The Telescope Array Experiment: cosmic-ray anisotropy, search for photons and neutrinos

G.I. Rubtsov (INR RAS) for the Telescope Array Collaboration

LHAASO Multi-Messenger Astronomy Workshop 2019 Chengdu, April 26, 2019

R.U. Abbasi¹ M. Abe¹³ T. Abu-Zayyad¹ M. Allen¹ R. Azuma³ E. Barcikowski¹ J.W. Belz¹ D.R. Bergman¹ S.A. Blake¹ R. Cady¹ M.J. Chae²⁰
B.G. Cheon⁴ J. Chiba⁵ M. Chikawa⁵ E.J. Cho⁴ W.R. Cho⁷ T. Fuji⁹ M. Fukushima^{10,11} T. Goto⁹ W. Hanlon¹ Y. Hayashi⁹ N. Hayashida¹⁰ K. Hibino¹² K. Honda² D. Ikeda¹⁰ N. Inoue¹³ T. Ishi² R. Ishimori³ H. Ito²⁷ D. Ivanov¹ C.C.H. Jul¹ K. Kadota¹⁵ F. Kakimoto³ O. Kalashev¹⁶ K. Kasahara¹⁷
H. Kawai¹⁸ S. Kawakami⁹ S. Kawana¹³ E. Kido¹⁰ H.B. Kim⁴ J.H. Kim¹ J.H. Kim⁴ S. Kitamura³ Y. Kitamura³ V. Kuzmin¹⁶ M. Kuznetsov¹⁶ Y.J. Kwon⁷
J. Lan¹ S.I. Lim²⁰ J.P. Lundquist¹ S. Machida³ K. Martens¹¹ T. Matsuda⁸ T. Matsuyama⁹ J.N. Matthews¹ M. Minamino⁹ Y. Muka² I. Myers¹
K. Nagasawa¹³ S. Nagataki²¹ T. Nakamura²² T. Nonaka¹⁰ A. Nozato⁶ S. Ogio⁹ J. Ogura³ M. Ohnishi¹⁰ H. Ohoka¹⁰ K. Okl¹⁰ T. Okuda²³ M. Ono³⁰
A. Oshima⁹ S. Ozawa¹⁷ I.H. Park²⁰ M.S. Pshirkov²⁴ D.C. Rodriguez¹ G. Rubtsov¹⁶ D. Ryu¹⁹ H. Sagawa¹⁰ N. Sakurai⁹ L.M. Sottl¹⁴ P.D. Shah¹
T. Suzawa¹³ M. Takamura⁵ M. Takeda¹⁰ A. Taketa²⁵ M. Takita¹⁰ Y. Tameda¹⁰ H. Tanaka⁹ K. Tanaka²⁶ M. Tanaka⁹ S.B. R. Stratton^{1;14} T. Stroman¹
T. Suzawa¹³ M. Takamura⁵ M. Takeda¹⁰ A. Taketa²⁷ S. Troitsky¹⁶ Y. Tsunesada³ K. Tsutsum³ Y. Uchihorl²⁸ S. Udo¹² F. Urban³¹ G. Vasilov¹
T. Wong¹ R. Yamane⁹ H. Yamaoka⁸ K. Yamazak⁹ J. Yang²⁰ K. Yashiro⁵ Y. Yoneda⁸ S. Oshika¹⁸ H. Yoshii²⁹ Ya. Zhezher¹⁶ R. Zollinger¹ Z. Zunde¹

¹ University of Utah ²University of Yamanashi ³ Tokyo Institute of Technology ⁴Hanyang University ⁵ Tokyo University of Science ⁶Kinki University ⁷ Yonsei University ⁸KEK ⁹Osaka City University ¹⁰University of Tokyo (ICRR) ¹¹ University of Tokyo (Kavli Institute) ¹²Kanagawa University ¹³Saitama University ¹⁴Rutgers University ¹⁵ Tokyo City University, ¹⁶Russian Academy of Sciences (INR) ¹⁷Waseda University ¹⁸Chiba University ¹⁹Chungnam National University ²⁰Ewha Womans University ²¹Kyoto University ²²Kochi University ²³Ritsumeikan University ²⁴Universite Libre de Bruxelles ²⁵University of Tokyo (Earthquake Institute) ²⁶Hiroshima City University ²⁷RIKEN ²⁸Japanese National Institute of Radiologial Science ²⁹Ehime University ³⁰Kyushu University ³¹ CEICO, Institute of Physics, Czech Academy of Sciences

Belgium, Czech Republic, Japan, Korea, Russia, USA

Telescope Array surface detector

- 507 SD's, 3 m² each
- ▶ 680 *km*² area
- 9 years of operation (this analysis)

Largest UHECR statistics in the Northern Hemisphere

I. Cosmic-ray anisotropy

- II. Search for UHE photons
- ▶ III. Search for UHE neutrinos

Hunting for UHECR sources

▶ We know that the sources of most UHECRs are extragalactic.

```
TA, Astropart. Phys. 86 (2017) 21
```

- How many sources there are?
 - The event clustering is not observed at *E* > 50 EeV *n* > 10⁻⁴ Mpc⁻³ (for proton composition)

Dubovsky, Tinyakov, Tkachev, PRL 85 (2000) 1154

 Observation of dipole by Auger at E > 8 EeV n ~ 10⁻⁴ Mpc⁻³ (for mixed composition)

Auger collaboration, ApJ 868 (2018) 4

- One of the sources is nearest. Model expectations for nearest source:
 - Distance: 4-20 Mpc
 - 2-10% of the total UHECR flux

Goal:

search for the nearest source with UHECR, photons and neutrino!

TA SD data

"anisotropy set"

- zenith angle <55°
- · core inside array boundary
- angular resolution: <1.5°
- energy resolution: ~20%

3691 above 10 EeV

9-year data: 12.05.2008 - 11.05.2017

- 257 above 40 EeV
- 108 above 57 EeV

"hotspot set"

- loose cuts (4 stations)
- angular resolution: <1.7°

- 143 above 57 EeV
- 23 above 100 EeV

Global anisotropy

supergalactic coordinates

Kolmogorov-Smirnov p-value = 0.01 for SG latitude, E>57 EeV

other thresholds/coordinates = isotropic

Large-Scale Structure

C: Centaurus SCI (60 Mpc); Co: Coma CI (90 Mpc); E: Eridanus CI (30 Mpc); F: Fornax CI (20 Mpc); Hy: Hydra SCI (50 Mpc); N: Norma SCI (65 Mpc); PI: Pavo-Indus SCI (70 Mpc); PP: Perseus-Pisces SCI (70 Mpc); UM: Ursa Major CI (20 Mpc); and V: Virgo CI (20 Mpc).

- Sky map of expected flux at E > 57 EeV (Galactic coordinates);
- smearing angle is 6°.

Large-Scale Structure

E>57 EeV - Years 1-5 excess map TA 2014

Total events: 72 Observed: 19 Expected : 4.5 Best circle center: RA=146.7°, Dec=+43.2° Best circle radius: 20° Local significance : 5 σ Global significance : 3 σ

Years 1-9 bin scan TA preliminary

"Li-Ma":

approximation to Poisson statistics based on on-source/off-source exposure

- "On": inside the circle, "off": the rest
- Scan for circle center (0.1 deg steps) and radius (15°, 20°, 25°, 30°, 35°)

Bin size	15	20	25	30	35
σ	4.4	4.7	5.1	5.0	4.7

- Find the strongest excess is local significance
- Repeat the procedure for isotropic Monte-Carlo sets plobal significance (look-elsewhere correction = penalty factor)

E>57 EeV - Years 1-9 excess map

Total events: 143 Observed: 34 Expected : 13.5 Best circle center: RA=144.3°, Dec=+40.3° Best circle radius: 25° Local significance : 5 σ Global significance : 3 σ

Spectral anisotropy at the hot spot

Declination dependence in TA

arXiv: 1801.07820

- I. Cosmic-ray anisotropy
- II. Search for UHE photons
- ▶ III. Search for UHE neutrinos

Photon-induced showers:

- arrive younger
- contain less muons
- \blacktriangleright \Rightarrow multiple SD observables affected:
 - ▶ front curvature, Area-over-peak, number of FADC peaks, $\chi^2/d.o.f.$, S_b

Photon search: data and Monte-Carlo sets

- Data collected by TA surface detector for the nine years: 2008-05-11 — 2017-05-11
- p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart.Phys.35:759,2012

Cuts for both data and MC:

- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m
- ▶ \chi_2/d.o.f. < 5</p>
- θ < 60°
 </p>
- $E_{\gamma} > 10^{18} \text{ eV}$ (E_{γ} is estimated with photon Monte-Carlo)

52769 events after all cuts expect lightning cut

Note: MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.

Lightning-induced air showers

- It is shown that there are triggers of TA SD associated with the downward propagating ladders in lightning flushes.
 - Multiple SD triggers are observed within one millisecond

Phys.Lett. A 381 (2017) 2565.

The results of Lightning Mapping Array (LMA) at TA site

Journal of Geophysical Research: Atmospheres, 123, (2017) 6864-6879

- ► The lightnings induce electromagnetic showers, which may be identified as photons. At least five candidates of this sort passed the cuts, see *GR*, *ICRC*²⁰¹⁷ for details.
- We use the National Lightning Detector Network (NLDN) data on lightnings at the location of TA SD.

We appreciate Vaisala Inc's academic research policy

Both data and Monte-Carlo events are removed within ±10 min from NLDN events. An associated loss of exposure is only 0.66% of the total exposure time.

Photon search: list of relevant observables

- **1**. Zenith angle, θ ;
- 2. Signal density at 800 m from the shower core, S_{800} ;
- 3. Linsley front curvature parameter, a;
- 4. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 5. AoP LDF slope parameter;
- 6. Number of detectors hit;
- 7. N. of detectors excluded from the fit of the shower front;
- 8. $\chi^2/d.o.f.$;
- 9,10. $S_b = \sum S_i \times r_i^b$ parameter for b = 3 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

- 11. The sum of signals of all detectors of the event;
- 12. Asymmetry of signal at upper and lower layers of detectors;
- 13. Total n. of peaks within all FADC traces;
- 14. N. of peaks for the detector with the largest signal;
- 15,16. N. of peaks present in the upper layer and not in lower, lower and not upper;

Multivariate analysis

The Boosted Decision Trees (BDT) technique is used to build *p*-γ classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

BDT is trained with Monte-Carlo sets:

 γ (Signal) and *p* (Background)

- BDT classifier is used to convert the set of observables for an event to a number ξ ∈ [-1 : 1]: 1 - pure signal (γ), -1 - pure background (p).
- ξ is available for one-dimensional analysis. The cut on ξ for the search is
 optimized using proton MC as a null-hypothesis.

Distribution of MVA estimator (ξ) for data and MC

- ► The photon candidates are selected using the cut on ξ : $\xi > \xi_{cut}(\theta)$
- \blacktriangleright The cut is approximated as a quadratic function of θ
- Cut is optimized in each energy range using proton and photon Monte-Carlo (cut optimization subsets)
- The merit factor is an average photon upper limit if the null-hypothesis is true (all protons)

- Geometric exposure for $\theta \in (0^{\circ}, 60^{\circ})$: 12060 km² sr yr
- Effective exposure is estimated using photon MC assuming E⁻² primary spectrum

E ₀	quality cuts	ξ-cut	A _{eff} km ² sr yr
10 ^{18.0}	6.5%	9.8%	77
10 ^{18.5}	19.9%	10.6%	255
10 ^{19.0}	43.6%	16.2%	852
10 ^{19.5}	52.0%	37.2%	2351
10 ^{20.0}	64.2%	52.3%	4055

Photon candidate events

energy cut	event date and time
$E_0 > 10^{18.0} {\rm eV}$	2012-03-24 14:06:23
$E_0 > 10^{18.5} {\rm eV}$	none
$E_0 > 10^{19.0} { m eV}$	none
$E_0 > 10^{19.5} { m eV}$	none
$E_0 > 10^{20.0} \ { m eV}$	2012-03-24 14:06:23

- No thunderstorms in March 2012.
- Expected background from proton misclassification: ~0.5 events in each energy range.
- The background estimate depends on composition and hadronic model. To stay conservative, zero background is assumed in the analysis.

Results: photon diffuse flux limits

<i>E</i> ₀ , eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
γ candidates	1	0	0	0	1
$\bar{n} <$	5.14	3.09	3.09	3.09	5.14
A _{eff}	77	255	852	2351	4055
$ $ $F_{\gamma} <$	0.067	0.012	0.0036	0.0013	0.0013

Astropart.Phys. 110 (2019) 8-14

models from J. Alvarez-Muniz et al. EPJ Web Conf. **53**, 01009 (2013)

Search for point sources of the ultra-high-energy photons

- The skymap is pixelized into 12288 directions with HEALpix
- An independent search with the cut optimization is performed in circles centered in each of the pixels; radius = angular resolution
- Angular reconstruction for photons:

E_{γ}, eV	ang. resolution 68%
10 ^{18.0}	3.00°
10 ^{18.5}	2.92°
10 ^{19.0}	2.64°
10 ^{19.5}	2.21°
10 ^{20.0}	2.06°

Point-source photon flux upper-limits

$E_{\gamma} \geq$	$\langle F_{\gamma} angle \leq$	max. γ signif.
eV	km ⁻² yr ⁻¹	(pre-trial)
10 ^{18.0}	0.094	2.72 σ
10 ^{18.5}	0.029	2.71 σ
10 ^{19.0}	0.010	2.89 σ
10 ^{19.5}	$7.1 imes 10^{-3}$	2.76 σ
10 ^{20.0}	$5.8 imes10^{-3}$	3.43 σ

arXiv:1904.00300

Pierre Auger: $\langle F_{\gamma} \rangle \le 0.035 \text{ km}^{-2} \text{yr}^{-1}$ (1° ang.res., $10^{17.3} \le E \le 10^{18.5} \text{ eV}$)

A. Aab et al. ApJ 789, 160 (2014)

- I. Cosmic-ray anisotropy
- II. Search for UHE photons
- III. Search for UHE neutrinos

Neutrino search strategy

while very inclined Waveform has many peaks

upper layer lower layer

Method

- Cuts:
 - 5 or more detectors triggered
 - core distance to array boundary is larger than 1200m
 - χ²/d.o.f. < 5
 </p>
 - 45° < θ < 90°</p>
 - no energy cut

197250 events after cuts

- Multivariate analysis is used
 - ► The set of observables is the same as for photon search (Energy is replaced with S₈₀₀)
 - Method: Boosted decision tree trained with inclined proton (background) and all-flavor down-going neutrino (signal) Monte-Carlo
 - The cut on ξ is optimized in a similar to photon search way

Distribution of MVA estimator (ξ) for data and MC

data neutrino MC proton MC

Neutrino search results

Exposure:

- ► Geometric exposure for $\theta \in (45^\circ, 90^\circ)$: 8042 km² sr yr
- \blacktriangleright probability to interact in the atmosphere: 1.4×10^{-5}
- $\blacktriangleright\,$ trigger, reconstruction and quality cuts efficiency $\sim 7\%$
- ξ cut efficiency: ~ 24%
- total exposure (all flavors): $A = 1.9 \times 10^{-3} \text{ km}^2 \text{ sr yr}$
- ▶ Single flavor diffuse neutrino flux limit for $E > 10^{18}$ eV: $E^2 f_{\nu} < 1.4 \times 10^{-6}$ GeV cm⁻²s⁻¹sr⁻¹ (90% C.L.)

Conclusions

Results presented:

- Indications of intermediate-scale anisotropy is observed above 57 EeV.
- Diffuse and point-source photon flux upper limits above 1 EeV.
- Down-going neutrino diffuse flux limits above 1 EeV.

Prospects:

- The exposure and energy range will be extended with TAx4 and TALE SD experiments.
- Improved data analysis based on machine learning techniques (supported by Russian Science Foundation).

Congratulations to LHAASO!

Wish long-term success and physics beyond expectations!

Backup slides

Search for dipole and quadrupole

di Matteo, Tinyakov, MNRAS 476 (2018) 715

- The growth with energy of dipole and quadrupole amplitude is predicted in the source model resembling LSS
- The Auger+TA dipole data agree with the prediction
- No quadrupole is observed by now

Search for dipole and quadrupole

Large-scale cosmic-ray anisotropies above 4 EeV

Auger collaboration, ApJ 868 (2018) 4

- ▶ discovery of dipole at 5σ for E > 8 EeV
- in agreement with the model of isotropic sources $\rho = 10^{-4} \text{ Mpc}^{-3}$

Years 6-9 vs. 1-5

no hypothesis – no tests

Years 6-9 vs. 1-5

"would-be hypothesis" - "would-be tests"

global \neq local P-value \implies positive fluctuation, need to correct our expectations

Years 6-9 vs. 1-5

"would-be hypothesis" - "would-be tests"

global \neq local P-value \implies positive fluctuation, need to correct our expectations

