Physics beyond the Standard Model and lattice calculations:

Higgs physics, the origin of mass and lattice field theory

Lecture II

10/07/2019 ~ 12/07/2019 Peking University, Beijing

C.-J. David Lin National Chiao-Tung University, Hsinchu The issue is: No relevant interaction in the scalar sector

Searching for relevant interaction: The walking technicolour scenario

The idea of technicolour

Introduce a novel strong-interaction sector

★ Technicolour gauge group, e.g., $G_{TC} = SU(N_{TC})$

★ Technifermions are introduced in the following way:

The theory remains asymptotically free

- \blacktriangleright Technifermions are preferably in a complex irrepn of G_{TC}
 - Chiral symmetry is broken via $SU(N_{TF})_L \otimes SU(N_{TF})_R \rightarrow SU(N_{TF})_V$
- They are left doublet and right singlet under $[SU(2) \otimes U(1)]_{EW}$ $M_W \propto f_{\pi_{TC}} \sim (\langle \bar{\psi}_{TC} \psi_{TC} \rangle)^{1/3} \sim \Lambda_{TC}$
- **★** This new sector looks just like a "novel QCD"

Flavour physics and extended technicolour

 \bigstar Extended technicolour gauge group $G_{ETC} \supset G_{TC}$

 \bigstar At scale Λ_{ETC} , the breaking $G_{ETC} \rightarrow G_{TC}$ occurs

Failure of QCD-like (extended) technicolour

- ★ The S parameter is too large M. Peskin and T. Takeuchi, 1992 → Define $\delta_{ab}\Pi_{\mu\nu}(q) = \int dq \ e^{iq \cdot x} \left\{ \langle V^a_\mu(x)V^b_\nu(0) \rangle - \langle A^a_\mu(x)A^b_\nu(0) \rangle \right\}$ $= \delta_{ab}(q^2\delta_{\mu\nu} - q_\mu q_\nu)\Pi_{LR}(q^2) + \delta_{ab}q_\mu q_\nu \overline{\Pi}_{LR}(q^2)$ → The S parameter is extracted from $\frac{d\Pi_{LR}(q^2)}{dq^2}$ at $q^2 = 0$
- No stable light Higgs
 No such a scalar state in QCD
- **★** The FCNC problem
 - Explained on the next slide

FCNC problem in ETC models

★ Can we enhance the running of the condensate? ► If so, can lift Λ_{ETC} estimated from SM fermion mass

Dynamical solution from walking technicolour

- Less significant chiral symmetry breaking effects
 Smaller S parameter
- Quasi scale invariance
 Light Higgs as the dilaton
- Almost power-law running behaviour
 Ease the tension between SM fermion masses and FCNC

Dynamical solution to the FCNC problem

★ Enhance the running of the condensate

Estimated with an anomalous dimension close to unity

Looking for candidate theories

The key issues are

Given a gauge group and a fermion repn

What is the critical number of flavours?

Is the theory just blow this number viable?

Where is the lower conformal windowsill? We may want the theory just below it!

Studies of the running coupling

wards the stationary pound spect $K_{\mp}(x) \stackrel{\mu}{=} (x) \stackrel{\mu}{\to} (x) \stackrel{\mu}{\to}$ ng sumplest field of the action of the carry seating field Beinexclussivery with zero boundary fields, wi içi (p, xhat) thestilow is restriction granting prophy had ported is a ged over a spherical from the field BB_{μ} and BB_{μ} CONSTRUCTED FROM CHERMINDLY MAS 4 Lawraged over a spherical range in space swalled det fiftige how a stor hy it spects the

The Gradient Flow coupling

- The quantity, $\langle E(t) \rangle = \frac{1}{4} \langle G_{\mu\nu}(t) G_{\mu\nu}(t) \rangle$, is finite when expressed in terms of renormalised coupling at positive flow time.
- With appropriate boundary condition, define,

$$\overline{g}_{\rm GF}^2(L) = \mathcal{N}^{-1} t^2 \langle E(t) \rangle = \overline{g}_{\rm MS}^2 + \mathcal{O}(\overline{g}_{\rm MS}^4) \quad ,$$

with tree-level improvement.

• Use the clover operator,

as well as the plaquette, to extract $\langle E(t) \rangle$.

• The "lattice renormalised coupling" \bar{g}_{latt}^2 .

The splicities of the former is obread of the splice of th map pr

Cartoon of the step-scaling method in practice

(no real lattice data shown on this slide)

Choose a value of the renormalised coupling
 Read off the values of the bare coupling
 Increase the lattice size and take the continuum limit

Running coupling and the β -function

Figure from Kieran Holland, LATTICE 2019

Running coupling and the β -function I2-flavour QCD

Figure from A. Hasenfratz, C. Rebbi, O. Witzel, arXiv:1810.0517 [hep-lat] (LATTICE 2018)

Figure from C.-J.D.L., K. Ogawa, A. Ramos, JHEP 12 (2015)

conti

* Scaling violation through the inclusion of the irrelevant operators.

***** "Symanzik-type" continuum extrapolation. ∞N_{IR}

$$\blacktriangleright \mathcal{M}_{\text{latt}} = \mathcal{M}_0 + \sum_{n=1}^{\infty} \sum_{i=1}^{m} \mathcal{M}_{n,i} \left(a \Lambda_i \right)^n$$

The continuum limit we may actually deal with

The theory is engineered to be very close to the strongly-coupled IR fixed point.

 \star Assume to be on the critical surface,

"Continuum extrapolation" with the scaling behaviour near the IRFP.

In other words, what we discretise is this....

Close enough to the IRFP...

C.-J.D.L., K. Ogawa, A. Ramos, JHEP 12 (2015)

***** The beta function is well approximated by the linearised form

$$\beta \left(g_{\mathrm{R}}^{2} \right) \equiv -\rho \frac{\mathrm{d}g_{\mathrm{R}}^{2}}{\mathrm{d}\rho} = \gamma_{*} \left(g_{\mathrm{R}}^{2} - g_{*}^{2} \right)$$

$$\mathbf{p}_{\mathrm{R}}^{2}(l_{2}) = g_{*}^{2} + \left[g_{\mathrm{R}}^{2}(l_{1}) - g_{*}^{2} \right] \left(\frac{l_{1}}{l_{2}} \right)^{\gamma_{*}}$$

 \star Introduce a reference length scale, $L > L_{ref} > a$

$$\bullet \ \bar{g}_{\text{latt}}^2(g_0^2, \hat{L}) = g_*^2 + \left[\bar{g}_{\text{latt}}^2(g_0^2, \hat{L}_{\text{ref}}) - g_*^2\right] \left(\frac{\hat{L}_{\text{ref}}}{\hat{L}}\right)^{\gamma_*}$$

Check that the lattice artefacts are small

Done in practice using more than one discretisation

 $\rightarrow \gamma(g_{\rm ref})$ plateaus to the value γ_* near the IRFP.

Results of the scaling test

Figure from C.-J.D.L., K. Ogawa, A. Ramos, JHEP 12 (2015)

Deformation and scaling

Deformation of a strongly-coupled IRFP_n

L. Del Debbio and R. Zwicky, PRD 82, 2010

 $\Lambda_{\rm u}$

- **\star** Deform the theory by introducing a relevant operator **\rightarrow** Break IR scale invariance at the scale Λ_{IR}
- **★**A popular approach is "mass deformation"

 - Deformation scale $\Lambda_{\mathrm{IR}} = m$ Integrated out at $\mu < m$

Hyperscaling near a strongly-coupled IRFP

L. Del Debbio and R. Zwicky, PRD 82, 2010

- ★ Study the correlator near the mass-deformed IRFP $C_H(t; g, \hat{m}, \mu) = \int d^3x \langle H(t, x) H(0)^{\dagger} \rangle |_{g, \hat{m}, \mu} \sim e^{-M_H t}, \quad \hat{m}(\mu) = m(\mu)/\mu.$ ★ The deformation operator is the fermion bilinear $\mu \frac{d}{d\mu} (\bar{\psi}\psi)_{\mu} \approx -\gamma_* (\bar{\psi}\psi)_{\mu}, \quad \Delta_{\bar{\psi}\psi} = 3 - \gamma_*, \quad y_m = 1 + \gamma_*$
- **★** Under RG $\mu = b\mu'$ near the IRFP $\hat{m}' = b^{y_m} \hat{m}$ $C_H(t; g_*, \hat{m}, \mu) = b^{-2\gamma_H} C_H(t; g_*, \hat{m}', \mu') = b^{3-2\gamma_H - 2d_H} C_H(tb^{-1}; g_*, \hat{m}', \mu)$

 $\bigstar \text{Choosing } b \text{ such that } \hat{m}' = 1$ $\blacktriangleright C_H(t; \hat{m}, \mu) = \mathcal{C}_H F(t \hat{m}^{1/(1+\gamma_*)}, \mu) \quad \blacktriangleright \quad M_H \simeq c_H \mu \, \hat{m}^{\frac{1}{1+\gamma_*}}$

Hyperscaling near a strongly-coupled IRFP

L. Del Debbio and R. Zwicky, PRD 82, 2010

All "hadron" masses vanish in the chiral limit
 And they all vanish in a "universal" way

★ Can derive similar scaling relations for other quantities

Exercise: derive hyperscaling formula for the pion decay constant

★ Can derive relations for finite-size scaling → The scaling variable is $x = \hat{L}\hat{m}^{1/y_m}$

Numerical tests for hyperscaling 12-flavour QCD

LatKMI Collaboration, PRD 86, 2012

 $\xi_{\pi} = LM_{\pi}, x = \hat{L}\hat{m}^{(1/1+\gamma_*)}$

Evidence of hyperscaling with a small anomalous dimension
 Similar value of \$\gamma_*\$ found for other quantities and at another lattice spacing ~15%

What we know for sure: **I2-flavour QCD has a very small** β -function (This is the origin of the challenge)

The purpose of such research programme

Must we know the exact location of the conformal window?

- It is definitely an interesting field-theory question
- \rightarrow It is very challenging to deal with theories with small β -functions
- Deserves further hard work and new ideas

*Which features would be interesting to WTC model builders?

- A scalar state that is much lighter than others
- \blacktriangleright Large anomalous dimension for $\overline{\psi}_{TC}\psi_{TC}$
- Look for theories containing the dilaton

Which theories for spectrum studies?

Figure from Kieran Holland, LATTICE 2019

Latest spectrum results

4- and 8-flavour QCD

LSD Collaboration, PRD 99, 2019

\starEvidence for scalar getting lighter at increasing N_f :

Latest spectrum (preliminary) results

SU(3) gauge theory with 2 flavours of sextet fermions

LHC Collaboration, arXiv:1605.08750 (LATTICE2015)

Spectrum and EFT Including the light scalar in the EFT