The Telescope Array Experiment: cosmic-ray anisotropy, search for photons and neutrinos

G.I. Rubtsov (INR RAS) for the Telescope Array Collaboration

LHAASO Multi-Messenger Astronomy Workshop 2019 Chengdu, April 26, 2019

R.U. Abbasi¹ M. Abe¹³ T. Abu-Zayyad¹ M. Allen¹ R. Azuma³ E. Barcikowski¹ J.W. Belz¹ D.R. Bergman¹ S.A. Blake¹ R. Cady¹ M.J. Chae²⁰ B.G. Cheon⁴ J. Chiba⁵ M. Chikawa⁶ E.J. Cho⁴ W.R. Cho⁷ T. Fujii⁹ M. Fukushima^{10;11} T. Goto⁹ W. Hanlon¹ Y. Hayashi⁹ N. Hayashida¹⁰ K. Hibino¹² K. Honda² D. Ikeda¹⁰ N. Inoue¹³ T. Ishii² R. Ishimori³ H. Ito²⁷ D. Ivanov¹ C.C.H. Jui¹ K. Kadota¹⁵ F. Kakimoto³ O. Kalashev¹⁶ K. Kasahara¹⁷ H. Kawai¹⁸ S. Kawakami⁹ S. Kawana¹³ E. Kido¹⁰ H.B. Kim⁴ J.H. Kim¹ J.H. Kim⁴ S. Kitamura³ Y. Kitamura³ V. Kuzmin¹⁶ M. Kuznetsov¹⁶ Y.J. Kwon⁷ J. Lan¹ S.I. Lim²⁰ J.P. Lundquist¹ S. Machida³ K. Martens¹¹ T. Matsuda⁸ T. Matsuyama⁹ J.N. Matthews¹ M. Minamino⁹ Y. Mukai² I. Myers¹ K. Nagasawa¹³ S. Nagataki²¹ T. Nakamura²² T. Nonaka¹⁰ A. Nozato⁶ S. Ogio⁹ J. Ogura³ M. Ohnishi¹⁰ H. Ohoka¹⁰ K. Oki¹⁰ T. Okuda²³ M. Ono³⁰ A. Oshima⁹ S. Ozawa¹⁷ I.H. Park²⁰ M.S. Pshirkov²⁴ D.C. Rodriguez¹ G. Rubtsov¹⁶ D. Ryu¹⁹ H. Sagawa¹⁰ N. Sakurai⁹ L.M. Scott¹⁴ P.D. Shah¹ F. Shibata² T. Shibata¹⁰ H. Shimodaira¹⁰ B.K. Shin⁴ H.S. Shin¹⁰ J.D. Smith¹ P. Sokolsky¹ R.W. Springer¹ B.T. Stokes¹ S.R. Stratton^{1;14} T. Stroman¹ T. Suzawa¹³ M. Takamura⁵ M. Takeda¹⁰ A. Taketa²⁵ M. Takita¹⁰ Y. Tameda¹⁰ H. Tanaka⁹ K. Tanaka²⁶ M. Tanaka⁹ S.B. Thomas¹ G.B. Thomson¹ P. Tinyakov^{24;16} I. Tkachev¹⁶ H. Tokuno³ T. Tomida²⁷ S. Troitsky¹⁶ Y. Tsunesada³ K. Tsutsumi³ Y. Uchihori²⁸ S. Udo¹² F. Urban³¹ G. Vasilov¹ T. Wong¹ R. Yamane⁹ H. Yamaoka⁸ K. Yamazaki⁹ J. Yang²⁰ K. Yashiro⁵ Y. Yoneda⁹ S. Yoshida¹⁸ H. Yoshii²⁹ Ya. Zhezher¹⁶ R. Zollinger¹ Z. Zundel¹

¹ University of Utah ² University of Yamanashi ³Tokyo Institute of Technology ⁴ Hanyang University 5 Tokyo University of Science ⁶ Kinki University ⁷ Yonsei University ⁸KEK ⁹Osaka City University ¹⁰University of Tokyo (ICRR) ¹¹University of Tokyo (Kavli Institute) ¹²Kanagawa University ¹³ Saitama University ¹⁴Rutgers University ¹⁵Tokyo City University, ¹⁶Russian Academy of Sciences (INR) ¹⁷Waseda University ¹⁸Chiba University ¹⁹Chungnam National University ²⁰Ewha Womans University ²¹ Kyoto University ²²Kochi University ²³ Ritsumeikan University ²⁴Universite Libre de Bruxelles ²⁵University of Tokyo (Earthquake Institute) ²⁶Hiroshima City University ²⁷RIKEN ²⁸ Japanese National Institute of Radiological Science ²⁹Ehime University ³⁰Kyushu University ³¹ CEICO, Institute of Physics, Czech Academy of Sciences

Belgium, Czech Republic, Japan, Korea, Russia, USA

Telescope Array surface detector

- \blacktriangleright 507 SD's, 3 m² each
- \blacktriangleright 680 km^2 area
- \triangleright 9 years of operation (this analysis)

Largest UHECR statistics in the Northern Hemisphere

► **I. Cosmic-ray anisotropy**

- \blacktriangleright II. Search for UHE photons
- \blacktriangleright III. Search for UHE neutrinos

Hunting for UHECR sources

 \triangleright We know that the sources of most UHECRs are extragalactic.

```
TA, Astropart. Phys. 86 (2017) 21
```
- \blacktriangleright How many sources there are?
	- In The event clustering is not observed at $E > 50$ EeV *n* > 10⁻⁴ Mpc⁻³ (for proton composition)

Dubovsky,Tinyakov,Tkachev, PRL 85 (2000) 1154

 \triangleright Observation of dipole by Auger at $E > 8$ EeV $n \simeq 10^{-4}$ Mpc⁻³ (for mixed composition)

Auger collaboration, ApJ 868 (2018) 4

- \triangleright One of the sources is nearest. Model expectations for nearest source:
	- \blacktriangleright Distance: 4-20 Mpc
	- \triangleright 2-10% of the total UHECR flux

Goal:

search for the nearest source with UHECR, photons and neutrino!

TA SD data

"anisotropy set"

- zenith angle $< 55^\circ$
- core inside array boundary
- angular resolution: $<1.5^{\circ}$
- energy resolution: $~20\%$ \bullet

 \triangleright 3691 above 10 FeV

9-year data: 12.05.2008 - 11.05.2017

- \triangleright 257 above 40 FeV
- \triangleright 108 above 57 FeV

"hotspot set"

- loose cuts (4 stations) \bullet
- angular resolution: $<1.7^{\circ}$
- \blacktriangleright 143 above 57 EeV
- \geq 23 above 100 EeV

Global anisotropy

supergalactic coordinates

Kolmogorov-Smirnov p-value = 0.01 for SG latitude, $E > 57$ EeV

other thresholds/coordinates $=$ isotropic

Large-Scale Structure

C: Centaurus SCI (60 Mpc); Co: Coma CI (90 Mpc); E: Eridanus CI (30 Mpc); F: Fornax CI (20 Mpc); Hy: Hydra SCI (50 Mpc); N: Norma SCI (65 Mpc); PI: Pavo-Indus SCI (70 Mpc); PP: Perseus-Pisces SCI (70 Mpc); UM: Ursa Major CI (20 Mpc); and V: Virgo CI (20 Mpc).

- Sky map of expected flux at $E > 57$ EeV (Galactic coordinates);
- smearing angle is 6°.

Large-Scale Structure

E>57 EeV - Years 1-5 excess map TA 2014

Total events: 72 Observed: 19 Expected: 4.5

Best circle center: RA=146.7°, Dec=+43.2° Best circle radius: 20° Local significance: 5σ Global significance: 3σ

Years 1-9 bin scan **TA** preliminary

"I i-Ma":

approximation to Poisson statistics based on on-source/off-source exposure

- "On": inside the circle, "off": the rest
- Scan for circle center (0.1 deg steps) and radius (15 \degree , 20 \degree , 25 \degree , 30 \degree , 35 \degree)

- Find the strongest excess blocal significance
- Repeat the procedure for isotropic Monte-Carlo sets oldobal significance (look-elsewhere correction = penalty factor)

E>57 EeV - Years 1-9 excess map

Total events: 143 Observed: 34 Expected: 13.5

Best circle center: RA=144.3°, Dec=+40.3° Best circle radius: 25° Local significance: 5σ Global significance: 3σ

Spectral anisotropy at the hot spot

Declination dependence in TA

arXiv: 1801.07820

- \blacktriangleright I. Cosmic-ray anisotropy
- ► II. Search for UHE photons
- \blacktriangleright III. Search for UHE neutrinos

Photon-induced showers:

- \blacktriangleright arrive younger
- \triangleright contain less muons
- $\triangleright \Rightarrow$ multiple SD observables affected:
	- ► front curvature, Area-over-peak, number of FADC peaks, $\chi^2/d.o.f.,$ S_b

Photon search: data and Monte-Carlo sets

- \triangleright Data collected by TA surface detector for the nine years: **2008-05-11 — 2017-05-11**
- **P** p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart.Phys.35:759,2012

Cuts for both data and MC:

- \triangleright 7 or more detectors triggered
- \triangleright core distance to array boundary is larger than 1200m
- \blacktriangleright $\chi^2/\text{d.o.f.} < 5$
- \blacktriangleright θ < 60°
- $E_y > 10^{18}$ eV (*E_γ* is estimated with photon Monte-Carlo)

52769 events after all cuts expect lightning cut

Note: MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.

Lightning-induced air showers

- It is shown that there are triggers of TA SD associated with the downward propagating ladders in lightning flushes.
	- \triangleright Multiple SD triggers are observed within one millisecond

Phys.Lett. A 381 (2017) 2565.

 \triangleright The results of Lightning Mapping Array (LMA) at TA site

Journal of Geophysical Research: Atmospheres, 123, (2017) 6864-6879

- \triangleright The lightnings induce electromagnetic showers, which may be identified as photons. At least five candidates of this sort passed the cuts, see *GR, ICRC'2017* for details.
- \triangleright We use the National Lightning Detector Network (NLDN) data on lightnings at the location of TA SD.

We appreciate Vaisala Inc's academic research policy

 \triangleright Both data and Monte-Carlo events are removed within $+10$ min from NLDN events. An associated loss of exposure is only 0.66% of the total exposure time.

Photon search: list of relevant observables

- 1. Zenith angle, θ ;
- 2. Signal density at 800 m from the shower core, S₈₀₀;
- 3. Linsley front curvature parameter, *a*;
- 4. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 5. AoP LDF slope parameter;
- 6. Number of detectors hit;
- 7. N. of detectors excluded from the fit of the shower front;
- 8. χ^2/d .o.f.;
- 9,10. $S_b = \sum S_i \times r_i^b$ parameter for $b = 3$ and $b = 4.5$;

Ros, Supanitsky, Medina-Tanco et al. Astropart.Phys. 47 (2013) 10

- 11. The sum of signals of all detectors of the event;
- 12. Asymmetry of signal at upper and lower layers of detectors;
- 13. Total n. of peaks within all FADC traces;
- 14. N. of peaks for the detector with the largest signal;

15,16. N. of peaks present in the upper layer and not in lower, lower and not upper;

Multivariate analysis

► The Boosted Decision Trees (BDT) technique is used to build *p-* γ **classifier** based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

 \triangleright root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

 \triangleright BDT is trained with Monte-Carlo sets:

γ (Signal) and *p* (Background)

- \triangleright BDT classifier is used to convert the set of observables for an event to a number $\xi \in [-1:1]: 1$ - pure signal (γ) , -1 - pure background (p) .
- \triangleright ξ is available for one-dimensional analysis. The cut on ξ for the search is optimized using proton MC as a null-hypothesis.

Distribution of MVA estimator (ξ) for data and MC

- \blacktriangleright The photon candidates are selected using the cut on ξ : $\xi > \xi_{cut}(\theta)$
- \blacktriangleright The cut is approximated as a quadratic function of θ
- \triangleright Cut is optimized in each energy range using proton and photon Monte-Carlo (cut optimization subsets)
- \triangleright The merit factor is an average photon upper limit if the null-hypothesis is true (all protons)
- ► Geometric exposure for $\theta \in (0^\circ,60^\circ)$: **12060 km² sr yr**
- ► Effective exposure is estimated using photon MC assuming E^{-2} primary spectrum

Photon candidate events

- \triangleright No thunderstorms in March 2012.
- **Expected background from proton misclassification:** \sim **0.5 events in each** energy range.
- \triangleright The background estimate depends on composition and hadronic model. To stay conservative, zero background is assumed in the analysis.

Results: photon diffuse flux limits

Astropart.Phys. 110 (2019) 8-14

models from J. Alvarez-Muniz et al. EPJ Web Conf. **53***, 01009 (2013)*

Search for point sources of the ultra-high-energy photons

- \triangleright The skymap is pixelized into 12288 directions with HEALpix
- \triangleright An independent search with the cut optimization is performed in circles centered in each of the pixels; radius = angular resolution
- \blacktriangleright Angular reconstruction for photons:

Point-source photon flux upper-limits

arXiv:1904.00300

Pierre Auger: $\langle F_\gamma \rangle \leq 0.035~{\rm km}^{-2} {\rm yr}^{-1}$ (1[°] ang.res., 10^{17.3} $\leq E \leq 10^{18.5}$ eV)

A. Aab et al. ApJ 789, 160 (2014)

- \blacktriangleright I. Cosmic-ray anisotropy
- \blacktriangleright II. Search for UHE photons
- ^I **III. Search for UHE neutrinos**

Neutrino search strategy

- \blacktriangleright Neutrino-induced showers are young while very inclined
- \blacktriangleright Waveform has many peaks

upper layer lower layer

Method

- \triangleright Cuts:
	- \triangleright 5 or more detectors triggered
	- \triangleright core distance to array boundary is larger than 1200m
	- \blacktriangleright $\chi^2/\text{d.o.f.} < 5$
	- \blacktriangleright 45° $< \theta < 90$ °
	- \triangleright no energy cut

197250 events after cuts

- \blacktriangleright Multivariate analysis is used
	- \triangleright The set of observables is the same as for photon search (Energy is replaced with S_{800})
	- ^I Method: Boosted decision tree trained with inclined proton (background) and all-flavor down-going neutrino (signal) Monte-Carlo
	- In The cut on ξ is optimized in a similar to photon search way

Distribution of MVA estimator (ξ) for data and MC

data neutrino MC proton MC

Neutrino search results

 \triangleright 0 neutrino candidates after cuts, \bar{n}_{ν} < 2.44 (90% C.L.)

Exposure:

- ► Geometric exposure for $\theta \in (45^{\circ}, 90^{\circ})$: 8042 km² sr yr
- \triangleright probability to interact in the atmosphere: 1.4×10^{-5}
- \triangleright trigger, reconstruction and quality cuts efficiency ∼ 7%
- \blacktriangleright ξ cut efficiency: \sim 24%
- \triangleright total exposure (all flavors): *A* = 1.9 × 10⁻³ km² sr yr
- \triangleright Single flavor diffuse neutrino flux limit for $E > 10^{18}$ eV: $E^2 f_\nu <$ 1.4×10^{-6} GeV cm⁻²s⁻¹sr⁻¹ (90% C.L.)

Conclusions

Results presented:

- \blacktriangleright Indications of intermediate-scale anisotropy is observed above 57 EeV.
- \triangleright Diffuse and point-source photon flux upper limits above 1 EeV.
- \triangleright Down-going neutrino diffuse flux limits above 1 EeV.

Prospects:

- \blacktriangleright The exposure and energy range will be extended with TAx4 and TALE SD experiments.
- Improved data analysis based on machine learning techniques (supported by Russian Science Foundation).

Congratulations to LHAASO!

Wish long-term success and physics beyond expectations!

Backup slides

Search for dipole and quadrupole

di Matteo, Tinyakov, MNRAS 476 (2018) 715

- \triangleright The growth with energy of dipole and quadrupole amplitude is predicted in the source model resembling LSS
- The Auger+TA dipole data agree with the prediction
- No quadrupole is observed by now

Search for dipole and quadrupole

LARGE-SCALE COSMIC-RAY ANISOTROPIES ABOVE 4 EEV

Auger collaboration, ApJ 868 (2018) 4

- **In discovery of dipole at 5** σ **for** $E > 8$ **EeV**
- **F** in agreement with the model of isotropic sources $\rho = 10^{-4}$ Mpc⁻³

Years 6-9 vs. 1-5

no hypothesis - no tests

Years 6-9 vs. 1-5

"would-be hypothesis" - "would-be tests"

 α alobal \neq local P-value \rightarrow positive fluctuation, need to correct our expectations

Years 6-9 vs. 1-5

"would-be hypothesis" - "would-be tests"

 α alobal \neq local P-value \rightarrow positive fluctuation, need to correct our expectations

