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juno
Jiangmen Underground Neutrino Observatory(JUNO):  

Largest liquid scintillator detector (20 kton)
Primary physics goals: 

Determine the neutrino mass hierarchy
Measure neutrino oscillation parameters precisely
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detector
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Liquid Scintillator
20kton

Central Detector PMT
~18,000 20” PMTs
+ ~25,000 3” PMTs

𝜙: 43.5m

D
ep

th
: 4

4m
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gpu vs cpu
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Large Cache

Optimized for serial operations

Many cores

Built for parallel operations
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case 1: vertex 
reconstruction

Parameters to reconstruct: x, y, z, t0

Algorithm:  -lnℒ = -∑ ln fres(ti,res) = -∑ ln fres(ti - ti,tof - t0)
ti : first hit time of ith  fired PMT
ttof : time of flight
t0 : event start time
fres : pdf of residual time

Scan 4D grid to minimize the NLL
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Event Vertex
P0(x, y, z)

ith PMT 
Pi

jth PMT 
Pj
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grid search — 2d
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GridSearch: Minimizer for vrt. rec.

 16

• Minimization algorithm: GridSearch, a 4-dim search 
• Number of grid points: 

• 3 x-dim, 3 y-dim, 3 z-dim, 9 t-dim; 
• 243 in total; 

• For each grid point, calculate prob. of each fired PMT; 
• 243⨉nFiredPMT in total 

• range from 3⨉105  (1 MeV) to 3⨉106 (10  MeV).

Schematic diagram  
for 2-dim search

If minimum  
point changes

If minimum point  
remains the same
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if(Center is minimum){
   step /= 1/2
}
else{ 
   move to NEW center
}
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parallelization on gpu

4D Grid Search
Number of loops: x-dim*y-
dim*z-dim*t-
dim*n_fired_PMTs = 
3*3*3*9*1200/MeV = 
3*105/MeV
Parallelize the calculations 
on GPU
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for(t){
     for(x){
          for(y){
               for(z){
                   for(ith PMT){
                        calc. NLLi

                   }
   …
}                       ON CPU
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validation

GPU Rec was able to reproduce the CPU Rec results
Tiny difference (<0.5mm), negligible w.r.t. vertex 
resolution (60mm)
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Validation of GPU-based Rec. Alg.
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• Comparison between CPURec and GPURec 

• Maximum difference: ~0.5 mm 

• negligible comparing to the vertex 
resolution (~5 cm) 

• Difference <- computational accuracy 

• likelihood values of two set of 
parameters are the same
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performance

�10

CPU GPU Ration: CPU/GPU

Time@1MeV(s) 1.88 0.05 ~40

Time@10MeV(s) 14.19 0.095 ~150

Gradiant 1.37 0.005 —

—CPU
—GPU NVIDIA K40m
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discussion

Memory allocation and free, 
Synchronization etc… take 
up most of the time, room for 
future optimization 
Potential improvement with 
multiple GPUs
Instead of Grid Search, 
divide the detector ROI to 
tiny units and parallelize 
with GPU(s)
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kernel
21%

API Calls
78%

API Calls kernel
data transfer

NVIDIA K40m
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case 2: muon simulation
Simulate the number of 
photons (nPE) and the 
corresponding hit 
time({ti}) collected by 
each PMT for a 
traversing Muon
Voxel: segments along 
the muon track
For fixed (R, 𝜃), 
sampling nPE and {ti} 
from templates
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voxel
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computation flow
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for(R){       // Voxel loop
     for(𝜃){   // PMT loop
          for(E){   // E loop
               for(nPE){
                       sample ti

               }
   …
}                     ON CPU

~18,000 PMTs



Wuming Luo

computation flow
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for(𝜃){ // PMT loop
     for(R){ // Voxel loop
          for(E){ // E loop
               for(nPE){
                       sample ti

               }
   …
}

Switch the Voxel loop and PMT loop levels
Parallelize the PMT loop with GPU
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validation
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3 3

GPU Sim was able to reproduce the CPU Sim results
Negligible difference
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performance

O(102) improvement with V100
Future optimization: data transfer, more levels, multi-
GPUs,
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time (ms)

1E+00

1E+01

1E+02

1E+03

1E+04

CPU K40m V100

98021

2156

483
DtoH
17%

kernel
24%

HtoD
59%

HtoD kernel DtoH

NVIDIA V100
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case 3: deep learning

GPU is widely used for DL
Try Vertex Reconstruction with CNN in JUNO
Input: hit time {ti}, number of photoelectrons {nPEi}
Output: event vertex (x, y, z)
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• J18v1r1-Pre1

• two	million	e+ events

• without	electronic	simulation

• continuous	in	[1,	10]	MeV

• uniform in space

2D	arrangement	of	the	hits	data
Color	means	the	PMT	id

Train	data

10

Data	used	to	train	the	model

• Use	the	first	hit	time	and	nPE in	each	PMT	as	input	data.

• Use	the	true	vertex	from	simulation	as	label.

• Project	the	hits	data	into	2D	plots.

• Get	a	(230,126,2) size	array	and	feed	into	the	model.

Projection	of	nPE
Color	means	the	number

• Build	a	CNN	model
50	layers,	35m	parameters

• Input	the	hits	distribution	data
including	the	first	hit	time	and	nPE (number	of	

photoelectron)

• Output	the	(x,	y,	z)	values.

Vertex	reconstruction	with	Deep	Learning

9

Input

Output

(x, y, z)

projection of nPE
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performance

Smaller Bias for DL w.r.t. traditional method
Better uniformity for DL w.r.t. traditional method
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Offline	method	gets	obvious	bias	near	the	boundary	of	central	detector.

Bias	along	the	radius

15

Offline	 DL_all

Offline	method	gets	obvious	bias	near	the	boundary	of	central	detector.

Bias	along	the	radius

15

Offline	 DL_all
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performance

For events near the 
detector edge, total 
refraction complicates 
the optical model
Better resolution for DL 
w.r.t. traditional method 
using a specialized model
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Performance	for CE"F# in	[15.5,	17.7]m
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For	e+	events	in	1	MeV
• Offline					63.15	mm
• DL_edge 47.11 mm

trained	with	1/3	train	data

The	specialized	model	DL_edge
gets	both	better	bias	and	resolution	
than	Offlinemethod	for	the	events	
near	the	boundary.

Test	data:		in	1/3	volume	of	the	CD
Resolution vs  E

63mm

47mm
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discussion for dl

Pros: 
fast speed, energy independent
avoid the complex optical model

Cons:
rely heavily on GOOD Monte Carlo simulation

Training samples
MC: large statistics, might be different w.r.t. real data
Calibration data: close to real data, limited stats.

Possible solutions?
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pmt waveform rec

m(t) = s(t) + n(t) = r(t)*u(t) + n(t)
We need to reconstruct {tj} and {chargej} or ideally 
{nPEj}
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24

Standard process in the frequency domain

u(t)

r(t)

n(t)
m(t)
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dl for waveform rec?
FADC raw waveform —> Time series
We know roughly what the feature looks like —> 
sPE response template
We want to know {tj , Qj(nPEj)} for all pulses
We have PMT testing data —> real waveform

Issue: unsupervised, real labels unknown
Analogies? Voice recognition? Suggestions?
Try to answer simpler questions:

Q1: what is the first hit time?
Q 2: classify waveform to [0, 1, ≥2]PE three categories
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summary

JUNO has ~O(105) PMTs, perfectly suitable for 
utilizing GPU  
Showed a few simple applications of GPU in JUNO

Vertex reconstruction, Muon simulation, Deep Learning
Large room for further improvements

Could be used in other aspects of JUNO
Huge potential for experiments with lots of PMTs
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tools
CUDA
Thrust
TensorFlow
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multi-processors CUDA
cores ram(GB)

K40m 15 2880 12

V100 80 5120 32


