EicC and its computing needs

Yutie Liang Institute of Modern Physics, CAS, China On behalf of the EicC Discussion Group

05/30/2019, Nanjing

Outline

➢Introduction

Computing needs in EicC

Status of EicC

Introduction

 QCD is successful (in general). More than 90% of visible matter in nature governed by strong interaction QCD.

• Exploring the internal structure of the nucleon is one path.

Introduction

- How to explore the internal structure of the nucleon?
 - > spin of nucleon
 - ➤ mass of nucleon
 - role of gluons
 - ➤ confinement

▶ ...

 Electron Ion Collider (EIC), regarded as a "super electron microscope", can provide the clearest image inside the nucleon.

Facilities Landscape

Location of EicC

Machine Kinematics

High Intensity heavy-ion Accelerator Facility

EicC accelerator complex overview

EicC Main Physics Goals

• Nucleon structure

1-D picture: PDFs,

3-D momentum maps: TMDs,

3-D spatial maps: GPDs

- Proton mass
- pi/K structure function
- Hadron spectroscopy

EicC detector requirements

EicC detector conceptual design

Very first design; detector options are open.

Computing need in EicC – Storage estimation

- e: 3.5 GeV/c p: 20 GeV/c
- $L = (2^{4})^{*}10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- Rate: 20~40 kHz
- Multiplicity: ~ 8 charged, ~ 7 neutrals
- Event size: (detector dependent)
 O(10) kByte/s (rough estimate)
- Data rate: 100~200 MByte/s
- Might be streaming readout.

Assume an duty factor of 0.3-0.5, 6 months of running/year, If all these data to storage: 1. Raw data: (0.3~0.5)*(100~200)MB/s *(6*30*24*3600s) = 0.5~1.5 PB/year 2. MC. Same statistics (or double) as Raw data $= (0.5^{1.5} \text{ PB/year})$

Computing need in EicC – Storage estimation

- e: 3.5 GeV/c p: 20 GeV/c
- $L = (2^{4})^{*}10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- Rate: 20~40 kHz
- Multiplicity: ~ 8 charged, ~ 7 neutrals
- Event size: (detector dependent)
 O(10) kByte/s (rough estimate)
- Data rate: 100~200 MByte/s
- Might be streaming readout.

3. Rec data?

If reconstruction is quick, analysis starts from raw data. No extra large storage is needed. Otherwise, reconstruction data need (~ few PB/year) 4. In real-time, a storage as buffer needs not much, ~O(100) TB Roughly, a storage of O(10) PB/year for EicC is required, assume all 20 kHz data to be saved.

Computing need in EicC – CPU requirements

- e: 3.5 GeV/c p: 20 GeV/c
- $L = (2^{4})^{*}10^{33} \text{ cm}^{-2}\text{s}^{-1}$
- Rate: 20~40 kHz
- Multiplicity: ~ 8 charged, ~ 7 neutrals
- Event size: (detector dependent)
 O(10) kByte/s (rough estimate)
- Data rate: 100~200 MByte/s
- Might be streaming readout.

CPU cores at other experients:

BES3 (10000) PANDA (66000) GlueX(10000)

- Time to simulate one event, depend on how good we want the simulation to be: O(1) s
- Time to reconstruct one event: O(1) s
- Reconstruction usually done 2 ~ 3 iterations
- Totally, ~100000 cores needed. (estimation

with today's CPU)

EicC computing layout concept

EicC Status

4 pre-Collaboration meetings up to now.

Discussions on: physics programs, simulations accelerator, detector. EicC white paper will be submitted to the government by the end of 2019,

put project in line in the next 5-year-plan (2021-2025)

- EicC, a future polarized electron ion collider based on HIAF.
- Main physics programs: spin and 3D structure of nucleons.
- EicC, a challenging computing need.

Storage of O(10) PB,

CPU of ~100000 cores (today's estimation).

• Computing technology improvement expected.

Electron Ion Collider in China

Yutie Liang(梁羽铁) Institute of Modern Physics, CAS 中科院近代物理研究所

Thank You

德国-HERA: 国际首台 EIC 装置

		Lepton	Proton
Energy	GeV	27.5	920
Intensities	mA	60	180x10 ¹¹
Magnetic field	Т	0.15	1.5
Acc. voltage	MV	130	2
e-polarization	%	50 to 70	

Final luminosity (1.5 to 5)x10³¹ cm⁻²s⁻¹

A Ring-Ring (polarized) Lepton-Proton collider with 320 GeV CM energy

- 1981 Proposal
- 1984 Start construction
- 1991 Commissioning, first Collisions
- 1992 Start Operations for H1 and ZEUS,
- →1st exciting results with low luminosity
 1994 Install East Spin Rotators
- → Longitudinal polarized leptons for HERMES
 1996 Install 4th Interaction region for HERA-B
 1999 High Luminosity Run with electrons
 2000 High efficient luminosity production:100 /pb/y
 2001 Install luminosity upgrade, Spin Rotators for H1 and ZEUS
 2003 Longitudinal polarization in high energy collisions
 2007 End of a highly successful program

美国-BNL: eRHIC

	Nominal Design (with cooling)			Risk Mitigation (no cooling)		
Species	р	e		р	E	
Bunch frequency [MHz]	112.6			56.3		
Bunch intensity [10^11]	0.6	1.5		1.05	3.0	
Number of bunches	13	1320		660		
Beam current [A]	1	2.5		0.87	2.5	
Rms norm. emit. h/v [um]	2.7/0.38	391/20		4.1/2.5	391/95	
Rms emittance h/v [nm]	9.2/1.3	20/1		13.9/8.5	20/4.9	
β* h/v [cm]	90/4	42/5		90/5.9	63/10.4	
IP rms beam size h/v [um]	91/7.2			112/22.5		
IR rms angular spread h/v [urad]	101/179	219/143		124/380	179/216	
b-b parameter (/IP) h/v	0.013/0.007	0.064/0.099		0.015/0.005	0.1/0.083	
Rms bunch length [cm]	5	1.9		7	1.9	
Rms energy spread, 10^-4	4.6	5.5		6.6	5.5	
Max space charge parameter	0.004	neglig.		0.001	neglig.	
IBS growth time tr/long, h	2.1/2.0		-	9.2/10.1		
Polarization, %	80	70		80	70	
Hourglass and crab crossing factor	0.87			0.85		
Peak luminosity [10^33 cm-2s-1]	10.1			4.4		
Integrated luminosity/week, fb ⁻¹	4.51			1.12		

电子环方案: ERL, NS-FFAG 质心能量: 255GeV/p + 15.9GeV/e √S=126GeV 设计亮度: 4.4×10³³ cm⁻²s⁻¹ - 无冷却 1.0×10³⁴ cm⁻²s⁻¹-冷却 工程计划: 2022-2025之间开建

美国-JLab: JLEIC

美国-JLab: JLEIC

Present baseline: Ring-Ring

- Energy: 3-12 GeV e on 20-100 GeV p or up 40 GeV/u ion
- Polarized light ions (p, d, ³He), unpolarized ions up to A=200 (Au, Pb)
- New ion complex & two collider rings
- Up to 3 interaction points
- High polarization for both beams
- Conventional electron cooling
- Upgradable to 20 GeV electron, 250 GeV proton or 100 GeV/u ion

电子环方案: "8"字型环
质心能量: 60-100GeV p + 3-12 GeV e
设计亮度: 5.6×10 ³³ cm ⁻² s ⁻¹ 1.4×10 ³⁴ cm ⁻² s ⁻¹
工程计划: 2022-2025方案设计

CERN: LHeC

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach		PROTONS	ELECTRONS
Beam Energy	GeV	7000	60
Luminosity	10 ³³ cm ⁻² s ⁻¹	16	16
Normalized emittance ge _{x,y}	mm	2.5	20
Beta Funtion b [*] _{x,y}	m	0.05	0.10
rms Beam size s [*] _{x,y}	mm	4	4
Beam Current	mA	1112	25
Bunch Spacing	Ns	25	25
Bunch Population	10 ⁹	2.2*10 ¹¹	4*10 ⁹
Bunch charge	nC	35	0.64

电子环方案: ERL circulator Ring 质心能量: 7 TeV p + 60 GeV e 设计亮度: 1.6×10³⁴ cm⁻²s⁻¹ 工程计划: 2025-2035 方案设计