Very-high-energy gamma rays in the multimessenger era

Marcos Santander University of Alabama

LHAASO Scientific Observation and Multi-messenger Astronomy Workshop - Apr 24-28, 2019

VERITAS telescopes

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

- Detects the Crab Nebula in < 2 minutes. ullet

Imaging Atmospheric Cherenkov Telescopes

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

3

Multi-messenger astronomy

New astrophysical messengers

- (photons, neutrinos, cosmic rays, and gravitational waves).
- sources with weak (or attenuated) EM emission and transient events.

Localization of VHE gamma-ray electromagnetic counterparts.

• Search for sources that emit in two or more "cosmic messenger" channels

Probe into extremely-energetic astrophysical processes. Improved sensitivity to

Astroparticle, Transient, Optical and Multi-Messenger

- Multi-messenger is only a part of the **VERITAS science program!**
- **BSM physics**: dark matter, primordial black holes, Lorentz invariance violation.
- Transients: gamma-ray bursts, fast radio bursts
- Astroparticle: measurement of primary CR spectra (e⁻, Fe)
- **Optical:** Stellar occultations, fast optical transients.

A sample of other topics: stellar diameter measurements

ש

Intensity

Observation of a stellar occultation by an asteroid. The diffraction pattern encodes the angular size of the star. Two stars observed: 94 µas and 125 µas diameters.

Illustrates capabilities for optical transient observations by IACTs.

Nature Astronomy (2019)

The VERITAS multi-messenger sky

 VERITAS performs follow-up observations of HE neutrinos from IceCube and gravitational waves from LIGO/Virgo.

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

VERITAS GRB observations

- ●
- \bullet
- \bullet
- lacksquare

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

GRBs were long-suspected as VHE emitters and IACTs follow-up on them. The first VHE GRB was **detected by MAGIC** (190114C).

VERITAS performs regular follow-ups of GRBs reported by Swift, Fermi or MAXI.

GRB alerts processed by the telescope control software in realtime. Telescopes are repointed once observers acknowledge the alert. 3 hours of observation above 20° elevation (1 hr for GBM bursts.)

Non-detections so far, **set constraints on emission medium**.

Localization uncertainty

Publications

- ApJ 743, 62 (2011) 16 bursts
- ApJL 795, L3 (2014) GRB 130427A
- ApJ 857, 33 (2018) GRB 150323A

VHE emission from gravitational wave sources

- kilonova.
- LIGO provides a horizon for nearby GRB detections, unaffected by EBL absorption. \bullet

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

• GW170817: First detection of GWs from a neutron star merger which triggered a GRB and a

1) First systematic IACT follow-up of a GW alert

- **GW170104**: 50- M_{sun} BBH merger at z = 0.2 detected by LIGO.
- the event.

- Preliminary results circulated as GCN #21153
- Currently following up alerts in O3. First follow-up on 04/12/19

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

• No EM emission expected. Alert was 6.5 hours old when received. Good visibility of the core region of

11

Neutrinos and gamma rays

 $\frac{K_{\pi}}{4}E_{\gamma}^{2}F_{\gamma}(E_{\gamma}) \approx \frac{1}{3}\sum E_{\nu}^{2}F_{\nu}(E_{\nu})$ $E_{\gamma} = 2E_{\nu}$

$\mu^+ ightarrow e^+ + u_e^- + \overline{ u}_\mu$ (oscillates to ~1:1:1)

12

IceCube follow-up programs

months-years

eeks

nute

days

cond

Goal: Searching for hadronic VHE emission at the location of single (or clusters of) high-energy muon neutrinos (~1° ang. resolution).

Variety of follow-up approaches:

- astrophysical ($E_v \gtrsim 100 \text{ TeV}$)
- Observation of neutrino "flares" from known VHE sources.
- Observation of neutrino multiplets.
- Observation of prompt online HESE alerts.
- Observation of prompt EHE alerts.

Searches for VHE emission at "archival" muon neutrino positions that are likely

Correlation studies of neutrino and gamma-ray emission from VHE sources.

Search for neutrino "flares" and "multiplets"

2) Search for a time-dependent neutrino emission from known VHE sources (days)

3) Search for neutrino "bursts" (multiplicity >= 2) (minutes)

M. Santander - Very-high-energy gamma rays in the multimessenger era - LHAASO Workshop (April 24-28, 2019, Chengdu, China)

- Three alert follow-ups with VERITAS
- 2016 JINST 11 P11009 (IceCube, MAGIC, VERITAS)
- Neutrino candidates are identified around a list of VHE sources. Number, energy, and position of the events are considered and an alert is sent by IceCube once a trigger condition is satisfied.

- Two or more neutrinos in spatial coincidence within 100 s.
- Most significant: event triplet detected in Feb 2016. VERITAS observations constrain VHE emission.
- IceCube and MWL partners (including VERITAS) A&A 607, A115 (2017)

Rapid neutrino follow-up observations

- event/year each. *p*_{astro}: 25% and 50%.
- Alerts are received and processed by the VERITAS software as GRBs.
- Alerts started in April 2016, first follow-up by VERITAS on April 27, 2016.
- 4 alerts followed-up to date.

IceCube distributes realtime GCN alerts for muon neutrino events. Two event streams with ~ 4

VERITAS observations of IC170922A

- IceCube detected a HE neutrino of potential astrophysical in origin on Sept 22, 2017. ullet
- lacksquarefrom the blazar within a few days of the neutrino.
- \bullet spectrum (~ E^{-5}).

The event is colocated with the blazar TXS 0506+056, observed in a flaring state by Fermi. MAGIC detected VHE emission

VERITAS detected the blazar in extended observations through Feb 2018 at a lower flux than MAGIC, also with a soft

See papers here: https://icecube.wisc.edu/pubs/neutrino_blazar

VHE gamma-ray landscape

- The start of LHAASO operations will not only improve our view of the VHE sky but also increase the global VHE coverage to transient and multi-messenger events.

First transient astrophysical source: SN 185 A "guest star" in the Book of the Later Han

• Our best wishes for a successful operation of LHAASO and many discoveries. We look forward to future collaborations!

The VERITAS Collaboration

