Vertex Reconstruction in JUNO

Ziyuan Li

SUN-YAT-SEN UNIVERSITY

Computing and Software Workshop for HEP @ NJU

May 30, 2019

Zi		LI –	(SYSU	
	,		10.00	

Vertex Reconstruction

Jiangmen Underground Neutrino Observatory

- Location : Kaiping, Jiangmen city, Guangdong Province, China.
- Baseline optimized for Neutrino Mass Ordering determination : 53 km from Taishan and Yangjiang NPP
- Reactor $\bar{\nu_e}$: \sim 60 / day
- Data taking start : 2021

< □ > < □ > < □ > < □ >

The JUNO Detector

Top Tracker

- ▷ 3 layers of plastic scintillator
- \triangleright Precise μ tracking

Water Cherenkov Detector

- > 25 kton ultra-pure water
- 2.4k 20" PMTs
- \triangleright High μ detection efficiency
- Protects CD from external radioactivity

Central Detector

- > 35.4 m diameter acrylic sphere
- > 20 kton liquid scintillator
- ▷ 18k 20" PMTs + 25k 3" PMTs, 78% PMT coverage

→ ∃ →

Physics of JUNO

Detection Principle

Physics

- Mass Hierarchy (MH)
- Precise measurement of parameter $(\theta_{12}, \Delta m_{21}^2, \Delta m_{31}^2)$
- Reduce uncertainty on δ_{CP}
- Understand requirement for $0\nu\beta\beta$ experiment

Ziyuan LI (SYSU

Motivation of Vertex Reconstruction Study

To determine MH, require energy resolution better than $3\%/\sqrt{E}$

Base on the current experiment setup, could reach 3 - 4σ sensitivity in 6 years

Ziyuan LI (SYSU

Vertex Reconstruction

May 30, 2019 5 / 28

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation of Vertex Reconstruction Study

To achieve 3% energy resolution, Vertex resolution better than 12cm is needed

Illustration of Vertex

4 A I

- ▷ Charge Center
- Time Likelihood

▷ Deep Learning

3

• • • • • • • • • • • •

Charge Center Algorithm Principle

Use charge information as weight for each PMT, the vertex position can be estimated by $\vec{r_{rec}}$:

 $\vec{r}_{rec} = \alpha \sum_i q_i \vec{r}_i / \sum_i q_i$

where :

 q_i : i PMT collected charge;

 $\vec{r_i}$: i PMT position;

 α : 1.2 correction factor

Mathematic calculation :

$$z_{rec} = \frac{1}{4\pi} \int zd\Omega$$

= $\frac{1}{4\pi} \int_{0}^{2\pi} (z_0 + r \cdot \cos\theta) \sin\theta d\theta$
= $\frac{1}{2} \int_{0}^{2\pi} (z_0 + (\sqrt{R^2 - z_0^2 \sin^2\theta} - z_0 \cos\theta) \cdot \cos\theta) \sin\theta d\theta$
= $\frac{2}{3} z_0$

- Light source deployed at z_0
- Gamma evenly emitted in 4π solid angle of z_0
- Charge center method reconstructs vertex at 2/3 z₀

Charge Center Performance

For $R_{edep} > 16$ m, due to total refraction, the charge distribution change, charge center method doesn't work well

- Charge Center
- Time Likelihood

Deep Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Time Likelihood Algorithm Principle

For point-like events like e^+ , e^- , γ deposit energy in liquid scintillator and emit photons, define residual hit time :

$$t_{i,res} = t_i - tof - t_0$$

where :

- t_i : First hit time of i PMT;
- tof : Time of flight for scintillating photon;
- t_0 : Real time of an event.

Time Likelihood Algorithm Principle

Charge Center Method to get initial vertex

For each iteration step with vertex position $\vec{R_0}$, calculate $t_{i,res}$ for each PMT

$$t_{i,res}(ec{R_0},t_0)=t_i-\sum_lpharac{D_lpha(ec{R_0},ec{R_i})}{c_lpha}-t_0$$

where :

 α : Different material;

 c_{α} : Light speed in material;

 D_{α} : Photon travel length in material;

 R_i : Position of i PMT.

Define Joint Likelihood Function

$$\mathcal{L}(ec{R_0},t_0)=-\sum_i \ln(f(t_{i,res}))$$

Minimize likelihood function to get the best vertex position

Ziyuan LI (SYSU

Possibility Density Function

The quality of vertex reconstruction depends on how well our PDF could describe the physical processes

- Put 4.4MeV γ source at the center, get the t_{res} distribution from simulation for PMT with nPE=1
- In case nPE > 1, use the following equation to calculate the PDF

GridSearch Minimization

Step :

- * Get initial vertex position from Charge Center Method
- @ For each direction (X,Y,Z) and iteration, ± 1 step to find the minimum grid in the current step_length
- & step_length divided by 2 and go to 0, stop iterate until step_length < 0.1 mm

Ziyuan LI (SYSU)

Vertex Reconstruction Bias

Apparent correlations between z_{rec} - z_{edep} mean bias and z_{edep}

Ziyuan LI (SYSU

Vertex Reconstruction

May 30, 2019 15 / 28

Effective Light Speed

Time of Flight is not correct : $t_{res} = t_i - tof - t_0$

- The actual path length that a photon traveled is longer than the length of straight line between hit and vertex
- \Box Using straight line and c_{LS} $(\frac{c}{n_{LS}})$ makes *tof* smaller than actual, $t_{res} > 0$

□ Both near and far ends want to recover its correct path, pushing vertex recostruct to the other end

Effective Light Speed

Time of Flight is not correct : $t_{res} = t_i - tof - t_0$

- □ To correct *tof*, should use true path length (unknown)
- \Box Alternative is to introduce the effective speed of light c_{eff} $\left(\frac{c}{n_{eff}}\right)$

 \Box tof = $\frac{distance}{c_{eff}}$, an appropriate c_{eff} can correct tof back

Effective Light Speed

Time of Flight is not correct : $t_{res} = t_i - tof - t_0$

- To correct tof, should use true path length (unknown)
- \Box Alternative is to introduce the effective speed of light c_{eff} $\left(\frac{c}{n_{eff}}\right)$

 \Box tof = $\frac{distance}{c_{eff}}$, an appropriate c_{eff} can correct tof back

□ *c*_{eff} is a parameter to simplify the entire optical model, including both geometrical and physical effect

Time Likelihood Performance

Reconstruction in each direction

Ziyuan LI (SYSU

Vertex Reconstruction

May 30, 2019 19 / 28

Time Likelihood Performance

Resolution vs. Energy

Time Likelihood Performance

Vertex Reconstruction Bias

More factors to consider

In real experiment, the following effects will worsen resolution

- PMT Time Transit Spread (TTS)
- > Waveform Reconstruction
- Dark Noise

Ziyuan LI (SYSL

Time Likelihood Performance with TTS

Charge Center

Time Likelihood

Deep Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deep Learning

Deep Learning Performance

Ziyuan LI (SYSU

Vertex Reconstruction

May 30, 2019 26 / 28

Summary

Conclusion

- Three methods have been developed for vertex reconstruction in JUNO : Charge Center, Time Likelihood, Deep Learning
- ▷ Vertex Resolution is 60mm @ 1MeV, and 90mm @ 1MeV with TTS
- Vertex mean bias is less than 40mm

Outlook

- Further investigate the physic behind vertex bias
- Reconstruct with Dark Noise
- Deep Learning with TTS and Dark Noise

The End

Thanks for your attention !

Ziyuan LI (SYSU)

Vertex Reconstruction

May 30, 2019 28 / 28

- 2

<ロト < 四ト < 三ト < 三ト