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2 Introduction

new form of matter that interacts through gravity and possibly through very weak couplings to the SM
fields; hence the term “dark.” In addition, the observed asymmetry of matter and antimatter in the universe
remains unexplained by the SM.

These considerations point to the existence of new physics, defined as laws and symmetries of Nature that
lie beyond the SM. Currently, numerous imaginative theories for new physics have been proposed, but
experiments have yet to provide guidance pointing to the correct fundamental theory. Much of the worldwide
e↵ort in particle and nuclear physics is driven by searches for evidence of new particles and interactions.

The three-frontier model of particle physics was defined by the Particle Physics Project Prioritization Panel
in its 2008 report [1] and is often represented by the Venn diagram in Fig. 1-1. It has proven beneficial
for various levels of communication and is now widely used and recognized. Each frontier employs di↵erent
tools and techniques, but all frontiers work together to address the same fundamental questions.

At the cosmic frontier, physicists use the universe as an experimental laboratory and observatory, taking
advantage of naturally occurring events to observe indications of new interactions. Research focuses on
understanding dark energy and dark matter, employing a variety of instruments to measure particles on or
close to Earth. This program is pursued worldwide with a leading component in the United States.

At the energy frontier, experiments explore the highest possible energies reachable with accelerators, directly
looking for new physics via the production and identification of new states of matter. This has the advantage
of direct observation in a laboratory setting, but is limited by the kinematical reach of high energy colliders.
This work is now being carried out at the LHC at CERN, which collides protons at a center of mass energy
of 7-8 TeV, increasing to 14 TeV in the next few years.

At the intensity frontier, experiments use intense sources of particles from accelerators, reactors, the sun and
the atmosphere to explore new interactions. This involves ultra-precise measurements to search for quantum
e↵ects of new particles in rare processes or e↵ects that give rise to tiny deviations from SM predictions. This
technique has the asset of exploring very high energy scales, although pinpointing the correct underlying
theory is more complex. This program is currently pursued worldwide.

Figure 1-1. Illustration of the three frontiers of particle physics from [1].

Fundamental Physics at the Intensity Frontier

Figure taken from arXiv:1205.2671 



Goal of this course

Motivate the study and strategy
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Introduce the methods

Formulate relevant field-theory questions
Questions we can realistically help to answer using LFT

Describe the basics of possibly viable scenarios
Focus on dilaton Higgs and Goldstone Higgs (with partial compositeness)



Disclaimer
Results presented here may not be the most up-to-date,  

and they are selected for the purpose of illustration
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Quest for BSM physics
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A Wilsonian, non-perturbative point of view



What the LHC revealed to us hitherto
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Figure 1: Summary of several Standard Model total production cross section measurements, corrected for leptonic
branching fractions, compared to the corresponding theoretical expectations.
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Figure 2: Summary of several Standard Model total production cross section measurements, corrected for leptonic
branching fractions, compared to the corresponding theoretical expectations and ratio with respect to best theory.
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What the LHC revealed to us hitherto
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Higgs boson ~125 GeV 

Searched up here ~2 TeV 
?

The Higgs boson is light



Naturalness: one-loop perturbation theory
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8 CHAPTER 1. INTRODUCTION
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Figure 1.2: Some representative top, gauge and Higgs boson loop diagrams that
contribute to the Higgs mass.

Consider now splitting the integral in two regions defined by an interme-
diate scale that we take just a bit below the SM cuto↵. We have
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at and above ⇤SM, while �SMm2
H comes from virtual quanta below the cuto↵,

whose dynamics is by assumption well described by the SM. While there is
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H before we know what the BSM theory is,
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from, respectively, the top quark, EW bosons and Higgs loops. The idea is
that we know that the BSM theory must reduce to the SM for E < ⇤SM.
Therefore no matter what the physics at ⇤SM is, its prediction for m2

H must
contain the diagrams in Figure 1.2 and thus the terms in Eq. (1.2.4). These
terms are obtained by computing dm2

H/dE from the SM diagrams and inte-
grating it up to ⇤SM, which e↵ectively acts as a hard momentum cuto↵. The
most relevant contributions come from the quadratic divergences of the dia-
grams, thus Eq. (1.2.4) can be poorly viewed as the “calculation” of quadratic
divergences. Obviously quadratic divergences are unphysical in quantum field
theory. They are canceled by renormalization and they are even absent in cer-
tain regularizations schemes such as dimensional regularization. However the
calculation makes sense, in the spirit above, as an estimate of the low-energy
contributions to m2

H .
The true nature of the Naturalness problem starts now to show up. The

full finite formula for m2
H obtained in the “true” theory receives two con-

tributions that are completely unrelated since they emerge from separate
energy scales. At least one of those, �SMm2

H , is for sure very large if ⇤SM

is large. The other one is thus obliged to be large as well, almost equal and
with opposite sign in order to reproduce the light Higgs mass we observe. A
cancellation is taking place between the two terms, which we quantify by a
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Fine-tuning: Is it a problem?

Power-law dependence on        hints nonperturbative nature  
Recall that Dim-Reg only gives logarithmic scale dependence 
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In principle, it is not a problem
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Fine-tuning is fine

The cut-off can still be removed 
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Low-energy physics is insensitive to that at the cut-off scale 

What is fine-tuned is a bare parameter 

It may be practically challenging, but so what?

So why are we searching for BSM physics? 



Triviality: hints from perturbation theory

The 1-loop quartic-coupling beta function of scalar theory

increases with
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A digression:  RG and critical phenomena
Coarse-graining and rescaling
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using a more microscopic formulation that brought out
the relations to the full set of correlation functions (of
all orders).85

Kadanoff (1966), however, derived scaling by intro-

ducing a completely new concept, namely, the mapping
of a critical or near-critical system onto itself by a reduc-
tion in the effective number of degrees of freedom.86

This paper attracted much favorable notice since, be-
yond obtaining all the scaling properties, it seemed to
lay out a direct route to the actual calculation of critical
properties. On closer examination, however, the implied
program seemed—as I will explain briefly—to run rap-
idly into insuperable difficulties and interest faded. In
retrospect, however, Kadanoff’s scaling picture embod-
ied important features eventually seen to be basic to
Wilson’s conception of the full renormalization group.
Accordingly, it is appropriate to present a sketch of
Kadanoff’s seminal ideas.

For simplicity, consider with Kadanoff (1966), a lattice
of spacing a (and dimensionality d.1) with S5 1

2 Ising
spins s

x

which, by definition, take only the values 11 or
21: see Fig. 3. Spins on nearest-neighbor sites are
coupled by an energy parameter or coupling constant,
J.0, which favors parallel alignment [see, e.g., Eq. (23)
above]. Thus at low temperatures the majority of the
spins point ‘‘up’’ (s

x

511) or, alternatively, ‘‘down’’
(s

x

521); in other words, there will be a spontaneous
magnetization, M0(T), which decreases when T rises
until it vanishes at the critical temperature Tc.0: recall
(11).

Now divide the lattice up into (disjoint) blocks, of di-
mensions L3L3¯3L with L5ba so that each block
contains bd spins: see Fig. 3. Then associate with each
block, B

x8 centered at point x8, a new, effective block
spin, s

x8
8 . If, finally, we rescale all spatial coordinates ac-

cording to

x)x85x/b , (27)

the new lattice of block spins s
x8
8 looks just like the origi-

nal lattice of spins s
x

. Note, in particular, the density of
degrees of freedom is unchanged: see Fig. 3.

85It was later seen (Kiang and Stauffer, 1970; Fisher, 1971,
Sec. 4.4) that thermodynamic scaling with general exponents
(but particular forms of scaling function) was embodied in the
‘‘droplet model’’ partition function advanced by Essam and
Fisher (1963) from which the exponent relations
a812b1g852, etc., were originally derived. (See Eq. (15),
Footnote 49, and Fisher, 1967b, Sec. 9.1; 1971, Sec. 4.)

86Novelty is always relative! From a historical perspective one
should recall a suggestive contribution by M. J. Buckingham,
presented in April 1965, in which he proposed a division of a
lattice system into cells of geometrically increasing size, Ln
5bnL0 , with controlled intercell couplings. This led him to
propose ‘‘the existence of an asymptotic ‘lattice problem’ such
that the description of the nth order in terms of the (n21)th is
the same as that of the (n 1 1)th in terms of the nth.’’ This is
practically a description of ‘‘scaling’’ or ‘‘self similarity’’ as we
recognize it today. Unfortunately, however, Buckingham
failed to draw any significant, correct conclusions from his con-
ception and his paper seemed to have little influence despite its
presentation at the notable international conference on Phe-
nomena in the Neighborhood of Critical Points organized by
M. S. Green (with G. B. Benedek, E. W. Montroll, C. J. Pings,
and the author) and held at the National Bureau of Standards,
then in Washington, D.C. The Proceedings, complete with dis-
cussion remarks, were published, in December 1966, under the
editorship of Green and J. V. Sengers (1966). Nearly all the
presentations addressed the rapidly accumulating experimen-
tal evidence, but many well known theorists from a range of
disciplines attended including P. W. Anderson, P. Debye, C. de
Dominicis, C. Domb, S. F. Edwards, P. C. Hohenberg, K. Ka-
wasaki, J. S. Langer, E. Lieb, W. Marshall, P. C. Martin, T.
Matsubara, E. W. Montroll, O. K. Rice, J. S. Rowlinson, G. S.
Rushbrooke, L. Tisza, G. E. Uhlenbeck, and C. N. Yang; but
B. Widom, L. P. Kadanoff, and K. G. Wilson are not listed
among the participants.

FIG. 3. A lattice of spacing a of Ising spins s
x

561 (in d52 dimensions) marked by solid dots, divided up into Kadanoff blocks
or cells of dimensions (L5ba)3(L5ba) each containing a block spin s

x8
8 561, indicated by a cross. After a rescaling, x ) x8

5x/b , the lattice of block spins appears identical with the original lattice. However, one supposes that the temperature t , and
magnetic field h , of the original lattice can be renormalized to yield appropriate values, t8 and h8, for the rescaled, block-spin
lattice: see text. In this illustration the spatial rescaling factor is b 5 4.

667Michael E. Fisher: Renormalization group theory
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(4d) Field theory fixed point
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Nonperturbative statement for triviality
Consider a scalar theory

Occurs at 2nd order bulk phase transition
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Triviality in scalar theories
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There is much reliable evidence for triviality in 4d scalar theories 
M. Aizenman, PRL. 47 (1981)

J. Fröhlich, NPB 200 (1982)

M. Luscher and P. Weisz, PLB212 (1988), NPB 290 (1987), 295 (1988), 318 (1989)

M. Hoogervorst and U. Wolff, NPB 855 (2012)

J. Sievert and U. Wolff, PLB 733 (2014)

T. Korzec and U. Wolff, PoS LATTICE2014 (2015)

…

Presently there is very little doubt about it 



No relevant interaction in the scalar sector
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The issue is:



Physics beyond the SM: higher-dim operators

Higher-dim (irrelevant) operators can contribute
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d quantum numbers ng = 1 ng = 3

5 (∆L = 2) + h.c. 1 + 1 6 + 6

6 ∆B = ∆L = 0 76 = 53+ + 23− 2499 = 1350+ + 1149−
6 (∆B = ∆L = 1) + h.c. 4 + 4 273 + 273

Table 1. Number and quantum numbers of operators in SMEFT at dimensions five and six. The
first column gives the operator dimension d, and the second column gives the ∆B and ∆L quantum
numbers. The third and fourth columns list the number of Hermitian operators in SMEFT for
ng = 1 and ng = 3 generations of fermions, split according to their sign under CP .

the notation of Refs. [3, 18, 19], where p, r, s, t are weak-eigenstate indices,1 and powers of

1/Λ are included in the coefficients C.

The dimension-five Lagrangian of SMEFT is given by the ∆L = ±2 operators of Table 4

L(5) = C 5
rs
ϵijϵkl(lTirClks)HjHl + h.c. , (2.3)

where i, j, k, l are SU(2) indices, r, s are weak-eigenstate indices, and C = iγ2γ0 is the

charge-conjugation matrix. The coefficients C 5
pr

are symmetric in the weak-eigenstate in-

dices and of order 1/Λ. For ng = 3 generations, C5 has ng(ng + 1)/2 = 6 complex entries.

The anomalous dimension for the dimension-five operator was computed in Refs. [41, 42].

On converting to the notation and normalization of Ref. [3, 18, 19], it is given by

Ċ5 = −
3

2

[
C5(Y

†
e Ye) + (Y †

e Ye)
TC5

]
+ 4λC5 − 3g22 C5 + 2Tr

(
3Y †

uYu + 3Y †
d Yd + Y †

e Ye

)
C5 ,

(2.4)

where C5 and Yψ, ψ = e, u, d, are matrices in flavor space, and we use the notation

Ċ ≡ 16π2µ
d

dµ
C . (2.5)

The dimension-six Lagrangian divides into operators that conserve baryon number and

lepton number, listed in Table 5, and the operators with ∆B = ∆L = ±1 listed in Table 6.

It is worth repeating that the scale Λ of new physics does not have to be the same for the

lepton- and baryon-number preserving and violating sectors in the SMEFT.

2.1 SMEFT in the Broken Phase

Electroweak symmetry breaking in SMEFT is modified by the presence of dimension-six

operators. The scalar field can be written in unitary gauge as

H =
1√
2

(
0

[1 + cH,kin] h+ vT

)

, (2.6)

1Regrettably, there are not enough letters in the alphabet. Thus, t is a weak-eigenstate index, which

can sometimes take the value t = 3 or t, i.e. the top quark. A similar problem occurs for s. Sorry.

– 6 –

How can the lattice help? 
Challenging to precisely constrain all couplings from experiments
Lattice study of qualitative features, for example…
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Consider a scalar field theorydetailed explanantion. In Euclidean space time the continuum action is given by:

Scont[ψ̄,ψ,ϕ] =

∫

d4x

{

1

2
(∂µϕ)

† (∂µϕ) +
1

2
m2

0ϕ
†ϕ+ λ

(

ϕ†ϕ
)2

+ λ6
(

ϕ†ϕ
)3
}

+

∫

d4x
{

t̄/∂t+ b̄ /∂b+ y
(

ψ̄
L
ϕ b

R
+ ψ̄

L
ϕ̃ t

R

)

+ h.c.
}

, (1)

with ϕ̃ = iτ2ϕ∗ and τ2 being the second Pauli matrix. Besides the standard bare
parameters m2

0 and λ for the Higgs potential and y for the Yukawa coupling, we add

the dimension-6 operator λ6
(

ϕ†ϕ
)3

to the action.
For the numerical implementation of this model we use a polynomial hybrid

Monte Carlo algorithm[22] with dynamical overlap fermions, see ref. [23] for details.
On the lattice, it is convenient to rewrite the bosonic part of the action in the
following way1:

SB[Φ] = −κ
∑

x,µ

Φ†
x [Φx+µ + Φx−µ] +

∑

x

(

Φ†
xΦx + λ̂

[

Φ†
xΦx − 1

]2
+ λ̂6

[

Φ†
xΦx

]3
)

.

(2)
Here the scalar field, Φ, is represented as a real four-vector and the relation to the
continuum notation is given by:

ϕ =
√
2κ

(

Φ2 + iΦ1

Φ0 − iΦ3

)

, m2
0 =

1− 2λ̂− 8κ

κ
, λ =

λ̂

4κ2
, λ6 =

λ̂6
8κ3

. (3)

As said above, our main goal is the exploration of the phase structure of the model
in the presence of the

[

Φ†
xΦx

]3
term with coupling strength λ6. We will use the mag-

netization m as the order parameter2. The magnetization is given by the modulus
of the average scalar field and is related to the vacuum expectation value (vev) via:

m =

〈∣

∣

∣

∣

∣

1

V

∑

x

Φx

∣

∣

∣

∣

∣

〉

, vev =
√
2κ ·m. (4)

For a determination and detailed discussion of the phase structure of the model
for λ6 = 0, we refer to refs. [13, 14].

3. The constraint effective potential

Before resorting to numerical simulations, we study the phase structure analyt-
ically in lattice perturbation theory for which we employ the CEP [24, 21]. We
assume the scalar field to be in the broken phase, so the scalar field decomposes
into the Higgs mode, h, and the three Goldstone modes, gα, with α = 1, 2, 3. The

1The lattice spacing is set to one throughout this paper.
2Here we are only interested in transitions between the symmetric and the spontaneously broken

phases and thus will not consider the staggered magnetization [13, 14].
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Presence of first order phase transitions;  finite temperature?
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Notice: Negative quartic coupling
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Figure 5: Here the volume dependence of the location of the minimum of the CEP U1, i.e. the
vev (upper plots) and its inverse curvature in the minimum as a measurement for the magnetic
susceptibility (lower plots) are shown as a function of κ for λ6 = 0.001 and a set of λ-values.

are summarized in fig. 6 for both λ6 values. For λ6 = 0.001 we clearly observe a
second order phase transition at small absolute values of λ. At intermediate absolute
values of λ an additional crossover transition sets in within the broken phase. This
crossover turns into a first order phase transition around λ ≈ −0.0089. The second
order transition still exists at this point separating the broken and symmetric phases.
Around λ ≈ −0.0098 and κ ≈ 0.12267 the line of second order transition runs into
the line of first order transition. From that point on only the first order transition
remains separating the symmetric and broken phases.

κ

λ

(a) λ6 = 0.001

κ

λ

(b) λ6 = 0.1

Figure 6: Phase structure obtained from the CEP U1 (8). There are two phases - a broken and a
symmetric one - separated by lines of first and second order phase transitions. Furthermore there
is a small region in parameter space, where a first order transition between two broken phases
exists for λ6 = 0.001 and λ6 = 0.1. The lines between the data points are just to guide the eye.

For λ6 = 0.1 the general behaviour is very similar. However, the region in
parameter space where the additional transitions between two broken phases occur
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Looking inside the Higgs-Yukawa sector of the SM



Scalar theories are not always trivial
The Wilson-Fisher fixed point in 3-dimensional scalar field theory

22

7

Wilson-Fisher fixed point

The situation seems discouraging, as we find two relevant eigenvalues. At first glance, the

scaling hypothesis of Kadano↵ does not work. What is wrong? The answer was provided

by the ground-breaking observation of Wilson and Fisher, who noticed that below four

dimensions another fixed point emerges, with all the right properties. Expecting that for

" = 4 � d small this second fixed point is close to the Gaussian one, we expand the RG

equations to quadratic order

dr

d`
⇡ 2r + au + bur;

du

d`
⇡ "u� 3bu2,

where " = 4 � d, and B = 3⌦
d

/⇤4. Note that to this order the second equation does not

u

r

critical hypersurface

Michael E. Fisher

u

r

critical hypersurface

u

r

u

r

critical hypersurface

Michael E. FisherMichael E. Fisher

depend on r, and we can immediately find a new (Wilson-Fisher) fixed point at

u⇤ = "/3b and r⇤ = �au⇤/2 = �"a/6b.

Next, expand the �-function around the nontrivial fixed point defining �r = r � r⇤ and

�u⇤ = u� u⇤

d

d`
�r = (2� bu⇤)�r + (a + br⇤)�u;

d

d`
�u = ("� 6bu⇤)�u.
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Triviality in the Higgs-Yukawa sector
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There is much reliable evidence for triviality in 4d scalar theories 
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Phase structure of Higgs-Yukawa sector

8

FIG. 2: The renormalization-group flows for the SU(2)⌦U(1) model with 0  ay  0.5 and �0.1  a�  0.5. The white region
is where 0  ay  0.04 and �0.1  a�  0.04; the light gray region is where 0.04  ay  0.2 and �0.1  a�  0.2; and the
dark gray region occupies the rest of the figure. The figures correspond to the following di↵erent choices of loop order in the
beta functions: (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower right). The green flows are the stable
manifolds in coupling constant space which bound the basins of attraction of the fixed point at the origin. The red flows in
(1,2), (2,1) and (2,2) originate along the eigendirections of the fixed points.

tion. The SU(N) ⌦ U(1) symmetry forbids the fermion
bilinears  a T

j,L C b
k,L, �

T
j,RC�k,R, and  ̄a,j,L�k,R, so the

fermions are massless. Our requirement of SU(Nf ) in-
variance restricts the Yukawa coupling to the form given
in Eq. (4.3). As before, we allow either sign of µ2

� and
impose the condition that |µ�| be negligibly small rela-
tive to the range of µ over which we calculate the RG
flows (see also the end of Section II).

One of the motivations for this generalization is that

it enables us to take the combined limit

N ! 1 , Nf ! 1 with r ⌘ Nf

N
fixed

y ! 0 , �! 0 with āy and ā� being

finite functions of µ (4.4)

We will use the symbol limLNN for this limit, where
“LNN” stands for “large Nc and Nf”

2

without any gauge fields. We construct these models so
that the global symmetries forbid any Dirac or Majorana
fermion mass terms, and we also consider the limit where
scalar masses are negligibly small relative to the scales µ
of interest. These models depend on two dimensionless
couplings, a quartic self-coupling � for the scalar field
and a Yukawa coupling y. The beta functions for these
couplings comprise a set of coupled first-order ordinary
di↵erential equations describing how the couplings vary
as functions of µ. Integrating this set of di↵erential equa-
tions, we determine their renormalization-group flows as
functions of µ. To do this, we choose an initial scale, µ0,
where the magnitudes of the couplings are su�ciently
small that perturbative calculations may be reliable, and
then perform the integration. Our method is to compare
RG flows calculated using di↵erent loop orders for the
two beta functions. We recall the basic fact that in these
theories the quartic scalar self-coupling � must be posi-
tive for the boundedness of the energy and equivalently
the stability of the theory. As will be evident in our re-
sults, RG flows may take a theory with positive � to one
with negative �. In this case, two comments are nec-
essary. Strictly speaking, for a su�ciently small range
of negative � the theory may still be metastable, with
a su�ciently long tunneling time that our perturbative
calculations may be physically meaningful. However, for
negative values of � of su�ciently large magnitude, the
theory is simply unstable, and the perturbative analysis
is not applicable or meaningful. In most of our analytic
discussions, therefore, we will implicitly take � to be pos-
itive.

We remark on some earlier related work on Yukawa
models. As is well known, Yukawa proposed such mod-
els [10] as an approach to understanding the binding of
nucleons in nuclei, and pion exchange between nucleons
does, indeed, play an important role in this binding.
Of course, the physics here involves the exchange of a
light approximate Nambu-Goldstone boson between two
baryons, with the baryons being much heavier than the
exchanged ⇡ meson, as indicated by the ratio of masses
m⇡/mN = 0.15. This is quite di↵erent from our our
models, for which, by construction, a global chiral sym-
metry forbids any fermion mass fermions and the scalar
mass is taken to be negligibly small relative to the inter-
val of Euclidean momentum scales µ for which we inte-
grate the beta functions to calculate the RG flows. Some
early studies of perturbative RG equations for Standard
Model Yukawa couplings included Refs. [11, 12]. It was
recognized early on that the one-loop beta function for
a scalar theory without fermions is positive, this theory
is, perturbatively, at least, IR-free; that is, as µ ! 0,
�(µ) ! 0. However, it was also recognized that if one
adds fermions to this scalar theory to get a full scalar-
fermion Yukawa theory, then the fermions contribute a
negative term proportional to y4 in the beta function
d�/d lnµ, and hence, for su�ciently large y, this can
reverse the sign of the full one-loop term in this beta
function and hence possibly render the scalar coupling in

the Yukawa theory nontrivial [12]. This motivated fully
nonperturbative studies, and these were carried out us-
ing lattice studies with dynamical fermions [13] (some
recent work includes [14]). One may obtain a Yukawa
theory starting from a full gauge-fermion-Higgs theory
by turning o↵ the gauge couplings. In this framework,
a natural approach is to start with a chiral gauge the-
ory (exemplified by the Standard Model), which forbids
bare fermion masses in the Lagrangian. However, ow-
ing to fermion doubling on the lattice, it has been chal-
lenging to implement chiral gauge theories on the lattice.
We believe, therefore, that there is continuing interest in
pursuing analyses of renormalization-group evolution of
continuum Yukawa theories using perturbatively calcu-
lated beta functions. Indeed, simple scalar-fermion mod-
els have been of recent interest in studies of quasi-scale
invariant behavior (e.g., [15]; see also [9, 16]).
This paper is organized as follows. In Sect. II we

define our notation for the relevant variables and beta
functions. In Sect. III we study a scalar-fermion model
with an SU(2) ⌦ U(1) global symmetry group. In Sect.
IV we generalize this analysis to a model with Nf copies
(“flavors”) of fermions and an SU(N) ⌦ SU(Nf ) ⌦ U(1)
global symmetry group. Our conclusions are contained
in Sect. V.

II. BETA FUNCTIONS

The beta functions describing the dependence of the
running couplings y = y(µ) and � = �(µ) on the scale µ
where they are measured are

�y ⌘ dy

dt
, �� ⌘ d�

dt
, (2.1)

where dt = d ln(µ/µ0), where µ0 is an initial value of
the reference scale. (The µ dependence of y and � is
implicitly understood below but the argument will often
be suppressed in the notation.) These beta functions can
be expressed as a sum of `-loop terms as

�y =
1X

`=1

b(`)y

(4⇡)2`
, �� =

1X

`=1

b(`)�

(4⇡)2`
, (2.2)

where b(`)y /(4⇡)2` and where b(`)� /(4⇡)2` denote the `-loop
contributions to �y and ��, respectively.
It will also be convenient to define the variables

ay ⌘ y2

(4⇡)2
, a� ⌘ �

(4⇡)2
, (2.3)

which will be used for the SU(2) ⌦ U(1) model studied
below. For the SU(N) ⌦ SU(Nf ) ⌦ U(1) model and, in
particular, for the limit (4.4), we define the variables

āy ⌘ y2N

(4⇡)2
, ā� ⌘ �N

(4⇡)2
. (2.4)

Figure from E. Molgaard and R. Shrock, PRD 89 (2014) 
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Early work on the bulk phase structure
534 A. Hasenfratz et a!. / U(1) Higgs— Yukawa model
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Fig. 2. Phase diagram at A = 0.0156 (a) and A = 1.0(b), both with N1 = 2. Here as in fig. I solid symbols
denote second- and open symbols first-order phase transitions. In the small-y region the solid and
dashed lines are obtained by (a) bare perturbation calculation; (b) mean-field calculation. In both (a)
and (b) the lines in the large-y region are obtained from the mean-field theory given in the second part
of the subsect. 2.3. Solid lines represent second-order and dashed lines first-order phase transitions.

The dotted lines only indicate a possibility how the phase transition lines may continue.

field calculations. Here we follow the well-known [7,8,6,2] saddle-point type
mean-field approximation.
Because of the U(1) chiral symmetry, one may choose the ansatz for the saddle

point

=a + (_l)L~b, ~2(x) =0,

h1(x) = h + (— ~ h2(x) = 0, (19)

where h,(x), h2(x) are the auxiliary fields introduced in the mean-field calcula-
tion. The saddle-point conditions define h and h~1 as implicit functions of the
magnetization a and the staggered magnetization b,

a + ~u’(h +h~1)+ i~u’(h—h5~)=0, (20)

b + ~u’(h + h~1)— ~-u’(h — h~,)= 0, (21)

A. Hasenfratz, K. Jansen, Y. Shen, NPB 394 (1993)
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Near a fixed point, 
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scalar non-linear σ-model at infinite bare Yukawa couplings [58, 59], and hence becomes trivial at a certain cut-off
scale. However, it is not clear what happens at large but finite Yukawa couplings. To be able to detect any differences
from a Gaussian (trivial) theory the critical exponents of the phase transition have to be extracted and compared
with those of the O(4) model. If the strong-coupling regime is indeed different from the weak-coupling one and hence
would be governed by a non-trivial fixed point2, it would be very interesting to investigate the possibility of very
heavy fermions which give rise to a fourth generation, while still maintaining a light Higgs boson in the theory. In
such a scenario it is unclear, whether an analysis as, e.g. [72] is applicable and also, whether the Higgs boson mass
bounds of section III are valid.

The magnetisation, defined in Eqs. (15) and (16), can act as an order parameter to identify and determine the order
of the phase transition. In Fig. 7, the magnetisation for the Higgs-Yukawa model obtained on different lattice volumes
is shown as a function of y for two κ values. In addition, we show the magnetisation as a function of κ for the O(4)
model. The SYM and FM phases can be clearly distinguished and the phase transition is washed out because of finite
volume effects as previously discussed.

The absence of any discontinuities in the magnetisation is strong evidence for a second-order phase transition in all
three depicted cases. In general, second-order phase transitions are classified through their critical exponents and the
question arises if these exponents are different in the strong-Yukawa and pure O(4) models. To answer this question,
a careful investigation of the susceptibility and Binder’s cumulant will be presented in the following.
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FIG. 7: Magnetisation, ⟨m⟩, for the Higgs-Yukawa model at κ = 0.06 (left), κ = 0.00 (middle) and the pure O(4) model (right)
for various volumes. For the O(4) ⟨m⟩ is plotted as a function of decreasing κ to match optically with the Higgs-Yukawa model.
The absence of discontinuities in ⟨m⟩ is an evidence for a second order phase transition.

The critical exponents can be calculated by using the finite-size scaling of the susceptibility, Eq. (26). The susceptibility
is shown in Fig. 8 for the Higgs-Yukawa and O(4) models. This quantity diverges at the critical point in the infinite
volume limit. Such a divergence in infinite volume is reflected in a bulk finite-size scaling behaviour in lattice
calculations. As mentioned before in Eq. (27), the finite-size scaling is predicted by renormalisation group theory,
with modifications resulting from scaling violation such as that discussed in Ref. [61],

χm (t, L) · L−γ/ν
s = g

(

t̂L1/ν
s

)

, with t̂ =
[

T/
(

T (L=∞)
c − C · L−b

s

)

− 1
]

, (32)

where C is a phenomenological parameter and b is a shift exponent [61]. This modification comes from the fact that
the position of the maximum of χm is volume dependent. From Eq. (27) the infinite-volume critical temperature can
be extracted directly. For the O(4) model we do not observe any shift of the maximum and hence Eq. (27) is a good
description of our data in this case. It should be stressed, that the temperature, T , in this section is the control
parameter. In our work, it is either the Yukawa coupling, y, in the Higgs-Yukawa model or the hopping parameter,

2 There has been early lattice work on the 3-dimensional Higgs-Yukawa model [71], attempting at finding fix points that are different
from that of the pure scalar field theory.
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κ, in the pure O(4) model. To extract the critical exponents from the susceptibility, we perform a simultaneous fit of
all data obtained at all volumes to the partly-empirical formula [73],

χm = A

(

L−2/ν
s +B

[

T/T (L=∞)
c − C · L−b

s − 1
]2
)−γ/2

. (33)

This formula was also used for a fit to χm of the O(4) model, but with the modification of excluding the parameters C
and b because of the reasons mentioned above. The fit results are summarised in Tab. II and will be discussed later.
Notice that there may be logarithmic corrections to the scaling behaviour of the susceptibility because triviality may
still be present also in the strong-Yukawa model. These corrections should, in principle, be included in Eq. (33)3.
This is on-going work, and the result will be presented in a later publication. Therefore, we consider our present
values of the critical exponents as preliminary and they should be taken with caution.
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FIG. 8: Susceptibility χm at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes. The curves are
the result of a fit to Eq. (33). The right top boxes in the middle and the right panels show χm for the largest volumes. For the

Higgs-Yukawa model a volume-dependent shift of yc towards y(L=∞)
c can be observed. This shift is not observed in the O(4)

model.

T (L=∞)
c ν γ C b fit interval

κ = 0.06 18.119(67) 0.576(28) 1.038(30) 4.7(1.6) 1.95(18) 17.5, 20.0

κ = 0.00 16.676(15) 0.541(22) 0.996(15) 10(2) 2.42(10) 15.0, 19.0

O(4) 0.304268(27) 0.499(12) 1.086(19) N/A N/A 0.300, 0.308

TABLE II: Results of a correlated fit to the susceptibility according to Eq. (33) where the last column indicates the fit interval.
The parameter T stands either for y in the Higgs-Yukawa model or for κ in the O(4) model. Since no volume-dependent shift
can be observed in the O(4) model for χm, the parameters C and b have not been fitted here. All quoted errors are statistical
only.

It is possible to re-scale the susceptibility according to Eq. (32) for the Higgs-Yukawa theory, or Eq. (27) for the O(4)

model, respectively. The fitted parameters extracted from Eq. (33) can be used to construct χm (t, Ls) · L−γ/ν
s and

test its scaling against t ·L1/ν
s . This is shown in Fig. 9. Points for all volumes collapse on the same curve in each of the

three cases shown. This behaviour is typical for second-order phase transitions and hence provides further evidence
that such a second-order transition happens in the regime of strong Yukawa couplings.

3 These logarithmic corrections are surely present in the finite-size scaling behaviour of the susceptibility in the pure O(4) model [62–66].
However, our exploratory numerical results show that their inclusion produces minor changes in the results of the critical exponents in
the O(4) model.
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An alternative way of determining critical exponents is via Binder’s cumulant, Eq. (28). One advantage of this
quantity over the susceptibility is its milder power-law scaling violation which is given by

QL = gQL

(

tL1/ν
)

, (34)

where gQL is a universal function and t is defined in Eq. (27). This behaviour can be observed in Fig. 10 where all
volumes intersect at the phase transition point in infinite volume where t = 0. Even for the Higgs-Yukawa model no
shift can be observed and hence the parameters C and b can be completely neglected in the scaling variable.

χ
m
L

−
γ ν

s

t · L
1
ν
s

κ = 0.06

L=8
L=12
L=16

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-15 -10 -5 0 5 10 15

χ
m
L

−
γ ν

s

t · L
1
ν
s

κ = 0.00

L=8
L=12
L=16
L=24

0.00

0.01

0.02

0.03

0.04

0.05

0.06

-15 -10 -5 0 5 10 15

χ
m
L

−
γ ν

s

t · L
1
ν
s

O(4)

L=8
L=12
L=16
L=20
L=24

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-15-10-5051015

FIG. 9: Scaling behaviour of susceptibility at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes.

The value of Binder’s cumulant in the broken phase comes from the fact that
〈

m4
〉

≈
〈

m2
〉2

and hence QL ≈ 2/3 [67].
Our results for QL at the critical point come close to this value for all setups considered here. Still, QL obtained in
the Higgs-Yukawa model differs from the one in the O(4) model. This may arise from effects of finite renormalisation
because of the inclusion of fermions. Its implication in the difference of the O(4) model and the Higgs-Yukawa model
is under investigation now. Furthermore, it can be demonstrated that for Binder’s cumulant, as contrary to the
susceptibility, there is no logarithmic corrections to the scaling behaviour arising from triviality in the pure O(4)
model [64]. Whether or not such corrections can be present in the Higgs-Yukawa model is being studied now.
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FIG. 10: Binder’s Cumulant QL at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes where the
subscript L indicates the finite volume quantity. Note that the value of QL at the critical point is different in the Higgs-Yukawa
and the O(4) models.

The basic idea of extracting the critical exponent, ν, from Binder’s cumulant is the use of the curve collapse of
Eq. (32). If the scaling function gQL is known one will simply minimise [74]

RQL =
1

N

∑

∣

∣

∣
QL − gQL

(

tL1/ν
)
∣

∣

∣
, (N = total number of data points) (35)

2

I. INTRODUCTION

λ0 → ∞

λ(L̂) ≈ λ∗, Y (L̂) ≈ Y∗, γM ≈ γ∗.

ζM

m̂2(L̂) ∼ L̂1/ν−2

1/ν = 2 + γm2

t ∼ m̂2
0 − m̂2

crit

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

m̂

λ6 = 0.1 and λ = −0.40

λ6 = 0.001 λ6 = 0

J. Bulava et al., AHEP 2013
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which would allow to extract ν as a direct consequence of the scaling behaviour. The sum is taken over all data
points, and RQL is minimal for the correct choice of the parameters ν and TL=∞

c . In the absence of any statistical
and systematic errors the function RQL would become zero.

The scaling function gQL is unknown. However, this can be overcome by the observation that any volume, in the
following called p, can act as a reference function for the correct choice of parameters, taking thus over the role of
gQL . Instead of minimising Eq. (35), we minimise [74]

Pb =

⎡

⎣

1

Nover

∑

p

∑

j ̸=p

∑

i,over

∣

∣

∣
QLj − Ep

(

tijL
1/ν
j

)
∣

∣

∣

2

⎤

⎦

1/2

. (36)

Here, the scaling function is replaced by the interpolating function Ep which is constructed by interpolating the data

points obtained on volume p to volume j for the values of the scaling variable tijL
1/ν
j , with the index i going through

all data points of volume j. In our case, Ep is computed by picking a point in j and taking the four nearest points
in p as a basis for a quadratic interpolation. The normalisation factor Nover is the total number of points used to
evaluate Ep. The results are summarised in Tab. III and the corresponding curve collapse for Binder’s cumulant is
shown in Fig. 11.

In principle, this method could also be used for χm, but it would be necessary to minimise for five parameters.
Our investigation shows that this leads to numerical instabilities and the extraction of critical exponents from the
susceptibility using this method is not possible hitherto.

T (L=∞)
c ν interval

κ = 0.06 18.147(24) 0.550(1) 17.4, 18.8

κ = 0.00 16.667(27) 0.525(6) 16.0, 17.2

O(4) 0.3005(34) 0.50000(3) 0.294, 0.314

TABLE III: Curve collapse results of Binder’s cumulant where the last column indicates the interval of the control parameter
in which the procedure has been used. The parameter T stands either for y in the Higgs-Yukawa model or for κ in the O(4)
model. All errors are statistical only.
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FIG. 11: Scaling behaviour of Binder’s cumulant at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various
volumes using the parameters listed in table III.

At this point we can claim that we have found a second order phase transition between the SYM and the FM phases
in the strong Yukawa coupling regime. The absence of discontinuities in ⟨m⟩ and the second-order finite size scaling
of χm are strong evidence for such a statement. It is interesting to compare the critical exponents extracted from the
susceptibility and Binder’s cumulant with the ones of the weak-Yukawa model and the O(4) model.

Results from Binder’s cumulant with a curve-collapse method
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at zero external momenta, with classical dimension DX . It depends on the bare scalar quadratic coupling, M2
b , the

bare marginal couplings, g(b)i , the lattice spacing, a, and the box length, L. The RG analysis leads to

X̂b

[

M2
b , {g

(b)
i }; a−1, L

]

ZX(a−1,mP ) = X̂
[

M2(mP ), {gi(mP )};mP , L
]

,

= ζX(mP , L
−1)X̂

[

M2(mP ), {gi(mP )};L−1, L
]

,

= ζX(mP , L
−1)L̂−DX X̂

[

M̂2(L−1)L̂2, {gi(L−1)}; 1, 1
]

, (7)

where ZX is related to Zφ, which is the wavefunction renormalisation constant defined in Eq. (3), and ζX(mP , L−1)
is the solution to Callan-Symanzik equation, defined as

ζX(mP , L
−1) = exp

(

∫ L−1

mP

γX(t)d log(t)

)

(8)

with γX is the anomalous dimension of the correlator X . If the system we consider is sufficiently close to the phase
transition point, then in Eq. (7) the marginal couplings approach constant values. This leads to the universal scaling
law where the renormalised correlator, X̂ only depends on the scaling variable, M̂2(L−1)L̂2. If the phase transition
is governed by an infrared Gaussian fixed point (GFP), the perturbative running is applicable at low energy. In
this discussion, the first step of Eq. (7) corresponds to the non-perturbative matching in Fig. 1, and the second step
corresponds to the perturbative running.
Consider a model having N−scalar fields ΦT = (φ1, · · · ,φN ), and Nf−degenerate fermions ΨT = (ψ1, . . . ,ψNf

)
(transpose is in the flavour space), with the scalar quartic coupling λ, and the yukawa coupling y. The partition
function of the theory is,

Z =

∫

DΦ DΨ̄ DΨ exp
(

−S[Φ, Ψ̄,Ψ]
)

. (9)

Since we are interested in finite volume effects, after performing the fermionic integrals, we separate the scalar fields
into φa = ϕa + χa, where ϕa are the zero modes. Near the GFP, χa can be treated perturbatively, and contribute
through loop effects. This leads to,

Z =

∫ ∞

−∞
dNϕa N exp(−Seff [ϕa]) = ΩN−1

∫ ∞

0
dϕϕN−1N exp(−Seff [ϕ]), (10)

where N is the contribution from the non-Gaussian modes of χa, and Seff is the effective action containing the

result of the Gaussian integrals of the χa and the fermions. In Eq. (10), we have written ϕ2 =
∑N

a=1 ϕ
2
a, and the

N−dimensional integral of the zero modes is turned into a one-dimensional integral with the solid angle denoted as
ΩN−1. In this work, we are only studying the theory to one-loop order, where N does not result in the renormalisation
of the couplings and the fields in Seff [ϕ], and can be regarded as an overall constant. The effective action only depends
on ϕ because of the O(N) symmetry. In the vicinity of the GFP, Seff can be studied using the saddle point expansion

µ ∼ 1
L

mP

Λ ∼ 1
a

Perturbative running

Non-Perturbative matching

Energy scale

FIG. 1: Scales in our theory.
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around the zero mode. We start discussing this expansion by writing,

exp(−Seff [ϕ]) = det (MF [ϕ]) det (MB[ϕ])
−1 exp

(

−sL4 1

2
M2

b ϕ
2 − sL4λbϕ

4

)

, (11)

where the determinants of the matrices MB[ϕ] and MF [ϕ] come from the Gaussian integrals of the scalar non-zero
modes and the fermions, respectively. Expanding the determinants results in the renormalisation of the couplings,
M2(L−1), λ(L−1), and Y (L−1). It also leads to the volume-dependent additive renormalisation ofM2(L−1), as well as
the appearance of higher dimensional operators composed of the zero mode, ϕ. The effects of these higher dimensional
operators are negligible in the vicinity of the GFP. This can be seen from the change of variable,

ϕ→
(

sL4λ(L−1)
)−1/4

ϕ ≡ S−1/4ϕ, (12)

such that operators with dimension greater than four are suppressed by powers of L̂, and s is the anisotropic ratio
Lt/L. Note that S depends on the renormalised coupling, λ(L−1). This change of variable, Eq. (12), also allows us
to write the partition function as,

Z = NΩN−1S
−N/4

∫ ∞

0
dϕϕN−1 exp

(

−1

2
zϕ2 − ϕ4

)

,

≡ NΩN−1S
−N/4ϕ̄N−1(z), (13)

we can identify the scaling variable as,

z =
√
sM̂2(L−1)L̂2λ(L−1)−1/2, (14)

where the couplings, M̂2(L−1) and λ(L−1), in the scaling variable are renormalised at L−1.

III. TECHNICAL PART

To investigate the scaling behaviour, we need to construct the scaling variable, z, using the renormalised couplings
M̂2(L−1) and λ(L−1), as indicated in Eq. (14). This can be achieved, in the spirit of Eq. (7) and Fig. 1, by
performing a non-perturbative matching to a common scale which is chosen to be mP , then running to L−1 with
one-loop perturbation theory. To ensure the validity of one-loop perturbation theory, we further impose the condition
that m̂P ≪ 1 , and L̂ ≫ 1. In practice, we can take amP = m̂P < 0.2 as our criterion of the simulation data.
The strategy is summerised below:

1. At fixed bare couplings (hence fixed lattice spacing), we fit m̄2
P (L̂) using Eq. (3).

2. Perform infinite-volume extrapolation of m̄2
P (L̂) by Eq. (4) to obtain the physical pole mass square m̂2

P in lattice
units. Note that although mP is a common scale, m̂P can be different at different lattice spacings.

3. Use Eq. (6) to obtain the renormalised quadratic coupling M̂2(mP ). This is to identify m̂P as the renormalised
mass M̂(mP ) in lattice units in the on-shell subtraction scheme at the renormalisation scale mP .

4. Use one-loop RGE’s to run M̂2(mP ) to M̂2(L−1). As detailed in the following subsections, we only need to
determine mPL = m̂P L̂ in this procedure.

5. We also need λ(L−1). This will require the value of λ(mP ), and in general the marginal couplings of the theory,
{gi(mP )}, which can be used as the initial conditions (integration constants) in solving the corresponding RGE’s.
However it is difficult to determine λ(mP ) and {gi(mP )} using lattice data in general. Therefore, it is regarded
as a fit parameter in the analysis procedure.

In the last two steps the perturbative RGE’s are model dependent. We derive the explicit form of scaling variable
in pure scalar and Higgs-Yukawa theories respectively in the following subsections.
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such that operators with dimension greater than four are suppressed by powers of L̂. This change
of variable, Eq. (2.6), also allows us to write the partition function as [10],

Z = N ΩN−1S−N/4
∫ ∞

0
dϕ ϕN−1 exp

(

−
1
2
zϕ2−ϕ4

)

≡ N ΩN−1S−N/4ϕ̄N−1(z), (2.7)

where z =
√
2L̂2m̂2(L̂)λ (L̂)−1/2 can be identified with the scaling variable. The determinants in

Eq. (2.5) will renormalise this scaling variable, resulting in logarithmic corrections as detailed
below.

We first notice that the integrals in Eq. (2.7) can be evaluated, leading to
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d
dz
ϕ̄n, (2.8)

where Iν stands for the modified Bessel function of the first kind. The leading-order logarithmic
corrections to these scaling formulae can be obtained from the one-loop RG equations (RGE’s)
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where the β ’s and the γ’s are the one-loop RGE coefficients. They can be calculated straightfor-
wardly. The solutions to these equations give
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Y (L̂)

]
1
2−

2γY
βYY2

− β−γλ
βYY2βλλ2

{

B+−B−

[

Y (l̂)
Y (L̂)

]

β+−β−
2βYY2

}
1
2−

2γλ
β
λλ2

{

β−B+−β+B−

[

Y (l̂)
Y (L̂)

]

β+−β−
2βYY2

}
1
2
, (2.10)

where β± = (βYY 2 −βλλY )±
√

(βYY 2 −βλλY )2−4βλλ 2βλY 2 and B± = Y (l̂)β±−2λ (l̂)βλλ 2 . This
scaling variable contains four free parameters. Two of them, Y (l̂) and λ (l̂), are integration con-
stants from Eq. (2.9). One also has to determine the additive renormalisation, m̂2c , and the coefficient
A in the volume-dependent shift of m̂2c . The logarithmic volume dependence is in the renormalised
coupling Y (L̂).

To test our analytical formulae, we perform lattice simulations of a HY model with scalar
O(4) symmetry and two fermion flavours at weak couplings, and confront the logarithmic scaling
formula for Binder’s cumulant with numerical results. The continuum action of this model is

Scont [Φ, ψ̄ ,ψ ] =
∫

d4x
{

1
2
(

∂µΦ
)† (∂µΦ

)

+
1
2
m2bΦ†Φ+λb

(

Φ†Φ
)2
}

+
∫

d4x
{

Ψ̄∂/Ψ+ yb
(

Ψ̄LΦbR+ Ψ̄LΦ̃tR+h.c.
)}

, (2.11)

4

2

I. INTRODUCTION

︸ ︷︷ ︸

︸ ︷︷ ︸

︷ ︸︸ ︷

Can compute ⟨ϕk⟩.

λ0 → ∞

λ(L̂) ≈ λ∗, Y (L̂) ≈ Y∗, γM ≈ γ.

ζM

m̂2(L̂) ∼ L̂1/ν−2

1/ν = 2 + γm2

t ∼ m̂2
0 − m̂2

crit

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣
∣
∣
∣
∣

∑

x

Φ0
x

∣
∣
∣
∣
∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)
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Then one has to numerically discern log scaling
That will be a challenging task ahead


