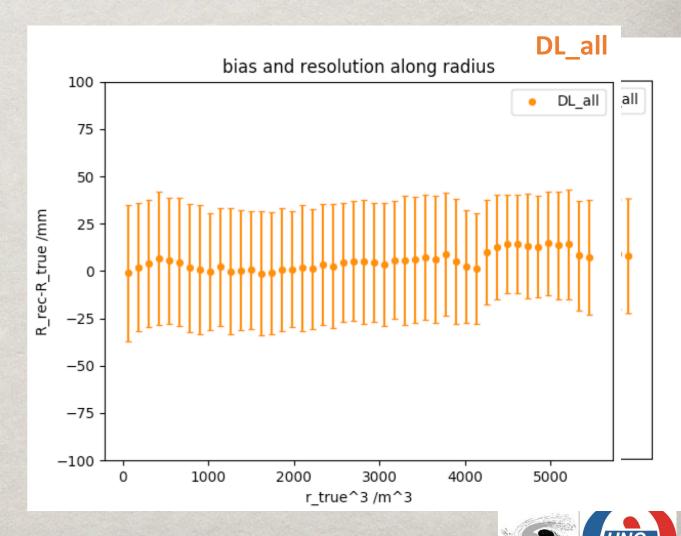


ons {nPE_i}

PERFORMANCE

- Smaller Bias for DL w.r.t. traditional method
- ** Better uniformity for DL w.r.t. traditional method



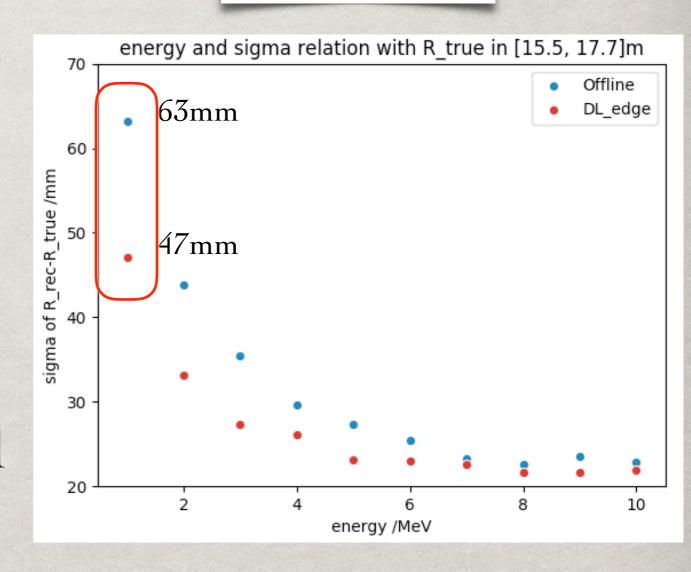


PERFORMANCE

For events near the detector edge, total refraction complicates the optical model

Better resolution for DL w.r.t. traditional method using a specialized model

Resolution vs E

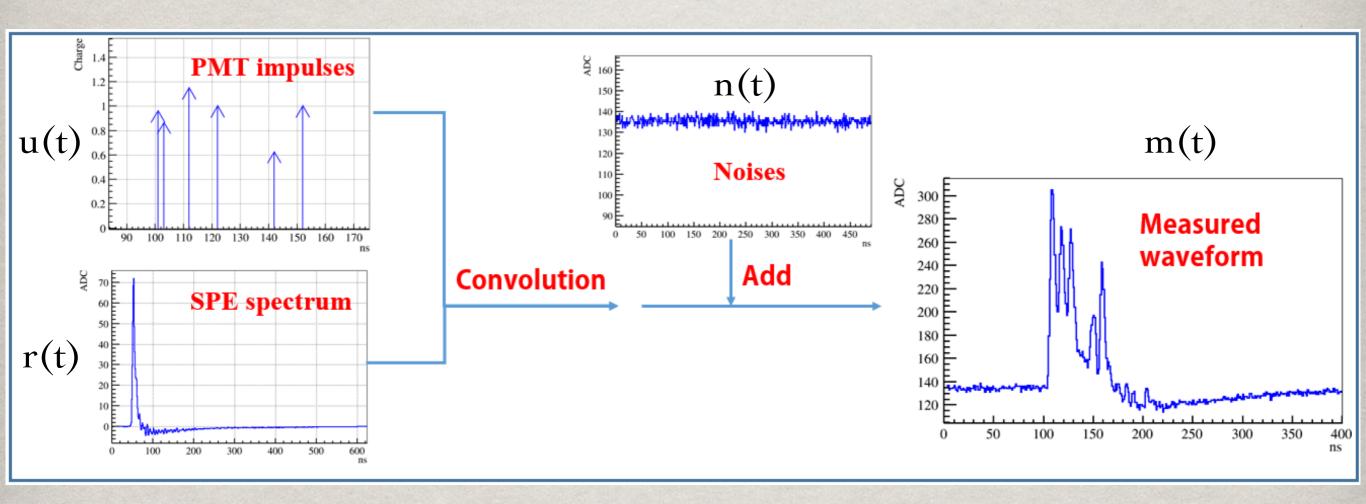


DISCUSSION FOR DL

※Pros:

- # fast speed, energy independent
- * avoid the complex optical model
- - ** rely heavily on GOOD Monte Carlo simulation
- ** Training samples
 - MC: large statistics, might be different w.r.t. real data
 - Calibration data: close to real data, limited stats.
- Possible solutions?

PMT WAVEFORM REC



$$m(t) = s(t) + n(t) = r(t) u(t) + n(t)$$

We need to reconstruct {t_j} and {charge_j} or ideally {nPE_j}

DL FOR WAVEFORM REC?

- ** FADC raw waveform —> Time series
- We know roughly what the feature looks like —> sPE response template
- **We want to know $\{t_j, Q_j(nPE_j)\}\$ for all pulses
- ** We have PMT testing data —> real waveform
 - * Issue: unsupervised, real labels unknown
- **Analogies? Voice recognition? Suggestions?
- **Try to answer simpler questions:
 - **Q1:** what is the first hit time?

SUMMARY

- ** Showed a few simple applications of GPU in JUNO
 - * Vertex reconstruction, Muon simulation, Deep Learning
 - ** Large room for further improvements
- Could be used in other aspects of JUNO
- # Huge potential for experiments with lots of PMTs

BACKUP

TOOLS

- ** CUDA**
- **** Thrust**
- ** TensorFlow

	multi-processors	CUDA cores	ram(GB)
K40m	15	2880	12
V100	80	5120	32