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Higgs physics, the origin of mass and lattice field theory

Lecture II



No relevant interaction in the scalar sector
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The issue is:
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Searching for relevant interaction:
The walking technicolour scenario



The idea of technicolour

The theory remains asymptotically free
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Technifermions are introduced in the following way:  

Introduce a novel strong-interaction sector

Technicolour gauge group, e.g.,

Technifermions are preferably in a complex irrepn of 

They are left doublet and right singlet under 

Chiral symmetry is broken via 

This new sector looks just like a “novel QCD”
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Flavour physics and extended technicolour

5

4

GTC

SU(NTC)

[SU(2)⌦ U(1)]EW

SU(NTF )L ⌦ SU(NTF )R ! SU(NTF )V

MW / f⇡TC
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At scale         , the breaking                      occurs     
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Failure of QCD-like (extended) technicolour
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The S parameter is too large

The FCNC problem

No stable light Higgs

Explained on the next slide

M. Peskin and T. Takeuchi, 1992

No such a scalar state in QCD
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FCNC problem in ETC models

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

mfSM = C(µ)
⇤

2
ETC

h ̄TC TC(µ)i

C(µ)
⇤

2
ETC

 ̄TC TC(µ)f̄SMfSM

1

⇤

2
ETC

f̄SMfSM f̄SMfSM

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

mfSM = C(µ)
⇤

2
ETC

h ̄TC TC(µ)i

C(µ)
⇤

2
ETC

 ̄TC TC(µ)f̄SMfSM

1

⇤

2
ETC

f̄SMfSM f̄SMfSM

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

mfSM = C(µ)
⇤

2
ETC

h ̄TC TC(µ)i

C(µ)
⇤

2
ETC

 ̄TC TC(µ)f̄SMfSM

1

⇤

2
ETC

f̄SMfSM f̄SMfSM

FCNC constraints

log running

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

mfSM = C(µ)
⇤

2
ETC

h ̄TC TC(µ)i

C(µ)
⇤

2
ETC

 ̄TC TC(µ)f̄SMfSM

1

⇤

2
ETC

f̄SMfSM f̄SMfSM

h ̄TC TCi ⇠ M3

W

⇤ETC ⇠ 1 TeV

⇤ETC ⇠ 103 TeV

2

d
 

= d
 

c < 5/2

⇤TC ⇠ ⇤EW

⇤ETC

mfSM = C(µ)
⇤

2
ETC

h ̄TC TC(µ)i

C(µ)
⇤

2
ETC

 ̄TC TC(µ)f̄SMfSM

1

⇤

2
ETC

f̄SMfSM f̄SMfSM

h ̄TC TCi ⇠ M3

W

⇤ETC ⇠ 1 TeV

⇤ETC ⇠ 103 TeV

7

5

dO + �O > 4

dO + �O < 4

dO + �O = 4

⇤

dO�4

UV

⇥O
⇤

ETC

⇡ M
ETC

� ⇤

TC

�ig
ETC

 TC

¯ TC

fSM

¯fSM

i
p2�M2

ETC

ig2
ETC

M2
ETC

p2 ⌧ M2

ETC

 TC , fSM

¯ TC ,
¯fSM

C(⇤ETC) = 1

5

dO + �O > 4

dO + �O < 4

dO + �O = 4

⇤

dO�4

UV

⇥O
⇤

ETC

⇡ M
ETC

� ⇤

TC

�ig
ETC

 TC

¯ TC

fSM

¯fSM

i
p2�M2

ETC

ig2
ETC

M2
ETC

p2 ⌧ M2

ETC

 TC , fSM

¯ TC ,
¯fSM

C(⇤ETC) = 1

h ¯ TC TC(⇤TC)i ⇠ M3

W

5

dO + �O > 4

dO + �O < 4

dO + �O = 4

⇤

dO�4

UV

⇥O
⇤

ETC

⇡ M
ETC

� ⇤

TC

�ig
ETC

 TC

¯ TC

fSM

¯fSM

i
p2�M2

ETC

ig2
ETC

M2
ETC

p2 ⌧ M2

ETC

 TC , fSM

¯ TC ,
¯fSM

C(⇤ETC) = 1

h ¯ TC TC(⇤ETC)i ⇠ h ¯ TC TC(⇤TC)i

Can we enhance the running of the condensate?
If so, can lift          estimated from SM fermion mass
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Dynamical solution from walking technicolourMotivation
Walking technicolour

!ETC!TC

Μ

Α!Μ"

• Generates large anomalous dimension for ψ̄ψ to solve the FCNC problem.

• Modifies the relevant spectral function and the OPE to elude the S-
paramter criticism a’la Peskin and Takeuchi.

• ΛETC/ΛTC ∼ 102 ∼ 103.

→ Compared to the typical lattice size L/a ∼ 30 in each direction.

Less significant chiral symmetry breaking effects

Light Higgs as the dilaton

Almost power-law running behaviour 

Quasi scale invariance

Smaller S parameter

Ease the tension between SM fermion masses and FCNC

8



Dynamical solution to the FCNC problem
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Looking for candidate theories
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The key issues are
Given a gauge group and a fermion repn

What is the critical number of flavours?

Is the theory just blow this number viable?
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The “conformal windows”
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Figure credit: F. Sannino



Where is the lower conformal windowsill?
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We may want the theory just below it!



Studies of the running coupling
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The gradient flow
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1 Introduction

Flows in field space are an interesting tool that may allow new insights to be gained into the

physical mechanisms described by highly non-linear quantum field theories such as QCD.

The flow Bµ(t, x) of SU(3) gauge fields studied in this paper is defined by the equations

Ḃµ = DνGνµ, Bµ|t=0 = Aµ, (1.1)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, · ], (1.2)
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)
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obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
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∑
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Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1
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0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.
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there are Nf flavours of massless quarks. As a representative case, the observable
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
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λ(r), (2.19)

– 4 –

Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and  n in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+  n)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density  uu+  dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

Figure taken from M.Luscher, Lattice 2013
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i.e., to leading order the Wilson flow is the heat flow. We also observe that di↵erent

momentum modes do not couple to each other at this order. Together with the fact that

the zero momentum mode B0(0, x0, t) does not contribute to the observable of interest,

E(t) = 1
4Gµ⌫

G

µ⌫

, we can safely neglect the special treatment that the boundary conditions

of the zero momentum mode B0(0, x0, t) would otherwise require in the following discussion.

We have to solve the heat equation respecting the boundary conditions (2.14). This is

easily done by using appropriate heat kernels

B̃

k,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

D(x0, x
0
0, t)Ãk

(p, x00) , (2.19a)

B̃0,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

N (x0, x
0
0, t)Ã0(p, x

0
0) (p 6= 0) . (2.19b)

Since the boundary conditions of the field B̃

µ,1(p, x0, t) are inherited from the boundary

conditions of the heat kernels, we have to choose them with the correct boundary condi-

tions. Heat kernels with either Dirichlet (KD(x, x0, t)) or Neumann (KN (x, x0, t)) boundary
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K

P (x, x0, t) =
1

L

X

p

e
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2
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e

ıp(x�x
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✓

p =
2⇡n

L

; n 2 Z
◆

. (2.20)

Explicit expressions are given in appendix B.
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Inserting for instance expression (2.19) into (2.22) we obtain
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The final result is obtained inserting the SF gluon propagator [31, 32]. Since our observable

is invariant under gauge transformations of the A
µ

(x) field we will use the Feynman gauge,

where the expression for the gluon propagator turns out to be more easy (for additional

details see appendix C).3
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�
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�
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�

p,�q
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X

p0
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p0(x0)sp0(y0)

p2 +
�

p0
2

�2 +O(g20) . (2.25)

3
We have checked that the result is independent of the gauge choice.
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the fields over a region of radius
p
8t. The somewhat surprising result of [18, 27] is that

correlation functions made of this smoothed field have a well-defined continuum limit.

In particular the energy density in SU(N) Yang-Mills theory in infinite volume has the

perturbative behavior

hE(t)i = 1

4
hG

µ⌫

G

µ⌫

i = 3(N2 � 1)g2MS

128⇡2
t

2
(1 + c1g

2
MS +O(g4MS)) . (2.3)

At a scale µ = 1/
p
8t, c1 is a numerical constant and gMS(µ) is the renormalized coupling

in the MS scheme. Therefore one can define a running coupling constant ↵(µ) from

t

2hE(t)i = 3(N2 � 1)

32⇡
↵(µ) . (2.4)

These expressions are valid in infinite volume. What about the Schrödinger Functional?

The computation is completely analogous, but we have to impose the correct boundary

conditions to the gauge fields. As we have mentioned in the SF gauge fields are restricted

to a box of dimensions L

3 ⇥ T . They are periodic in the three spatial directions and the

spatial components have Dirichlet boundary conditions at x0 = 0 and x0 = T . We are

going to work exclusively with zero boundary fields, which means

B

µ

(x+ k̂L, t) = B

µ

(x, t) , (2.5)

B

k

(x, t)|
x0=0,T = 0 . (2.6)

The flow equation (2.1) has to be solved maintaining these boundary conditions at all flow

times t. To apply the idea of finite-size scaling, as has previously been done in [23] in a

periodic box, one simply has to run the renormalization scale with the size of the finite

volume box given by L via

µ =
1p
8t

=
1

cL

. (2.7)

Here c is a dimensionless constant that represents the fraction of the smoothing range over

the total size of the box. In this way the flow coupling will not depend on any scale other

than L. The renormalization scheme will depend on the values of c, ⇢ = T/L and1 x0/T

g

2
GF(L) = N�1(c, ⇢, x0/T )t

2hE(t, x0)i
�

�

�

t=c

2
L

2
/8
, (2.8)

where N�1(c, ⇢, x0/T ) will be computed in the next section in order to ensure

g

2
GF = g

2
0 +O(g40) . (2.9)

2.2 Continuum

Our computation follows the lines of [27]. First we consider the modified flow equation

dB
µ

dt
= D

⌫

G

⌫µ

+ ↵D

µ

@

⌫

B

⌫

, B

µ

(x, 0) = A

µ

(x) . (2.10)

1
Note that in the SF the boundary conditions break the invariance under time translations. Therefore

hE(t, x0)i will depend explicitly on x0.
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The Gradient Flow coupling

• The quantity,                           , is finite when 
expressed in terms of renormalised coupling at 
positive flow time.

• With appropriate boundary condition, define,  
 
                                                      ,  
 
with tree-level improvement. 

• Use the clover operator,          ,  
 
as well as the plaquette, to extract         . 

• The “lattice renormalised coupling”       .
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t > 0 are automatically finite [27]. One can use the expectation value of the energy density,

hE(t)i = 1

4
hG

µ⌫

(t)G
µ⌫

(t)i , (1.1)

where G
µ⌫

(t) is the field strength of the gauge field at flow time t, to give a non-perturbative

definition of the gauge coupling. This idea was applied to set the scale in lattice simula-

tions [18, 28], to tune anisotropic lattices [29] and more recently in a similar context of this

work (finite-size scaling, but using a box with periodic boundary conditions) to compute

the step scaling function in SU(3) with four fermion species [30].

In this paper we investigate the perturbative behavior of the Wilson flow in the

Schrödinger functional. This motivates us to propose a gradient flow coupling

g

2
GF(L) = N�1

t

2hE(t)i = g

2
MS +O(g4MS), (1.2)

with a normalization factor N to be determined later, valid for an arbitrary SU(N) gauge

field coupled (or not) to fermions. Relating t and L the coupling depends only on one

scale, the size of the finite volume box, and therefore can be used for a finite-size scaling

procedure in the same way as the traditional SF coupling.

The paper is organized as follows: in the next section we investigate the perturbative

behavior of hE(t)i in the SF, both in the continuum and on the lattice. Section 3 uses this

information to define the gradient flow coupling in the SF, and to discuss some practical

issues: cuto↵ e↵ects, boundary fields and fermions. In section 4 we investigate this coupling

numerically on a set of lattices in a physical volume of L ⇠ 0.4 fm and finally conclude in

section 5. Details needed for the computation have been summarized in form of appendices:

a summary with some useful notation A, heat kernels B, propagators in the SF C and finally

some practical details on how to integrate the Wilson flow in numerical simulations D.

2 Perturbative behavior of the Wilson flow in the SF

We would like to start this section by recalling the original proposal of using the Wilson

flow and the energy density as a definition for a coupling in gauge theories [18]. Later it

will become clear what role the SF setup plays.

2.1 Generalities

By considering the gauge fields to be functions of an extra flow time t, not to be confused

with Euclidean time, denoted x0, the Wilson flow is defined by the non-linear equation

dB
µ

(x, t)

dt
= D

⌫

G

⌫µ

(x, t) , B

µ

(x, 0) = A

µ

(x) , (2.1)

where

G

µ⌫

= @

µ

B

⌫

� @

⌫

B

µ

+ [B
µ

, B

⌫

] (2.2)

is the field strength. Due to D

⌫

G

⌫µ

⇠ � �SYM[B]
�Bµ

gauge fields along the flow become

smoother, eventually reaching a local minimum of the Yang Mills action: the flow smooths
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The renormalisation scheme

• The “flow-time” can be regarded as a 
renormalisation scale. 

• The diffusion equation leads to a “gauge-field 
averaging radius.  

• Step scaling at fixed           .     

• One value of     corresponds to one scheme.  

The Gradient Flow

• “Diffusion” of the gauge fields:

                                                                             

• The radius of diffusion is 

• Local operators are also diffused.
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and  n in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+  n)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density  uu+  dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

Figure taken from M.Luscher, Lattice 2013
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i.e., to leading order the Wilson flow is the heat flow. We also observe that di↵erent

momentum modes do not couple to each other at this order. Together with the fact that

the zero momentum mode B0(0, x0, t) does not contribute to the observable of interest,

E(t) = 1
4Gµ⌫

G

µ⌫

, we can safely neglect the special treatment that the boundary conditions

of the zero momentum mode B0(0, x0, t) would otherwise require in the following discussion.

We have to solve the heat equation respecting the boundary conditions (2.14). This is

easily done by using appropriate heat kernels

B̃

k,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

D(x0, x
0
0, t)Ãk

(p, x00) , (2.19a)

B̃0,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

N (x0, x
0
0, t)Ã0(p, x

0
0) (p 6= 0) . (2.19b)

Since the boundary conditions of the field B̃

µ,1(p, x0, t) are inherited from the boundary

conditions of the heat kernels, we have to choose them with the correct boundary condi-

tions. Heat kernels with either Dirichlet (KD(x, x0, t)) or Neumann (KN (x, x0, t)) boundary

conditions can be constructed from the basic periodic (KP (x, x0, t)) heat kernel in [0, L]

given by

K

P (x, x0, t) =
1

L

X

p

e

�p

2
t

e

ıp(x�x

0)
,

✓

p =
2⇡n

L

; n 2 Z
◆

. (2.20)

Explicit expressions are given in appendix B.

Our observable, the energy density hE(t, x0)i, has an expansion in powers of g0. The

leading contribution is given by

E0(t, x0) = g

2
0

2
h@

µ

B

a

⌫,1@µB
a

⌫,1 � @

µ

B

a

⌫,1@⌫B
a

µ,1i . (2.21)

We are going to split the computation in two parts, one involving only the spatial compo-

nents of G
µ⌫

, and the other involving the mixed time-space components of G
µ⌫

Es

0(t, x0) =
g

2
0

2
h@

i

B

a

k,1@iB
a

k,1 � @

i

B

a

k,1@kB
a

i,1i , (2.22)

Em

0 (t, x0) =
g

2
0

2
h@0Ba

k,1@0B
a

k,1 � @0B
a

k,1@kB
a

0,1i . (2.23)

Inserting for instance expression (2.19) into (2.22) we obtain

Es

0(t, x0) = � g

2
0

2L6

X

p,q

e

�t(p2+q

2)
e

ı(p+q)x
Z

T

0
dx00dy

0
0K

D(x0, x
0
0, t)K

D(x0, y
0
0, t)

⇥
h

p

i

q

i

hÃa

k

(p, x00)Ã
a

k

(q, y00)i � p

i

q

k

hÃa

i

(p, x00)Ã
a

k

(q, y00)i
i

. (2.24)

The final result is obtained inserting the SF gluon propagator [31, 32]. Since our observable

is invariant under gauge transformations of the A
µ

(x) field we will use the Feynman gauge,

where the expression for the gluon propagator turns out to be more easy (for additional

details see appendix C).3

hÃa

i

(p, x0)Ã
b

k

(q, y0)i = L

3
�

ab

�

ik

�

p,�q

1

T

X

p0

s

p0(x0)sp0(y0)

p2 +
�

p0
2

�2 +O(g20) . (2.25)

3
We have checked that the result is independent of the gauge choice.
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the fields over a region of radius
p
8t. The somewhat surprising result of [18, 27] is that

correlation functions made of this smoothed field have a well-defined continuum limit.

In particular the energy density in SU(N) Yang-Mills theory in infinite volume has the

perturbative behavior

hE(t)i = 1

4
hG

µ⌫

G

µ⌫

i = 3(N2 � 1)g2MS

128⇡2
t

2
(1 + c1g

2
MS +O(g4MS)) . (2.3)

At a scale µ = 1/
p
8t, c1 is a numerical constant and gMS(µ) is the renormalized coupling

in the MS scheme. Therefore one can define a running coupling constant ↵(µ) from

t

2hE(t)i = 3(N2 � 1)

32⇡
↵(µ) . (2.4)

These expressions are valid in infinite volume. What about the Schrödinger Functional?

The computation is completely analogous, but we have to impose the correct boundary

conditions to the gauge fields. As we have mentioned in the SF gauge fields are restricted

to a box of dimensions L

3 ⇥ T . They are periodic in the three spatial directions and the

spatial components have Dirichlet boundary conditions at x0 = 0 and x0 = T . We are

going to work exclusively with zero boundary fields, which means

B

µ

(x+ k̂L, t) = B

µ

(x, t) , (2.5)

B

k

(x, t)|
x0=0,T = 0 . (2.6)

The flow equation (2.1) has to be solved maintaining these boundary conditions at all flow

times t. To apply the idea of finite-size scaling, as has previously been done in [23] in a

periodic box, one simply has to run the renormalization scale with the size of the finite

volume box given by L via

µ =
1p
8t

=
1

cL

. (2.7)

Here c is a dimensionless constant that represents the fraction of the smoothing range over

the total size of the box. In this way the flow coupling will not depend on any scale other

than L. The renormalization scheme will depend on the values of c, ⇢ = T/L and1 x0/T

g

2
GF(L) = N�1(c, ⇢, x0/T )t

2hE(t, x0)i
�

�

�

t=c

2
L

2
/8
, (2.8)

where N�1(c, ⇢, x0/T ) will be computed in the next section in order to ensure

g

2
GF = g

2
0 +O(g40) . (2.9)

2.2 Continuum

Our computation follows the lines of [27]. First we consider the modified flow equation

dB
µ

dt
= D

⌫

G

⌫µ

+ ↵D

µ

@

⌫

B

⌫

, B

µ

(x, 0) = A

µ

(x) . (2.10)

1
Note that in the SF the boundary conditions break the invariance under time translations. Therefore

hE(t, x0)i will depend explicitly on x0.
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using

dimensional regularization. The gauge group is taken to be SU(N) and it is assumed that

there are Nf flavours of massless quarks. As a representative case, the observable

E =
1

4
Ga

µνGa
µν (2.1)
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0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the
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tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a
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on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling

The aim in this section partly is to show that the Wilson flow can be studied straight-

forwardly in perturbation theory and partly to check that the expectation values of local

gauge-invariant observables calculated at positive flow time are renormalized quantities.

For simplicity the perturbation expansion is discussed in the continuum theory using
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there are Nf flavours of massless quarks. As a representative case, the observable
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and  n in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+  n)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density  uu+  dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

Figure taken from M.Luscher, Lattice 2013
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i.e., to leading order the Wilson flow is the heat flow. We also observe that di↵erent

momentum modes do not couple to each other at this order. Together with the fact that

the zero momentum mode B0(0, x0, t) does not contribute to the observable of interest,

E(t) = 1
4Gµ⌫

G

µ⌫

, we can safely neglect the special treatment that the boundary conditions

of the zero momentum mode B0(0, x0, t) would otherwise require in the following discussion.

We have to solve the heat equation respecting the boundary conditions (2.14). This is

easily done by using appropriate heat kernels

B̃

k,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

D(x0, x
0
0, t)Ãk

(p, x00) , (2.19a)

B̃0,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

N (x0, x
0
0, t)Ã0(p, x

0
0) (p 6= 0) . (2.19b)

Since the boundary conditions of the field B̃

µ,1(p, x0, t) are inherited from the boundary

conditions of the heat kernels, we have to choose them with the correct boundary condi-

tions. Heat kernels with either Dirichlet (KD(x, x0, t)) or Neumann (KN (x, x0, t)) boundary

conditions can be constructed from the basic periodic (KP (x, x0, t)) heat kernel in [0, L]

given by

K

P (x, x0, t) =
1

L

X

p

e

�p

2
t

e

ıp(x�x

0)
,

✓

p =
2⇡n

L

; n 2 Z
◆

. (2.20)

Explicit expressions are given in appendix B.

Our observable, the energy density hE(t, x0)i, has an expansion in powers of g0. The

leading contribution is given by

E0(t, x0) = g

2
0

2
h@

µ

B

a

⌫,1@µB
a

⌫,1 � @

µ

B

a

⌫,1@⌫B
a

µ,1i . (2.21)

We are going to split the computation in two parts, one involving only the spatial compo-

nents of G
µ⌫

, and the other involving the mixed time-space components of G
µ⌫

Es

0(t, x0) =
g

2
0

2
h@

i

B

a

k,1@iB
a

k,1 � @

i

B

a

k,1@kB
a

i,1i , (2.22)

Em

0 (t, x0) =
g

2
0

2
h@0Ba

k,1@0B
a

k,1 � @0B
a

k,1@kB
a

0,1i . (2.23)

Inserting for instance expression (2.19) into (2.22) we obtain

Es

0(t, x0) = � g

2
0

2L6

X

p,q

e

�t(p2+q

2)
e

ı(p+q)x
Z

T

0
dx00dy

0
0K

D(x0, x
0
0, t)K

D(x0, y
0
0, t)

⇥
h

p

i

q

i

hÃa

k

(p, x00)Ã
a

k

(q, y00)i � p

i

q

k

hÃa

i

(p, x00)Ã
a

k

(q, y00)i
i

. (2.24)

The final result is obtained inserting the SF gluon propagator [31, 32]. Since our observable

is invariant under gauge transformations of the A
µ

(x) field we will use the Feynman gauge,

where the expression for the gluon propagator turns out to be more easy (for additional

details see appendix C).3

hÃa

i

(p, x0)Ã
b

k

(q, y0)i = L

3
�

ab

�

ik

�

p,�q

1

T

X

p0

s

p0(x0)sp0(y0)

p2 +
�

p0
2

�2 +O(g20) . (2.25)

3
We have checked that the result is independent of the gauge choice.
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the fields over a region of radius
p
8t. The somewhat surprising result of [18, 27] is that

correlation functions made of this smoothed field have a well-defined continuum limit.

In particular the energy density in SU(N) Yang-Mills theory in infinite volume has the

perturbative behavior

hE(t)i = 1

4
hG

µ⌫

G

µ⌫

i = 3(N2 � 1)g2MS

128⇡2
t

2
(1 + c1g

2
MS +O(g4MS)) . (2.3)

At a scale µ = 1/
p
8t, c1 is a numerical constant and gMS(µ) is the renormalized coupling

in the MS scheme. Therefore one can define a running coupling constant ↵(µ) from

t

2hE(t)i = 3(N2 � 1)

32⇡
↵(µ) . (2.4)

These expressions are valid in infinite volume. What about the Schrödinger Functional?

The computation is completely analogous, but we have to impose the correct boundary

conditions to the gauge fields. As we have mentioned in the SF gauge fields are restricted

to a box of dimensions L

3 ⇥ T . They are periodic in the three spatial directions and the

spatial components have Dirichlet boundary conditions at x0 = 0 and x0 = T . We are

going to work exclusively with zero boundary fields, which means

B

µ

(x+ k̂L, t) = B

µ

(x, t) , (2.5)

B

k

(x, t)|
x0=0,T = 0 . (2.6)

The flow equation (2.1) has to be solved maintaining these boundary conditions at all flow

times t. To apply the idea of finite-size scaling, as has previously been done in [23] in a

periodic box, one simply has to run the renormalization scale with the size of the finite

volume box given by L via

µ =
1p
8t

=
1

cL

. (2.7)

Here c is a dimensionless constant that represents the fraction of the smoothing range over

the total size of the box. In this way the flow coupling will not depend on any scale other

than L. The renormalization scheme will depend on the values of c, ⇢ = T/L and1 x0/T

g

2
GF(L) = N�1(c, ⇢, x0/T )t

2hE(t, x0)i
�

�

�

t=c

2
L

2
/8
, (2.8)

where N�1(c, ⇢, x0/T ) will be computed in the next section in order to ensure

g

2
GF = g

2
0 +O(g40) . (2.9)

2.2 Continuum

Our computation follows the lines of [27]. First we consider the modified flow equation

dB
µ

dt
= D

⌫

G

⌫µ

+ ↵D

µ

@

⌫

B

⌫

, B

µ

(x, 0) = A

µ

(x) . (2.10)

1
Note that in the SF the boundary conditions break the invariance under time translations. Therefore

hE(t, x0)i will depend explicitly on x0.
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 g2  (scale-dependent renormalized coupling) 
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5-loop
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p-regime

β-function summary
Overview

there have been many studies of the beta-function 
in the search for (near) conformal behavior by 
many groups — too many to summarize all 

several years of LatHC studies shows a consistent 
trend of decreasing beta function with  
increasing flavor number Nf  

combined with other work, a steadily lighter scalar 
emerges, the hoped for Higgs impostor 

but how sure are we about all of this?   

and what is new this year? 

Lattice 2019  K Holland

1. there are recent discrepancies for Nf = 10 with domain 
wall studies - can we clear this up? 

2. Nf = 12 is in a very delicate region - is the  
evidence in favor of the theory being near-conformal any stronger? 

3. Nf = 2 sextet has been our flagship as a BSM candidate, 
what improvements can we show in the beta-function 

Overall theme: are systematic effects under control?

Nf refers to the number of 
massless flavors

Figure from Kieran Holland, LATTICE 2019
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Determination of the Nf = 12 step scaling function using Möbius domain wall fermions Anna Hasenfratz
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Figure 1: Non-perturbatively determined gradient flow step-scaling function with infinite volume limit ex-
trapolation for the renormalization schemes c = 0.3 (left) and c = 0.25 (right). The colored data points are
obtained using Eq. (1.2) for the tree-level normalized (n) couplings determined using Zeuthen flow (Z) and
the Symanzik operator (S). Colored bands correspond to the polynomial interpolation for each volume pair,
while the solid black line with gray error band shows the linear infinite volume extrapolation and the black
dashed-dotted line with 1s uncertainty indicated by dotted lines shows the quadratic extrapolation.

continuum L ! • limit using either a quadratic ansatz in 1/L2 for all five volume pairs (black dash-
dotted line with dotted 1s uncertainties) or a linear ansatz extrapolating the three largest volume
pairs shown by the solid black line with gray error band. Since we are calculating a renormalized
quantity and extrapolate the GF step scaling function to the continuum L ! • limit, we obtain a
result which is expected to agree when compared to other determinations using the same renormal-
ization scheme and is independent e.g. of the fermion discretization.

In the next section we will present further details of our analysis, scrutinize it, and demonstrate
the robustness of our findings. In Section 3 we will address implications of our results, comment
on the question of fermion universality before giving an outlook on ongoing and future work.

2. Details of our gradient flow step scaling analysis

As stated above, our preferred analysis is based on tree-level normalized couplings determined
using Zeuthen flow and the Symanzik operator. Choosing the renormalization scheme c = 0.3, we
investigate other choices of our analysis.

First we present in Fig. 2 alternative determinations of the GF step scaling function using tree-
level normalized Wilson flow (W) with the Wilson operator (W) (left) and Symanzik flow with the
clover operator (C) (right). Comparison with the left plot in Fig. 1 shows that while the data points
for individual volume pairs change quite substantially, in particular for SC, the continuum L ! •
extrapolated result shows only minimal fluctuations, as can be seen in the comparison plot (Fig. 4,
left panel).

Secondly, we demonstrate the effect of the tree-level normalization by showing in Fig. 3 the
analysis without using the perturbative improvement. On the left, data obtained from Zeuthen
flow and Symanzik operator are analyzed; on the right, Symanzik flow and clover operator are

3

Figure from A. Hasenfratz, C. Rebbi, O. Witzel, arXiv:1810.0517 [hep-lat] (LATTICE 2018) 
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Figure 4. The step-scaling functions using the procedure discussed in the main text. The x−axis
is the value of the input reference g2GF(L).

Figure 5 displays the likelihood functions for the study of the correlation between rσ
at input g2GF = 6.0 and several choices of rσ,k, at cτ = 0.45. It is clear that this ratio

computed at input g2GF = 6.0 is at least mildly correlated with that extracted at input

g2GF ≥ 5.3. Notice that we have at least two data points for every lattice volume between

these two values of the renormalised coupling. This investigation shows the necessity of

having simulations at many choices of the bare coupling for each L̂, in order to reduce the

correlation amongst rσ computed at different input renormalised couplings.

4 Strategy for the continuum extrapolation and finite-size scaling

As discussed in section 3.2, implementation of the continuum extrapolation employing the

fit formula of eq. (3.7) is inspired by the “Symanzik-type” argument. This approach is

applicable when the bare parameters are tuned such that the effects of the lattice spacing

are only related to the UV Gaussian fixed point. In the present study, this is reached when

g20 is close enough to zero. Under this circumstance, a major origin of scaling violation

are the irrelevant operators that can be included in the theory. The classical dimensional

analysis is a good approximation in this region, and it leads to simple power-law dependence

on the cut-off. For a generic observable, Mlatt, computed on the lattice, the approach to

the continuum limit is governed by the behaviour

Mlatt = M0 +
∞∑

n=1

NIR∑

i=1

Mn,i (aΛi)
n , (4.1)

– 17 –



0.0 0.2 0.4 0.6 0.8 1.0 1.2
!0.08

!0.06

!0.04

!0.02

0.00

0.02

0.04

g2

Β

“The” continuum limit as desired

a
L

L’

Scaling violation through the inclusion of the irrelevant operators. 
“Symanzik-type” continuum extrapolation.

15

1.00 1.01 1.02 1.03 1.04

g2GF(2L)/g
2
GF(L) at g2GF(L) = 6.0

1.02

1.03

1.04

1.05

1.06

g2 G
F
(2
L
)/
g2 G

F
(L

)
a
t
g2 G

F
(L

)
=

5.
0

cτ = 0.45, clover discretisation

0

600

1200

1800

2400

3000

3600

4200

4800

1.00 1.01 1.02 1.03 1.04

g2GF(2L)/g
2
GF(L) at g2GF(L) = 6.0

1.02

1.03

1.04

1.05

1.06

g2 G
F
(2
L
)/
g2 G

F
(L

)
a
t
g2 G

F
(L

)
=

5.
3

cτ = 0.45, clover discretisation

0

600

1200

1800

2400

3000

3600

4200

4800

1.00 1.01 1.02 1.03 1.04

g2GF(2L)/g
2
GF(L) at g2GF(L) = 6.0

1.01

1.02

1.03

1.04

1.05

g2 G
F
(2
L
)/
g2 G

F
(L

)
a
t
g2 G

F
(L

)
=

5.
6

cτ = 0.45, clover discretisation

0

800

1600

2400

3200

4000

4800

5600

6400

1.00 1.01 1.02 1.03 1.04

g2GF(2L)/g
2
GF(L) at g2GF(L) = 6.0

1.00

1.01

1.02

1.03

1.04

g2 G
F
(2
L
)/
g2 G

F
(L

)
a
t
g2 G

F
(L

)
=

5.
9

cτ = 0.45, clover discretisation

0

1500

3000

4500

6000

7500

9000

10500

12000

13500

FIG. 5: Correlation between g2
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(L) = 6.0 and various other results at different input values of g2
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(L).
Plotted here are the results of the likelihood function defined in Eq. (35). The dashed curves represent the standard error
ellipses.

IV. STRATEGY FOR THE CONTINUUM EXTRAPOLATION AND FINITE-SIZE SCALING

As discussed in Sec. III B, implementation of the continuum extrapolation employing the fit formula of Eq. (34) is
inspired by the “Symanzik-type” argument. This approach is applicable when the bare parameters are tuned such
that the effects of the lattice spacing are only related to the UV Gaussian fixed point. In the present study, this
is reached when g20 is close enough to zero. Under this circumstance, a major origin of scaling violation are the
irrelevant operators that can be included in the theory. The classical dimensional analysis is a good approximation
in this region, and it leads to simple power-law dependence on the cut-off. For a generic observable,Mlatt, computed
on the lattice, the approach to the continuum limit is governed by the behaviour

Mlatt = M0 +
∞
∑

n=1

NIR
∑

i=1

Mn,i (aΛi)
n , (37)

where Λi (i = 1, 2, . . . , NIR) are all the possible IR energy scales that are well below 1/a. Clearly, M0 is the
continuum limit of Mlatt. Quantum fluctuations in the above equation can be accounted for by using perturbation
theory. Because of the Gaussian nature of the fixed point, they introduce logarithmic dependence on the lattice
spacing in the coefficients, Mn,i. These logarithms are often discernible in numerical analysis only when very
high-precision data are available, therefore they are normally not included in the fitting procedure.
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To employ Eq. (37) for conducting the continuum extrapolation in search of an IRFP using the step-scaling method,
it is essential to make certain that the dimensionfull lattice size, L, is in the long-distance region that is governed
by possible IR conformality, while the scaling property of the theory at the lattice spacing is still dominated by
the UV Gaussian fixed point. Therefore, to adopt this Symanzik-type continuum extrapolation for distinguishing
between theories with IR scale invariance and slow-running behaviour, one may have to perform lattice simulations
extremely close to the limit L̂ → ∞. This is particularly crucial for the study of a theory that contains a small
β−function, such that the UV and the IR scaling regimes can be separated by many orders of magnitude in the
difference of scales. Since one normally works with the lattice size,

L̂ = L/a ∼ 10 to 40, (38)

in current step-scaling investigation of the running coupling, it is challenging to achieve this separation. Therefore,
one has to be cautious when utilising the Symanzik-type strategy, Eq. (37), for confirming the existence of an
IRFP.

Given the usual choices of the lattice size in Eq. (38), it is plausible that if an IRFP exists in the theory, the
bare couplings can be tuned such that the scaling with respect to the change in both a and L is controlled by
IR conformality. In fact, in all the contemporary lattice calculations employing the step-scaling for probing IR
scale invariance in gauge theories [37, 38, 54, 74–89], the values of g20 are often larger than unity. Therefore the
continuum extrapolation in these computations (including our present work) may not be guided by the simple
polynomial formula as in Eq. (37). Below we examine the alternative scenario in which the continuum limit is
reached according to approximate IR conformality.

Near an IRFP at strong coupling, the classical dimensional analysis receives significant corrections from quantum
fluctuations, and the cut-off dependence may no longer be as simple as Eq. (37). The anomalous dimensions of
the operators in the theory can lead to dependence on fractional powers of a/L. Investigation for details of the
scaling laws and the continuum limit near possible strong-coupling fixed points is not new in lattice field theory
computations. Recent examples are the studies of the Higgs-Yukawa model in Ref. [90], and the three-dimensional
scalar theory in Ref. [91]. Here we will first illustrate this point in the context of this work by examining a generic
coupling, gR, renormalised at the length-scale ρ. In the vicinity of a strongly-coupled IRFP, the β−function can
be well approximated by the linearised form,

β
(

g2R
)

≡ −ρdg
2
R

dρ
= γ∗

(

g2R − g2∗
)

, (39)

where g∗ is the location of the IRFP, and γ∗ is the slope of the β−function at this zero. Notice that the value of
g∗ depends on the choice of the renormalisation scheme, while γ∗ is a universal quantity and takes real positive
value. Integrating Eq. (39) between two length scales, l1 and l2, we obtain

g2R(l2) = g2∗ +
[

g2R(l1)− g2∗
]

(

l1
l2

)γ∗

, (40)

which clearly indicates the possibility of having dependence on non-integer powers of l1 and l2. For the purpose of
our discussion, we introduce another scale, Lref , such that

L > Lref > a, (41)

and work with fixed lattice spacing. To proceed, in the following discussion we will present our argument using the
GF-scheme renormalised coupling, ḡ2latt(g

2
0 , L̂), as defined in Eq. (14).

Expressing all the length scales in lattice units, and identifying l1 and l2 in Eq. (40) with Lref and L, one obtains

ḡ2latt(g
2
0 , L̂) = g2∗ +

[

ḡ2latt(g
2
0 , L̂ref)− g2∗

]

(

L̂ref

L̂

)γ∗

, (42)

in the vicinity of the IRFP. This equation can be regarded as a finite-size scaling formula. Confronting it with lattice
data enables us to confirm/exclude IR conformality, and it leads to the determination of g∗ and γ∗. In addition
to fixing the bare coupling, we can further choose to work at a particular value of L̂ref in the analysis. It has to
be stressed again that the renormalised couplings, ḡ2latt(g

2
0 , L̂) and ḡ2latt(g

2
0 , L̂ref), still contain lattice artefacts, and
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2
0 , L̂ref), still contain lattice artefacts, and

16

To employ Eq. (37) for conducting the continuum extrapolation in search of an IRFP using the step-scaling method,
it is essential to make certain that the dimensionfull lattice size, L, is in the long-distance region that is governed
by possible IR conformality, while the scaling property of the theory at the lattice spacing is still dominated by
the UV Gaussian fixed point. Therefore, to adopt this Symanzik-type continuum extrapolation for distinguishing
between theories with IR scale invariance and slow-running behaviour, one may have to perform lattice simulations
extremely close to the limit L̂ → ∞. This is particularly crucial for the study of a theory that contains a small
β−function, such that the UV and the IR scaling regimes can be separated by many orders of magnitude in the
difference of scales. Since one normally works with the lattice size,

L̂ = L/a ∼ 10 to 40, (38)

in current step-scaling investigation of the running coupling, it is challenging to achieve this separation. Therefore,
one has to be cautious when utilising the Symanzik-type strategy, Eq. (37), for confirming the existence of an
IRFP.

Given the usual choices of the lattice size in Eq. (38), it is plausible that if an IRFP exists in the theory, the
bare couplings can be tuned such that the scaling with respect to the change in both a and L is controlled by
IR conformality. In fact, in all the contemporary lattice calculations employing the step-scaling for probing IR
scale invariance in gauge theories [37, 38, 54, 74–89], the values of g20 are often larger than unity. Therefore the
continuum extrapolation in these computations (including our present work) may not be guided by the simple
polynomial formula as in Eq. (37). Below we examine the alternative scenario in which the continuum limit is
reached according to approximate IR conformality.

Near an IRFP at strong coupling, the classical dimensional analysis receives significant corrections from quantum
fluctuations, and the cut-off dependence may no longer be as simple as Eq. (37). The anomalous dimensions of
the operators in the theory can lead to dependence on fractional powers of a/L. Investigation for details of the
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where g∗ is the location of the IRFP, and γ∗ is the slope of the β−function at this zero. Notice that the value of
g∗ depends on the choice of the renormalisation scheme, while γ∗ is a universal quantity and takes real positive
value. Integrating Eq. (39) between two length scales, l1 and l2, we obtain

g2R(l2) = g2∗ +
[
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]

(
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)γ∗
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which clearly indicates the possibility of having dependence on non-integer powers of l1 and l2. For the purpose of
our discussion, we introduce another scale, Lref , such that
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and work with fixed lattice spacing. To proceed, in the following discussion we will present our argument using the
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Expressing all the length scales in lattice units, and identifying l1 and l2 in Eq. (40) with Lref and L, one obtains
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in the vicinity of the IRFP. This equation can be regarded as a finite-size scaling formula. Confronting it with lattice
data enables us to confirm/exclude IR conformality, and it leads to the determination of g∗ and γ∗. In addition
to fixing the bare coupling, we can further choose to work at a particular value of L̂ref in the analysis. It has to
be stressed again that the renormalised couplings, ḡ2latt(g
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0 , L̂) and ḡ2latt(g

2
0 , L̂ref), still contain lattice artefacts, and

Introduce a reference length scale,

Check that the lattice artefacts are small 

Done in practice using more than one discretisation
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FIG. 6: Results of γ at cτ = 0.5. This plot shows that the theory as probed using our data is insensitive to possible IR
conformality.

therefore one has to work in a regime where lattice artefacts are small compared with the statistical uncertainties.
This can be checked in practice by using different discretisations and/or different lattice sizes to extract ḡ2latt.

We further notice, from Fig. 2, that in this work the change of ḡ2latt(g
2
0 , L̂) is small when varying L̂ between 8 and

24 at fixed lattice spacing. When the coupling is very small, this is due to the effect of the Gaussian UVFP. At
intermediate and strong couplings, such behaviour arises from the smallness of the β−function. Therefore, away
from the asymptotic-freedom regime, we can fit our data, at a particular choice of L̂ref and a, with the formula,

ḡ2latt(g
2
0 , L̂) = g2l (gref) +

[

g2ref − g2l (gref)
]

(

L̂ref

L̂

)γ(gref )

, (43)

where gl and γ are the free parameters, with the definition,

gref ≡ ḡlatt(g
2
0 , L̂ref). (44)

Equation (43) can be regarded as the consequence of a “locally linearised” β−function, which is a good approx-
imation only when one works with small variations of the coupling around gref . This is the reason why gl and γ
depend on gref . Nevertheless, when the theory is tuned to be close to an IRFP, this equation must converge to
Eq. (42), and gl and γ will approach constant values, g∗ and γ∗.

In the numerical analysis, we always fix L̂ref to be 8, and use data at L̂ = 10, 12, 16, 20, 24 for fitting with Eq. (43)10.
For each fit, we specify a value for g20 (hence gref), and extract gl and γ. When conducting this procedure in a
region without IR conformality, gl and γ will show dependence on the input gref . On the other hand, when the
theory is engineered to be in the neighbourhood of an IRFP by tuning the bare coupling, these two quantities
should show a clear trend to converge to g∗ and γ∗. In summary, we can utilise our data and perform the fit to
Eq. (43) at fixed L̂ref = 8, and scan though many values of g0 (hence gref) in the strong-coupling regime. At each

10 We have also tried taking L̂ref = 10, and using data at L̂ = 12, 16, 20, 24 for fitting. However, this leads to a significant increase in
the error for the results.

(Good approximation for small beta function)

The “locally linearised” beta function 
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therefore one has to work in a regime where lattice artefacts are small compared with the statistical uncertainties.
This can be checked in practice by using different discretisations and/or different lattice sizes to extract ḡ2latt.

We further notice, from Fig. 2, that in this work the change of ḡ2latt(g
2
0 , L̂) is small when varying L̂ between 8 and

24 at fixed lattice spacing. When the coupling is very small, this is due to the effect of the Gaussian UVFP. At
intermediate and strong couplings, such behaviour arises from the smallness of the β−function. Therefore, away
from the asymptotic-freedom regime, we can fit our data, at a particular choice of L̂ref and a, with the formula,

ḡ2latt(g
2
0 , L̂) = g2l (gref) +

[

g2ref − g2l (gref)
]

(

L̂ref

L̂

)γ(gref )

, (43)

where gl and γ are the free parameters, with the definition,

gref ≡ ḡlatt(g
2
0 , L̂ref). (44)

Equation (43) can be regarded as the consequence of a “locally linearised” β−function, which is a good approx-
imation only when one works with small variations of the coupling around gref . This is the reason why gl and γ
depend on gref . Nevertheless, when the theory is tuned to be close to an IRFP, this equation must converge to
Eq. (42), and gl and γ will approach constant values, g∗ and γ∗.

In the numerical analysis, we always fix L̂ref to be 8, and use data at L̂ = 10, 12, 16, 20, 24 for fitting with Eq. (43)10.
For each fit, we specify a value for g20 (hence gref), and extract gl and γ. When conducting this procedure in a
region without IR conformality, gl and γ will show dependence on the input gref . On the other hand, when the
theory is engineered to be in the neighbourhood of an IRFP by tuning the bare coupling, these two quantities
should show a clear trend to converge to g∗ and γ∗. In summary, we can utilise our data and perform the fit to
Eq. (43) at fixed L̂ref = 8, and scan though many values of g0 (hence gref) in the strong-coupling regime. At each

10 We have also tried taking L̂ref = 10, and using data at L̂ = 12, 16, 20, 24 for fitting. However, this leads to a significant increase in
the error for the results.
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therefore one has to work in a regime where lattice artefacts are small compared with the statistical uncertainties.
This can be checked in practice by using different discretisations and/or different lattice sizes to extract ḡ2latt.

We further notice, from Fig. 2, that in this work the change of ḡ2latt(g
2
0 , L̂) is small when varying L̂ between 8 and

24 at fixed lattice spacing. When the coupling is very small, this is due to the effect of the Gaussian UVFP. At
intermediate and strong couplings, such behaviour arises from the smallness of the β−function. Therefore, away
from the asymptotic-freedom regime, we can fit our data, at a particular choice of L̂ref and a, with the formula,
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2
0 , L̂ref). (44)

Equation (43) can be regarded as the consequence of a “locally linearised” β−function, which is a good approx-
imation only when one works with small variations of the coupling around gref . This is the reason why gl and γ
depend on gref . Nevertheless, when the theory is tuned to be close to an IRFP, this equation must converge to
Eq. (42), and gl and γ will approach constant values, g∗ and γ∗.

In the numerical analysis, we always fix L̂ref to be 8, and use data at L̂ = 10, 12, 16, 20, 24 for fitting with Eq. (43)10.
For each fit, we specify a value for g20 (hence gref), and extract gl and γ. When conducting this procedure in a
region without IR conformality, gl and γ will show dependence on the input gref . On the other hand, when the
theory is engineered to be in the neighbourhood of an IRFP by tuning the bare coupling, these two quantities
should show a clear trend to converge to g∗ and γ∗. In summary, we can utilise our data and perform the fit to
Eq. (43) at fixed L̂ref = 8, and scan though many values of g0 (hence gref) in the strong-coupling regime. At each

10 We have also tried taking L̂ref = 10, and using data at L̂ = 12, 16, 20, 24 for fitting. However, this leads to a significant increase in
the error for the results.

plateaus to the value near the IRFP.
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therefore one has to work in a regime where lattice artefacts are small compared with the statistical uncertainties.
This can be checked in practice by using different discretisations and/or different lattice sizes to extract ḡ2latt.

We further notice, from Fig. 2, that in this work the change of ḡ2latt(g
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0 , L̂) is small when varying L̂ between 8 and

24 at fixed lattice spacing. When the coupling is very small, this is due to the effect of the Gaussian UVFP. At
intermediate and strong couplings, such behaviour arises from the smallness of the β−function. Therefore, away
from the asymptotic-freedom regime, we can fit our data, at a particular choice of L̂ref and a, with the formula,
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, (43)

where gl and γ are the free parameters, with the definition,
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2
0 , L̂ref). (44)

Equation (43) can be regarded as the consequence of a “locally linearised” β−function, which is a good approx-
imation only when one works with small variations of the coupling around gref . This is the reason why gl and γ
depend on gref . Nevertheless, when the theory is tuned to be close to an IRFP, this equation must converge to
Eq. (42), and gl and γ will approach constant values, g∗ and γ∗.

In the numerical analysis, we always fix L̂ref to be 8, and use data at L̂ = 10, 12, 16, 20, 24 for fitting with Eq. (43)10.
For each fit, we specify a value for g20 (hence gref), and extract gl and γ. When conducting this procedure in a
region without IR conformality, gl and γ will show dependence on the input gref . On the other hand, when the
theory is engineered to be in the neighbourhood of an IRFP by tuning the bare coupling, these two quantities
should show a clear trend to converge to g∗ and γ∗. In summary, we can utilise our data and perform the fit to
Eq. (43) at fixed L̂ref = 8, and scan though many values of g0 (hence gref) in the strong-coupling regime. At each

10 We have also tried taking L̂ref = 10, and using data at L̂ = 12, 16, 20, 24 for fitting. However, this leads to a significant increase in
the error for the results.

26

Figure from C.-J.D.L., K. Ogawa, A. Ramos, JHEP 12 (2015)



Deformation and scaling
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Deformation of a strongly-coupled IRFP

28

Deform the theory by introducing a relevant operator 

A popular approach is “mass deformation”

Break IR scale invariance at the scale

L. Del Debbio and R. Zwicky, PRD 82, 2010
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Figure 1: Running of the coupling as a function of the energy scale for a theory with an IRFP.

At low energies the coupling flows to a fixed-point value g∗, while the high energy behaviour

is the usual one expected for asymptotically free theories. The scale ΛU corresponds to the

energy where the running starts to be dictated by asymptotic freedom. The dashed curve at

low energies shows the running of the coupling when a fermionic mass term is switched on.

from it. In a theory with a non-vanishing fermion mass, the fermionic degrees of freedom

decouple at low energies, and the theory behaves like a pure Yang–Mills theory. The
running of the gauge coupling for the massive theory is given by the dashed curve at

small µ in Fig. 1, where the running of the coupling below some scale ΛIR is explicitly
drawn. Note that in the presence of an IRFP ΛIR goes to zero as the fermion mass
vanishes.

The running of the mass is described by its anomalous dimension, which has the
opposite sign of the anomalous dimension of the renormalized composite operator q̄q,

µ
d

dµ
q̄q|µ = γq̄q(µ) q̄q|µ = γ(µ) q̄q|µ . (6)

We have explicitly indicated the scale dependence of the various quantities. In this paper
we will use the symbol γ to denote the anomalous dimension of the mass and quark

condensate: γ ≡ γm = −γq̄q.
Note that the anomalous dimension away from the fixed point depends on the renor-

malization scheme. However its value γ∗ at the IRFP is a scheme-independent quantity.
A concise discussion of the scheme-dependent features of IRFPs can be found in Ref. [46].

Throughout this paper we will often refer to scaling dimensions of operators, denoted

by ∆; thery are obtained as the sum of the naive mass dimension of the operator and the
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low energies shows the running of the coupling when a fermionic mass term is switched on.
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decouple at low energies, and the theory behaves like a pure Yang–Mills theory. The
running of the gauge coupling for the massive theory is given by the dashed curve at

small µ in Fig. 1, where the running of the coupling below some scale ΛIR is explicitly
drawn. Note that in the presence of an IRFP ΛIR goes to zero as the fermion mass
vanishes.

The running of the mass is described by its anomalous dimension, which has the
opposite sign of the anomalous dimension of the renormalized composite operator q̄q,
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q̄q|µ = γq̄q(µ) q̄q|µ = γ(µ) q̄q|µ . (6)

We have explicitly indicated the scale dependence of the various quantities. In this paper
we will use the symbol γ to denote the anomalous dimension of the mass and quark

condensate: γ ≡ γm = −γq̄q.
Note that the anomalous dimension away from the fixed point depends on the renor-

malization scheme. However its value γ∗ at the IRFP is a scheme-independent quantity.
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 Study the correlator near the mass-deformed IRFP 

L. Del Debbio and R. Zwicky, PRD 82, 2010

anomalous dimension. For example for the operator q̄q we write:

∆q̄q = dq̄q + γq̄q = 3− γ∗ , ym = 1 + γ∗ , (7)

where we have also introduced the scaling exponent ym, which often appears in what
follows and is widely used in the RG-literature [12]. Throughout this paper we will use

these notations interchangeably.
Scaling laws are derived by assuming that the fermion mass is the only relevant op-

erator at the IRFP. RG equations will be used below in order to derive the scaling of
the chiral condensate as a function of the fermion mass. It is therefore worthwhile to
briefly recall how the scaling relation for the masses in the spectrum is obtained. A recent

discussion of RG flows in the vicinity of an IRFP can be found in Refs. [40, 47, 48].
Let us consider the zero-momentum vacuum correlator of an interpolating field H(x)

with the quantum numbers of a given state in the spectrum:

CH(t; g, m̂, µ) =

∫
d3x ⟨H(t, x)H(0)†⟩

∣∣
g,m̂,µ

, (8)

where we have indicated explicitly the dependence on the couplings and the scale µ. It

is useful in this context to introduce a rescaled mass m̂(µ) = m(µ)/µ. For the specific
case of lattice simulations, the scale is set by the inverse lattice spacing µ = a−1. The

masses of the physical stable states are obtained from the Euclidean time dependence of
two-point functions. At large Euclidean time t:

CH(t; g, m̂, µ) ∼ e−MH t , (9)

where MH is the mass of the lightest state in the channel under examination. We examine

the consequences of the RG equation for the two-point function.
In the vicinity of the fixed point, a RG transformation acts on the correlator according

to:
µ = bµ′ ; CH(t; g, m̂, µ) = b−2γHCH(t; g

′, m̂′, µ′) , (10)

where γH is the anomalous dimension of the field H . The flow of the couplings near the

RG fixed point is power-like:

g′ = bygg , m̂′ = bymm̂ . (11)

We shall neglect henceforth the irrelevant coupling g (yg < 0). Multiplying all mass units
by the factor b we obtain:

CH(t; m̂
′, µ′) = b−2dHCH(tb

−1; m̂′, µ) , (12)
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where dH is the naive mass dimension of the operator H . Choosing b such that m̂′ = 1,
the equations above yield:

CH(t; m̂, µ) = CHF (tm̂1/(1+γ∗), µ) , (13)

where F is some function that, for fixed µ, depends on the rescaled variable x = tm̂1/(1+γ∗)

only. The detailed dependence of the prefactor CH on the parameters of the theory is

postponed to the next section, where it will play a prominent role. Comparing Eq. (13)
with the expected behaviour Eq. (9) yields:

MH ≃ cHµ m̂
1

1+γ∗ as m → 0 . (14)

Note that the scaling of the mass MH is entirely determined by the anomalous dimension
γ∗ and does not depend on the specific choice of the interpolating operator H . Eq. (14)

shows that all lowest state masses scale with with same exponent 1/(1 + γ∗), while the
proportionality constant cH depends on the chosen channel. While each individual mass

in the spectrum vanishes, ratios of masses should remain constant as the chiral limit is
approached. This scaling is consistent e.g. with the scenarios proposed in Ref. [49, 50].

In the derivation above we have not considered the effects of a finite decay width. At
least one channel ought to be stable and therefore not affected by the width. According to
an inequality by Weingarten [51], valid for nF ≥ 2, this should be the mass of the lowest

pseudoscalar flavour-nonsinglet, which we shall later on denote by MP a . For all other
states one might wonder how the width interferes with the derivation above. Could the

width and the mass conspire to cancel their leading mass scaling behaviour in such a way
as to invalidate Eq. (14)? We would like to bring forward two reasons why this should
not be the case. First the difference in the large Nc-scaling of mass and width (ΓH/MH ∼
O(1/Nc)) from QCD should hold in mCGT too and serve as a parametric argument against
such a cancellation. Second we show in appendix C that in the approximation where the

self-energy is treated as being constant such a cancellation can be excluded. This seems
intuitively plausible since in Euclidian time the mass and decay width behaviour are

associated with exponential and oscillatory behaviour respectively.
On the contrary since mass and width do not seem to interfere in the leading large

t-behaviour Eq. (13) suggests that both the mass and the width of the resonance scale

according to
M,Γ ∼ m1/(1+γ∗) , (15)

We shall revisit the scaling of the width in Sect. 4, after discussing the scaling of the decay
constants and derive Γ(A → B + C) ∼ m1/(1+γ∗) for a specific decay A → B + C.

The behaviour (14) is markedly different from what is observed in the spectrum of

theories where chiral symmetry is spontaneously broken, like e.g. in QCD. In the latter

7
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Hyperscaling near a strongly-coupled IRFP

30

All “hadron” masses vanish in the chiral limit 

And they all vanish in a “universal” way

L. Del Debbio and R. Zwicky, PRD 82, 2010

Can derive similar scaling relations for other quantities 

Can derive relations for finite-size scaling 

Exercise: derive hyperscaling formula for the pion decay constant

The scaling variable is 
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Numerical tests for hyperscaling

31

Evidence of hyperscaling with a small anomalous dimension
Similar value of      found for other quantities and at another lattice spacing

LatKMI Collaboration, PRD 86, 2012

12-flavour QCD
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These results are in contrast to our results for theNf ¼ 4
system with the same lattice action with ! ¼ 3:7, in which
the chiral symmetry is spontaneously broken. It is found in
Fig. 8 that the alignment is observed at " ¼ 1, which is
interpreted as a realization of Eq. (6). The# decay constant
does not exhibit alignment at any value of " allowed for the
unitarity requirement 0 " " " 2 [49–51] (Fig. 9).

B. Quantitative analysis

To quantify the ‘‘alignment,’’ we introduce an evaluation
function Pð"Þ for an observable p as follows. Suppose
$j is a data point of the measured observable p at

xj ¼ Lj %m1=ð1þ"Þ
j and %$j is the error of $j. j labels

distinction of parameters L and mf. Let K be a subset of
data points fðxk;$kÞg from which we construct a function
fðKÞðxÞ which represents the subset of data. Then, the
evaluation function is defined as

Pð"Þ ¼ 1

N

X

L

X

j2KL

j$j ' fðKLÞðxjÞj2
j%$jj2 ; (13)

where L runs through all the lattice sizes we have, the sum
over j is taken for a set of data points which do not belong
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FIG. 6 (color online). $# is plotted as a function of the scaling variable x for " ¼ 0:1, 0.4, and 0.7 from left to right for Nf ¼ 12 at
! ¼ 3:7. An alignment is seen for "( 0:4.
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These results are in contrast to our results for theNf ¼ 4
system with the same lattice action with ! ¼ 3:7, in which
the chiral symmetry is spontaneously broken. It is found in
Fig. 8 that the alignment is observed at " ¼ 1, which is
interpreted as a realization of Eq. (6). The# decay constant
does not exhibit alignment at any value of " allowed for the
unitarity requirement 0 " " " 2 [49–51] (Fig. 9).

B. Quantitative analysis

To quantify the ‘‘alignment,’’ we introduce an evaluation
function Pð"Þ for an observable p as follows. Suppose
$j is a data point of the measured observable p at

xj ¼ Lj %m1=ð1þ"Þ
j and %$j is the error of $j. j labels

distinction of parameters L and mf. Let K be a subset of
data points fðxk;$kÞg from which we construct a function
fðKÞðxÞ which represents the subset of data. Then, the
evaluation function is defined as

Pð"Þ ¼ 1

N

X

L

X

j2KL

j$j ' fðKLÞðxjÞj2
j%$jj2 ; (13)

where L runs through all the lattice sizes we have, the sum
over j is taken for a set of data points which do not belong
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What we know for sure:  
12-flavour QCD has a very small   -function
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The purpose of such research programme 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Must we know the exact location of the conformal window? 

It is definitely an interesting field-theory question 

Which features would be interesting to WTC model builders? 
A scalar state that is much lighter than others 
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p-regime

β-function summary
Overview

there have been many studies of the beta-function 
in the search for (near) conformal behavior by 
many groups — too many to summarize all 

several years of LatHC studies shows a consistent 
trend of decreasing beta function with  
increasing flavor number Nf  

combined with other work, a steadily lighter scalar 
emerges, the hoped for Higgs impostor 

but how sure are we about all of this?   

and what is new this year? 

Lattice 2019  K Holland

1. there are recent discrepancies for Nf = 10 with domain 
wall studies - can we clear this up? 

2. Nf = 12 is in a very delicate region - is the  
evidence in favor of the theory being near-conformal any stronger? 

3. Nf = 2 sextet has been our flagship as a BSM candidate, 
what improvements can we show in the beta-function 

Overall theme: are systematic effects under control?

Nf refers to the number of 
massless flavors

Figure from Kieran Holland, LATTICE 2019
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Which theories for spectrum studies?  

(close to conformal window)

(good # of Goldstone bosons)

gradient flow scheme
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Evidence for scalar getting lighter at increasing

LSD Collaboration, PRD 99, 2019
 4- and 8-flavour QCD

the ratio of the vector mass to the pseudoscalar mass steadily
increases as we approach the chiral limit, providing indirect
indication that the theory exhibits spontaneous chiral
symmetry breaking. We also find the ratio of the vector
mass to the pseudoscalar decay constant to be comparable
to its QCD value, Mρ=Fπ ≈ 8, and rather constant as we
decrease the masses. In the context of models of dynamical
electroweak symmetry breaking, this suggests (via the
Kawarabayashi–Suzuki–Riazuddin–Fayyazuddin (KSRF)
relations [56,57]) a multi-TeV-scale vector resonance with
a large decay width Γ=M ≃ 0.2, comparable to that of the
QCD ρ meson. This is broader than the typical width
assumed in past LHC searches for such states [25];
dedicated searches for broad resonances, although chal-
lenging, are well-motivated by the lattice results.
We summarize our conclusions and prospects for further

progress in Sec. VI. In particular, we focus on the issue of
the appropriate low-energy effective field theory (EFT) to
describe the 8-flavor spectrum we observe. A consequence
of the light flavor-singlet scalar is that we cannot expect to
carry out chiral extrapolations by fitting our data to chiral
perturbation theory (χPT), which assumes that the PNGBs
are much lighter than all other particles. Finally, in the
Appendices we provide additional information about auto-
correlations and topological charge evolution, more technical
details about fitting correlation functions for the flavor-singlet
scalar, and studies of finite-volume and discretization effects.

II. LATTICE ACTION AND
FINITE-TEMPERATURE PHASE DIAGRAM

Our numerical calculations use improved nHYP-smeared
staggered fermions [58,59] with smearing parameters

α ¼ ð0.5; 0.5; 0.4Þ, and a gauge action that includes both
fundamental and adjoint plaquette terms with couplings βF
and βA, respectively, related by βA=βF ¼ −0.25 [43]. This
lattice action was used in several previous studies of the
8-flavor system, including explorations of the phase diagram
[38,39,43], the composite spectrum [31], the discrete β
function [26] and the scale-dependent mass anomalous
dimension γmðμÞ [29]. Using the same lattice action for
all of these complementary investigations makes it easier to
compare their results and thereby gain more comprehensive
insight into the dynamics of Nf ¼ 8.
The first work using this action observed a strongly

coupled “S4” lattice phase in which the single-site shift
symmetry (S4) of the staggered action is spontaneously
broken [43]. In the massless limit, a first-order bulk (zero-
temperature) transition around βF ≈ 4.6 separates the S4

phase from the weak-coupling phase where the continuum
limit is defined. At even stronger couplings there is a
second bulk transition into a chirally broken lattice phase.
A similar phase structure has been seen by other many-
flavor lattice investigations using different improved stag-
gered actions [60,61].1 However, the characteristics of these
strong-coupling phases are not universal and depend on the
details of the lattice action. Although in this section we scan
the lattice phase diagram, including the transition into the
S4 phase, our zero-temperature calculations reported in the
rest of the paper will consider a coupling βF ¼ 4.8 safely
on the weak-coupling side of this bulk transition.
The presence of the S4 phase prevents lattice inves-

tigations from reaching arbitrarily strong couplings. For
example, Ref. [26] was only able to determine the
continuum-extrapolated discrete β function for renormal-
ized couplings up to g2c ≲ 14 (in finite-volume Wilson
flow renormalization schemes introduced by Ref. [64]). As
summarized in Sec. I, although this β function is monotonic
throughout the accessible range of couplings, this does not
guarantee that the 8-flavor theory exhibits spontaneous
chiral symmetry breaking. It remains possible that, at
stronger couplings, the β function might reach an extremum
and then return to βðg2⋆Þ ¼ 0 at some large g2⋆ ≳ 15.
(Indeed, this happens in four-loop perturbation theory in
the MS scheme, which predicts g2⋆ ≈ 19.5 [65,66], but
perturbation theory seems unlikely to be reliable at such
strong couplings.)
In the remainder of this section we present a comple-

mentary search for spontaneous chiral symmetry breaking in
the 8-flavor system, by studying its finite-temperature phase
diagram. Initial results from this work appeared in Ref. [41].
As described in Sec. I, in order to establish spontaneous
chiral symmetry breaking, the finite-temperature transitions

FIG. 1. Comparison of our spectroscopy results for Nf ¼ 4
(left) and Nf ¼ 8 (right). Hadron masses (vertical axis) and the
fundamental fermion mass (horizontal axis) are both shown in
units of the pion decay constant Fπ ; the chiral limit mf ¼ 0 is at
the center of the plot for both theories. The hadrons shown are the
lightest 0þþ meson (σ), 0−þ PNGB meson (π), 1−− vector meson
(ρ), 1þþ axial-vector meson (a1), and the nucleon (N). The major
qualitative difference between the two values of Nf is the
degeneracy of the light scalar σ with the pions at Nf ¼ 8.

1Investigations using unimproved staggered fermions with
either improved or unimproved gauge actions see a simpler bulk
phase structure with only a single, chirally broken strong-
coupling phase [34,62,63].
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describe the 8-flavor spectrum we observe. A consequence
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perturbation theory (χPT), which assumes that the PNGBs
are much lighter than all other particles. Finally, in the
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correlations and topological charge evolution, more technical
details about fitting correlation functions for the flavor-singlet
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fundamental and adjoint plaquette terms with couplings βF
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8-flavor system, including explorations of the phase diagram
[38,39,43], the composite spectrum [31], the discrete β
function [26] and the scale-dependent mass anomalous
dimension γmðμÞ [29]. Using the same lattice action for
all of these complementary investigations makes it easier to
compare their results and thereby gain more comprehensive
insight into the dynamics of Nf ¼ 8.
The first work using this action observed a strongly

coupled “S4” lattice phase in which the single-site shift
symmetry (S4) of the staggered action is spontaneously
broken [43]. In the massless limit, a first-order bulk (zero-
temperature) transition around βF ≈ 4.6 separates the S4

phase from the weak-coupling phase where the continuum
limit is defined. At even stronger couplings there is a
second bulk transition into a chirally broken lattice phase.
A similar phase structure has been seen by other many-
flavor lattice investigations using different improved stag-
gered actions [60,61].1 However, the characteristics of these
strong-coupling phases are not universal and depend on the
details of the lattice action. Although in this section we scan
the lattice phase diagram, including the transition into the
S4 phase, our zero-temperature calculations reported in the
rest of the paper will consider a coupling βF ¼ 4.8 safely
on the weak-coupling side of this bulk transition.
The presence of the S4 phase prevents lattice inves-

tigations from reaching arbitrarily strong couplings. For
example, Ref. [26] was only able to determine the
continuum-extrapolated discrete β function for renormal-
ized couplings up to g2c ≲ 14 (in finite-volume Wilson
flow renormalization schemes introduced by Ref. [64]). As
summarized in Sec. I, although this β function is monotonic
throughout the accessible range of couplings, this does not
guarantee that the 8-flavor theory exhibits spontaneous
chiral symmetry breaking. It remains possible that, at
stronger couplings, the β function might reach an extremum
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the MS scheme, which predicts g2⋆ ≈ 19.5 [65,66], but
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(ρ), 1þþ axial-vector meson (a1), and the nucleon (N). The major
qualitative difference between the two values of Nf is the
degeneracy of the light scalar σ with the pions at Nf ¼ 8.
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phase structure with only a single, chirally broken strong-
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Evidence for light scalar

LHC Collaboration, arXiv:1605.08750 (LATTICE2015)

 SU(3) gauge theory with 2 flavours of sextet fermions

Status of a minimal composite Higgs theory Chik Him Wong
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Figure 5: New resonance spectroscopy results are shown in the plot for illustration only. The scale is set by F=250
GeV at both lattice spacings with caveats from discussions in Section 3 of the report. Any conclusion about cSB or
conformal behavior from eyeballed inspection of the data would be inappropriate and misleading.
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Spectrum and EFT
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Including the light scalar in the EFT


