The R&D progress of CEPC PFA HCAL

Boxiang Yu On behalf of the CEPC Calorimeter working Group

State Key Laboratory of Particle Detection and Electronics, China Institute of High Energy Physics, CAS

Outline

-CEPC Detector Concept(s)

—The options of CEPC-PFA-HCAL;

—The progress of two option of PFA-HCAL

- DHCAL based on RPC and MPGD(THGEM/GEM);
- AHCAL based on scintillator;

-Summary

CEPC Detector Concept(s)

- Baseline: ILD-like
 - TPC tracking + Imaging calorimetry (ECAL+HCAL)
 - PFA-oriented
- Alternatives
 - Low-field concept
 - Full-silicon concept

The options of CEPC-PFA-HCAL;

Two options:

- 1. Digital HCAL (DHCAL): Gas detector, RPC & MPGD
- 2. Analog HCAI (AHCAL): Plastic scintillator
 - Jet energy resolution (HCAL combined with ECAL and tracker): $\sigma_E/E \approx (3\% - 4\%)$ **PFA Calorimeter** ECAL HCAL Absorber: Tungsten Tungsten Iror Readout: analog digital analog digital Micro Scintillator Active : RPC Silicon Scintillator MAPS medas

- PFA HCAL R&D topics that started initially from 2016 –RPC technology –MPGD (GEM/THGEM) technology
- Analog option of scintillator was started from 2018;
- Now R&D ongoing for the two options
- IHEP, USTC and SJTU join the CALICE collaboration

SDHCAL Based on RPC (IPNL+SJTU within CALICE)

SDHCAL Prototype

- SJTU is working with IPNL, Tsinghua
 and several other groups within
 CALICE on RPC-SDHCAL as part of
 CEPC detector R&D effort
- Total Size:1.0x1.0x1.4m³
 - Total Layers: 48

E

- Total Channel(pads):440000
- Power consumption: $10 \mu W / channel$

70 GeV pion

Test beam data

Developed by the CALICE collaboration

Structure of sampling layer

ASIC HARDROC(64 channel) three-threshold (Semi-digital) 110fC,5pC,15pC

SDHCAL TestBeam Data Analysis: PID using BDT

- TMVA of root, Methods: BDT 6var
- Training and Test
 - Signal: 160000 pion events with energy 10,20,30,40,50,60,70 and 80GeV
 - Background:160000 electron events with energy 10,20,30,40,50,60,70 and 80GeV
 - ◆ Background: ≈120000 muon events with

energy 10,20,30,40,50,60,70 and 80GeV

Mixed Background

Ntraining : Ntest=1 : 1

"Hadron selection using Boosted Decision Trees in the semi-digitial hadronic calorimeter", <u>CALICE-CAN-2019-001</u>

Energy Reconstruction using MLP and BDT

Analysis Note is under preparation

Optimization of SDHCAL Layers

(0. $12\lambda_I$, 1. $14X_0$)

→ SDHCAL has 48 layers which aims for ILC Detector

- 6mm RPC+20mm absorber
- Optimization no. of layers for CEPC at 240GeV

→40-layer SDHCAL yields decent energy resolution.

Simulations of Active Cooling

L

0.1

0.08

0.06

0.04

0.02

0

-0.02

-0.04

0.1

0.08

0.06

0.04

0.02

0

9

0/

01

1

0.

Simulation of RPC Gas Flow

-0.04

-0.02

DHCAL based on MPGD(GEM)

> Advantages:

- **1.** assembling process is easy and fast
- 2. no dead area inside the active area
- 3. uniform gas flow
- 4. detachable

Self-stretching technique (from CERN)

Typical parameters

Diameter: d = 60µm

t = 5µm

 $T = 50 \mu m$

 $D = 80 \mu m$

140µm

Cu:

Kapton:

pitch:

M-THGEM detector

Performance

200mm $\times 200$ mm M-THGEM foil

500 mm \times 500 mm M-THGEM detector

Gain VS voltage

THGEM detector is also a option of MPGD-DHCAL, 50cm*50cm detector is under develop.

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	1mW/ch, 10µW/ch(ILC)
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	$1.42 \text{mW/ch}, 10 \mu \text{W/ch}(\text{ILC})$
MICROROC	64	1fC~500fC	Multiple	335µW/ch, 10µW/ch (ILC)

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

□ Thickness: 1.4mm

- □ 64 Channels
- □ 3 threshold per channel
- □ 128 hit storage depth
- Minimum distinguishable charge:2fC

Electronic system

Detection efficiency vary with voltage

Spectra of X ray and cosmic ray

cosmic ray efficiency test

Detection efficiency in different area of GEM detector

The R&D progress of CEPC AHCAL

— Analog hadron calorimeter for CEPC:

- The absorber: 2cm Stainless steel (0.12λ₁, 1.14X₀);
- Detector cell size: 3cm × 3cm or 4cm × 4cm;
- ASIC Readout chip: KLauS (KIP, Uni-Heidelberg) SPIROC2E, etc.
- The sensitive detector : Scintillator(organic scintillator);
- About 40 sensitive layers, total readout channel: ≈6 Million (3cm× 3cm)

Software compensation for Energy reconstruction at AHCAL

Local

SiPM saturation effect on AHCAL dynamic range

Scintillator: $30 \times 30 \times 3 \text{mm}^3$ SiPM: 1mm² with 1600 Pixels

- SiPM Saturation will influence the AHCAL energy reconstruction.
- The digitization method has combined the simulation hits (deposit energy) and test results to calculate the fired pixel number for each SiPM by Monte Calo.

After correction, the dynamic range of 1600 pixels SiPM is enough!

Motivation:

A AHCAL prototype fit the CEPC requirement.

Specification:

- Active layers: under optimization (≈35);
- Detector cell: under optimization (30X30X3mm³);
- Absorber: stainless steel;
- Readout: SiPM+ASIC

Ability of cell mass production

Chinese NDL-SiPM Test-1 (1mmx1mm 10umSiPM)

Six NDL-SiPMs was tested (electron-Sr90): 30mmx30mmx3mm with PL Scintillator

Crosstalk spectrum

NDL SiPM website => http://www.ndl-sipm.net/

NDL-SiPM + ASIC Test-2

Pitch	10um	12.5um	15um (under developing)
Peak PDE @420nm	31%	32%	35%
Gain	2*10 ⁵	3.5*10 ⁵	5*10 ⁵
Breakdown Voltage(V)	27.5	21.5	

KLauS ASIC (KIP, Uni-HB)Low noise, low power dissipationContinuous readout without dead time

25 uW / channel @ duty cycle 0.5%

- The four sizes of $30 \times 30 \times 3$ mm³, $40 \times 40 \times 3$ mm³ and $50 \times 50 \times 3$ mm³ were studied.
- SiPM or MPPC(surface-mounted)
- PS were wrapped by ESR foil

Table I Cosmic-ray measurement results of detector cells with different sizes					
No.₽	Detector Cell _e	MPPC Type	Reflective Foil Type $\!$	Mean Np.e.+?	Polishing Methods₀
10	$30 \times 30 \times 3 mm^{3_{q^2}}$	S12571-025₽₽	ESR₊₂	31.39±0.65₽	Ultra Precise Polishing
242	$30 \times 30 \times 3 mm^{3}$	S12571-025₽₽	ESR₊²	22.55±0.7₽	Precise Polishing.
3₽	$30 \times 30 \times 3 mm^{3}$	S12571-025₽₽	ESR₊₂	18.92±0.39 ₄ ,	Rough Polishing₽
4₽	30×30×3mm ³ ,	S12571-025₽₽	TYVEK↔	13.63±0.3342	Precise Polishing.
5₽	$40 \times 40 \times 3 mm^{3_{\phi^2}}$	S12571-025₽₽	ESR₽	14.89±0.73¢	Precise Polishing.
6₽	50×50×3mm ³ ,	S12571-025₽₽	ESR₽	9.87±0.43₽	Precise Polishing↔
7₽	30×30×2mm ³ ₄	S13360-1325PE	ESR₄	33.89±0.49¢	Precise Polishing.

The light output result show the $30 \text{mm} \times 30 \text{mm}$ and 40mm \times 40mm is acceptable, light output of 50mm \times 50mm is not enough for ASIC readout.

Injection moulded Scintillator tiles

- 300 tiles polystyrene, BisMSB
 - injection moulded at Beijing
 - incl. dimple, no further surface treatment;
- Mechanical tolerances is fine for assembly, the size error less than 50um;
- Scintillators Light output fluctuation is $\sigma < 7\%$;

Size uniformity

Tiles size(mm)	30.08x30.01	30.07x30.04	30.04x30.02	30.09x30.09	30.05x30.03
	x3.08	x3.09	x3.09	x3.09	x3.09
Light output(p.e.)	23.5	22.78	22.86	25.02	23.54

Detector cell Automatic assemble system

- Motivation:
 - 7M detector cells;
 - Reflective foils packaging can't be done by manual;
- Progress:
 - Three companies give they preliminary design;
 - Robotic arm design is the best way;

Packaged cell

motivation:

In order to quickly and effectively realize the integration of large area AHCAL detection unit.

Materials:

- 1. Araldite 2011 epoxy glue
- 2. 3×3 PCB board
- 3. Detector cell;
- 4. A film used to brush glue

Result:

- 1. This way is working;
- 2. The detector cell was glued on PCB board fasten;
- 3. Maybe reduce to 4 glue hole;
- 4. Plan to test crosstalk and prototype.

Light output

Before glued

After glued

Detector cell test system design

- About 100 detector cells one batch;
- Electronics under design;
- Mechanical structure under design;

Cooling is under study

- CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. Power pulsing will not work at CEPC.
- Compare to ILD, the power consumption of VFE readout electronics at CEPC is about two orders of magnitude higher, hence it requires an active cooling

Rectangle pipe, water temperature: 22°C

- The construction of CEPC-HCAL prototype based on scintillator is started, the direction is NDL SiPM+ new ASIC;
- —Some critical R&D items identified, which will be followed up.
- —We have joined in the CALICE group last year;

CALICE Collaboration Meeting 2018 量能器国际合作组会议 Shanghai Jiao Tong University and Tsung-Dao Lee Institute 上海交通大学和李政道研究所, September 19-21, 2018

Thanks for your attention!

Backup

Model

Active Cooling

- CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. Power pulsing will not work at CEPC.
- Compare to ILD, the power consumption of VFE readout electronics at CEPC is about two orders of magnitude higher, hence it requires an active cooling
 - Evaporative CO₂ cooling in thin pipes embedded in Copper exchange plate.
 - For CMS-HGCAL design: heat extraction of 33 mW/cm², allows operation with $6 \times 6 \text{ mm}^2$ pixels with a safety margin of 2
- To be modelled for Mokka simulation

Transverse view of the slab with one absorber and two active layers.

➔ The silicon sensors are glued to PCB with VFE chips, cooled by the copper plates with CO₂ cooling pipes.

