Estimating K short and Lambda Reconstruction Performances under Ideal PID or Tracking

Zheng Taifan

Ideal PID

Current method only utilizes tracks w/o PID.

Assuming ideal PID(each track has correct PID

Particle	K_s^0	Λ
ϵ_R	79.7%	65.1%
ϵ_T	39.8%	25.5%
Р	89.7%	87.9%
$\epsilon_R \cdot P$	0.715	0.572
$\epsilon_T \cdot P$	0.357	0.224

 ϵ_R = reconstruction efficiency (correct reco/all Ks(Λ) with both tracks reconstructed) ϵ_T = total efficiency (correct reco/all Ks(Λ))

Track reconstruction efficiency(Using pi+ from Ks->pi+pi- to analyze)

K short/ Λ reconstruction efficiency/purity vs N_{TrkHit}

Λ

Estimation of K short/A Performance Under Ideal Tracking

Table 5: Estimation of K_s^0 and Λ reconstruction performance assuming ideal ϵ_{Trk} for $p_T > 0.2 \text{GeV}$, $p_T > 0.1 \text{GeV}$ or all particles.

-	Particle	K_s^0			Λ		
-	p_T threshold/GeV	0.2	0.1		0.2	0.1	_
	ϵ_T	41%	46%	48%	32%	37%	39%
-	Р	89%	89%	88%	87%	87%	86%
-	$\epsilon_T \cdot P$	0.37	0.41	0.42	0.28	0.32	0.34