## Physics beyond the Standard Model and lattice calculations:

Higgs physics, the origin of mass and lattice field theory Lecture I

10/07/2019~12/07/2019
Peking University, Beijing
C.-J. David Lin

National Chiao-Tung University, Hsinchu


Figure taken from arXiv: | 205.267 |

## Goal of this course

$\star$ Motivate the study and strategy

* Introduce the methods
\#Describe the basics of possibly viable scenarios
$\rightarrow$ Focus on dilaton Higgs and Goldstone Higgs (with partial compositeness)
\# Formulate relevant field-theory questions
$\Rightarrow$ Questions we can realistically help to answer using LFT


## Disclaimer

Results presented here may not be the most up-to-date, and they are selected for the purpose of illustration

## Quest for BSM physics

A Wilsonian, non-perturbative point of view

## What the LHC revealed to us hitherto



Figure taken from ATL-PHYS-PUB-2019-010

## What the LHC revealed to us hitherto



## Naturalness: one-loop perturbation theory



$$
E<\Lambda_{\mathrm{UV}}
$$



No symmetry protection for the Higgs mass term
$\Rightarrow$ Results in an additive Higgs mass renormalisation $\Lambda_{\mathrm{UV}}^{2} H^{\dagger} H$
$\star$ Assuming $\Lambda_{\mathrm{UV}} \sim M_{\mathrm{GUT}}$
$\Rightarrow$ Need to fine-tune $c \sim 10^{28}$ in $c M_{H}^{2} H^{\dagger} H$

## Fine-tuning: Is it a problem?

In principle, it is not a problem
Power-law dependence on $\Lambda_{\mathrm{UV}}$ hints nonperturbative nature
$\Rightarrow$ Recall that Dim-Reg only gives logarithmic scale dependence
$\rightarrow$ Logarithmic scale dependence is a signature of perturbation theory
Lessons from Wilson fermions on the lattice
$\rightarrow$ Chiral symmetry ensures fermion mass is multiplicatively renormalised
$\Rightarrow$ The Wilson term breaks chiral symmetry
$\Rightarrow$ Additive fermion mass renormalisation $m_{c} \sim 1 / a$
$\Rightarrow$ Nonperturbative subtraction, and the continuum limit can be taken

## Fine-tuning is fine

$\star$ What is fine-tuned is a bare parameter
$\Rightarrow$ It may be practically challenging, but so what?
$\star$ The cut-off can still be removed
$\star$ Low-energy physics is insensitive to that at the cut-off scale
$\star$ So why are we searching for BSM physics?

## Triviality: hints from perturbation theory

$\star$ The I-loop quartic-coupling beta function of scalar theory

$$
\beta(\lambda)=\mu \frac{d \lambda}{d \mu}=A_{+} \lambda^{2}, \text { where } A_{+}>0
$$

$\Rightarrow \lambda$ increases with $\mu$
"Inconsistency" upon integrating the RGE

$$
\int_{\lambda_{\mathrm{IR}}}^{\lambda_{\mathrm{OV}}} \frac{d \lambda}{A_{+} \lambda^{2}}=\ln \left(\begin{array}{|c}
\left(\frac{\Lambda_{\mathrm{UV}}}{\mu_{\mathrm{IR}}}\right)
\end{array}\right. \text { cut-off }
$$

$\Rightarrow$ Either keep the cut-off finite (EFT)
$\Rightarrow$ Or the renormalised coupling vanishes at all IR scales (Triviality)

## A digression: RG and critical phenomena

 Coarse-graining and rescalingFigure from M. Fisher, Rev. Mod. Phys. 70 (1998)


$$
(t, h) \Rightarrow\left(t^{\prime}, h^{\prime}\right)
$$

* C.f., $\left.\Gamma\left[p_{i}, g_{i}(\mu), \mu\right]=\exp \left(-\int_{\mu / b}^{\mu} \gamma_{\Gamma} d \ln \mu^{\prime}\right) \Gamma\left[p_{i}, g_{i}(\mu / b), \mu / b\right]\right)$

$$
=b^{-d_{\Gamma}} \exp \left(-\int_{\mu / b}^{\mu} \gamma_{\Gamma} d \ln \mu^{\prime}\right) \Gamma\left[b p_{i}, b^{d_{i}} g_{i}(\mu / b), \mu\right]
$$

## A digression: RG and critical phenomena

$\star\{K\} \stackrel{\mathrm{RG}}{\Longrightarrow}\left\{K^{\prime}\right\} \xlongequal{\mathrm{RG}}\left\{K^{\prime \prime}\right\} \ldots \rightarrow$ Criticality: $\{K\} \xlongequal{\mathrm{RG}}\{K\} \equiv\left\{K^{*}\right\}$
$\star$ Linearisation: $K_{\alpha}^{\prime}-K_{\alpha}^{*} \sim \sum_{\beta}\left(\frac{\partial K_{\alpha}^{\prime}}{\partial K_{\beta}}\right)_{K=K^{*}}\left(K_{\beta}-K_{\beta}^{*}\right)=\sum_{b} T_{\alpha \beta}\left(K_{\beta}-K_{\beta}^{*}\right)$
$\star$ From $\sum_{\alpha} \phi_{\alpha}^{i} T_{\alpha \beta}=b^{y_{i}} \phi_{\beta}^{i}$ define $u_{i} \equiv \sum_{\alpha} \phi_{\alpha}^{i}\left(K_{\alpha}-K_{\alpha}^{*}\right)$
$\star$ Scaling variables: $u_{i}^{\prime}=\sum_{\alpha} \phi_{\alpha}^{i}\left(K^{\prime}-K_{a}^{*}\right)=\sum_{\alpha, \beta} \phi_{\alpha}^{i} T_{\alpha \beta}\left(K_{\beta}-K_{\beta}^{*}\right)=b^{y_{i}} u_{i}$

| relevant | $y_{i}>0$ |
| :--- | :--- |
| irrelevant | $y_{i}<0$ |
| marginal | $y_{i}=0$ |

"scheme" independent


## A digression: RG and critical phenomena

Critical phenomena

$$
\xi / a \rightarrow \infty
$$

$\{K\} \xrightarrow{\mathrm{RG}}\left\{K^{\prime}\right\}=\{K\} \equiv\left\{K^{*}\right\}$

Scaling variable
Irrelevant
Relevant
Marginal
(4d) Field theory fixed point

$$
\Lambda_{U V} / \Lambda_{I R} \rightarrow \infty
$$

$$
g_{i}(\mu) \stackrel{\mathrm{RG}}{\Longrightarrow} g_{i}(b \mu)=g_{i}(\mu) \equiv g_{i}^{*}
$$

$$
\begin{array}{r}
d_{\mathcal{O}}+\gamma_{\mathcal{O}}>4 \\
d_{\mathcal{O}}+\gamma_{\mathcal{O}}<4 \\
d_{\mathcal{O}}+\gamma_{\mathcal{O}}=4
\end{array}
$$

## Nonperturbative statement for triviality

$\star$ Consider a scalar theory ( $\hat{m}=a m, \hat{\phi}=a \phi$ )

$$
\begin{aligned}
& S=\int d^{4} x \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{1}{2} m_{0}^{2} \phi^{2}+\lambda_{0} \phi^{4} \\
& \xrightarrow{\text { latticise }} \sum_{n}\left[\sum_{\hat{\mu}} \frac{1}{2} \hat{\phi}(n)(\hat{\phi}(n+\hat{\mu})+\hat{\phi}(n-\hat{\mu})-2 \hat{\phi}(n))+\frac{1}{2} \hat{m}_{0} \hat{\phi}^{2}(n)+\lambda_{0} \hat{\phi}^{4}(n)\right]
\end{aligned}
$$

$\star$ The limit $\Lambda_{\mathrm{UV}} \rightarrow \infty$ is the continuum limit, $a \rightarrow 0$
$\rightarrow$ Occurs at 2nd order bulk phase transition
$\rightarrow \lambda_{0} \neq 0$ and $\hat{m}_{0} \neq 0$ while $\lambda_{\mathrm{R}} \rightarrow 0$ and $\hat{m}_{\mathrm{R}} \rightarrow 0$
"Scanning" required

$\rightarrow$ Compared to QCD continuum limit: $g_{0} \rightarrow 0$ and $\hat{m}_{f} \rightarrow 0$

## Triviality in scalar theories

$\star$ There is much reliable evidence for triviality in 4d scalar theories
M. Aizenman, PRL. 47 (I98I)
J. Fröhlich, NPB 200 (1982)
M. Luscher and P.Weisz, PLB2I2 (I988), NPB 290 (I987), 295 (I988), 318 (I989)
M. Hoogervorst and U.Wolff, NPB 855 (2012)
J. Sievert and U.Wolff, PLB 733 (2014)
T. Korzec and U.Wolff, PoS LATTICE2014 (2015)
$\star$ Presently there is very little doubt about it

The issue is:
No relevant interaction in the scalar sector

## Physics beyond the SM: higher-dim operators

$\star$ Keeping $\Lambda_{\mathrm{UV}}$ finite
$\Rightarrow$ Higher-dim (irrelevant) operators can contribute
Many operators...

| $d$ | quantum numbers | $n_{g}=1$ | $n_{g}=3$ |
| :---: | :---: | :---: | :---: |
| 5 | $(\Delta L=2)+$ h.c. | $1+1$ | $6+6$ |
| 6 | $\Delta B=\Delta L=0$ | $76=53_{+}+23_{-}$ | $2499=1350_{+}+1149_{-}$ |
| 6 | $(\Delta B=\Delta L=1)+$ h.c. | $4+4$ | $273+273$ |

$\star$ How can the lattice help?
Challenging to precisely constrain all couplings from experiments
$\rightarrow$ Lattice study of qualitative features, for example...

## Physics beyond the SM: higher-dim operators

* Consider a scalar field theory

$$
\begin{gathered}
S^{\operatorname{cont}[ }[\bar{\psi}, \psi, \varphi]=\int d^{4} x\left\{\begin{array}{l}
\left.\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{\dagger}\left(\partial^{\mu} \varphi\right)+\frac{1}{2} m_{0}^{2} \varphi^{\dagger} \varphi+\lambda\left(\varphi^{\dagger} \varphi\right)^{2}+\lambda_{6}\left(\varphi^{\dagger} \varphi\right)^{3}\right\} \\
\\
+\int d^{4} x\left\{\bar{t} \not \partial t+\bar{b} \not \partial b+y\left(\bar{\psi}_{L} \varphi b_{R}+\bar{\psi}_{L} \tilde{\varphi} t_{R}\right)+h . c .\right\} \\
\tilde{\varphi}=i \tau_{2} \varphi^{*}
\end{array}\right. \\
\varphi=\sqrt{2 \kappa}\binom{\Phi^{2}+i \Phi^{1}}{\Phi^{0}-i \Phi^{3}}, \quad a^{2} m_{0}^{2}=\frac{1-2 \hat{\lambda}-8 \kappa}{\kappa}, \quad \lambda=\frac{\hat{\lambda}}{4 \kappa^{2}}
\end{gathered}
$$

## Physics beyond the SM: higher-dim operators


$\star$ Notice: Negative quartic coupling
$\Rightarrow$ Presence of first order phase transitions; finite temperature?

# Searching for relevant interaction: <br> Looking inside the Higgs-Yukawa sector of the SM 

## Scalar theories are not always trivial

The Wilson-Fisher fixed point in 3-dimensional scalar field theory


## Triviality in the Higgs-Yukawa sector

$\star$ There is much reliable evidence for triviality in 4d scalar theories
M. Aizenman, PRL. 47 (I98I)
J. Fröhlich, NPB 200 (I982)
M. Luscher and P.Weisz, PLB2I2 (I988), NPB 290 (I987), 295 (I988), 318 (I989)
M. Hoogervorst and U.Wolff, NPB 855 (2012)
J. Sievert and U.Wolff, PLB 733 (2014)
T. Korzec and U.Wolff, PoS LATTICE20I4 (2015)

* Evidence for 4 d Higgs-Yukawa model is not a the same level

Early works by Lee, Shigemitsu, Shock, Haenfratz, Jansen,...
N. Butt, S. Catterall, D. Schaich, PRD98(20I8)
D.Y.-J. Chu, K. Jansen, B. Knippschild, C.-J. D. Lin, JHEP I90I(20I9)

## Phase structure of Higgs-Yukawa sector

$$
a_{y} \equiv \frac{y^{2}}{(4 \pi)^{2}}, \quad a_{\lambda} \equiv \frac{\lambda}{(4 \pi)^{2}}
$$



Figure from E. Molgaard and R. Shrock, PRD 89 (20|4)

## Early work on the bulk phase structure


A. Hasenfratz, K. Jansen, Y. Shen, NPB 394 (I993)

## Finite-size scaling àla renormalisation group

$$
\begin{aligned}
& Z_{M}(\tilde{a}, \tilde{l}) \times \tilde{M}_{0}\left[\tilde{m}_{0}^{2},\left\{g_{0, i}\right\} ; \tilde{a}, \tilde{L}\right]=\tilde{M}\left[\tilde{m}^{2}(\tilde{l}),\left\{g_{i}(\tilde{l})\right\} ; \tilde{l}, \tilde{L}\right] \\
&=\zeta_{M}(\tilde{l}, \tilde{L}) \times \tilde{M}\left[\tilde{m}^{2}(\tilde{L}),\left\{g_{i}(\tilde{L})\right\} ; \tilde{L}, \tilde{L}\right] \\
&=\zeta_{M}(\tilde{l}, \tilde{L}) \times \tilde{L}^{-d_{M}} \times \tilde{M}\left[\tilde{m}^{2}(\tilde{L}) \tilde{L}^{2},\left\{g_{i}(\tilde{L})\right\} ; 1,1\right] \\
& \zeta_{M}(\tilde{l}, \tilde{L})=\exp \left[\int_{\tilde{l}}^{\tilde{L}} \gamma_{M}(\rho) d \ln \rho\right], \quad \tilde{m}^{2}(\tilde{L})=\tilde{m}^{2}(\tilde{l}) \exp \left[\int_{\tilde{l}}^{\tilde{L}} \gamma(\rho) d \ln \rho\right]
\end{aligned}
$$

Near a fixed point, $g_{i}(\tilde{L}) \approx g_{i}^{*}$
$\Rightarrow \gamma_{M}$ and $\gamma$ are constant
$\Rightarrow \zeta_{M}=\left(\frac{\tilde{L}}{\tilde{l}}\right)^{\gamma_{M}^{*}}, \quad \tilde{m}^{2}(\tilde{L})=\tilde{m}^{2}(\tilde{l})\left(\frac{\tilde{L}}{\tilde{l}}\right)^{1 / \nu-2}$
$\Rightarrow \tilde{L}^{d_{M}-\gamma_{M}} \times \tilde{M}=C_{M} F\left(\tilde{m}^{2} L^{1 / \nu}\right)$ (unknown function in general)
Mean-field result: $\nu=1 / 2$

## What we found previously

notice: strong (bare) Yukawa coupling




The curve-collapsingg method
Results from Binder's cumulant with a curve-collapse method

|  | $T_{c}^{(L=\infty)}$ | $\nu$ | interval |
| :---: | :---: | :---: | :---: |
| $\kappa=0.06$ | $18.147(24)$ | $0.550(1)$ | $17.4,18.8$ |
| $\kappa=0.00$ | $16.667(27)$ | $0.525(6)$ | $16.0,17.2$ |
| $\mathrm{O}(4)$ | $0.3005(34)$ | $0.50000(3 才$ | $0.294,0.314$ |

## Finite-size scaling àla renormalisation group

 Issues with Gaussian fixed point in 4 dimensions$\star$ Mean-field approach does not work
$\Rightarrow$ Need to include logarithmic corrections
$\star$ Exact mean-field scaling laws with leading-log corrections
$\Rightarrow$ Pure scalar field theory
E. Brezin and J. Zinn-Justin, NPB 257 (I985)
$\Rightarrow$ Higgs-Yukawa model
D. Y.-J. Chu, K. Jansen, B. Knippschild, C.-J. D. Lin, JHEP I90I(2019)

## Mean-field FSS for 4d scalar $\mathrm{O}(\mathrm{N})$ model

E. Brezin and J. Zinn-Justin, NPB 257 (I 985)
$\mathrm{O}(\mathrm{N})$ scalar field theory with quartic coupling

$$
\Phi^{T}=\left(\phi_{1}, \cdots, \phi_{N}\right), Z=\int D \Phi \exp (-S[\Phi])
$$

$$
\phi_{a}=\varphi_{a} \overparen{+\chi_{a} \quad \text { zero mode }}
$$

$$
Z=\int_{-\infty}^{\infty} \mathrm{d}^{N} \varphi_{a} \underbrace{\mathcal{N}}_{\text {non-Gaussian modes of } \chi_{a} \rightarrow \text { decouples at one-loop }} \underbrace{\exp \left(-S_{\text {eff }}\left[\varphi_{a}\right]\right)}=\Omega_{N-1} \int_{0}^{\infty} \mathrm{d} \varphi \varphi^{N-1} \mathcal{N} \exp \left(-S_{\text {eff }}[\varphi]\right) .
$$

$$
\exp \left(S_{e f f}[\varphi]\right)=\underbrace{\operatorname{det}\left(M_{B}[\varphi]\right)^{-1}}_{\text {dropped in perturbation theory }} \exp \left(-s L^{4} \frac{1}{2} M^{2} \varphi^{2}-s L^{4} \lambda \varphi^{4}\right)
$$

## Mean-field FSS for 4d scalar $\mathrm{O}(\mathrm{N})$ model

E. Brezin and J. Zinn-Justin, NPB 257 (I985)

$$
\begin{aligned}
& \text { Rescale: } \varphi \rightarrow\left(s L^{4} \lambda\left(L^{-1}\right)\right)^{-1 / 4} \varphi \equiv S^{-1 / 4} \varphi \\
& Z=\mathcal{N} \Omega_{N-1} S^{-N / 4} \int_{0}^{\infty} d \varphi \varphi^{N-1} \exp \left(-\frac{1}{2} z \varphi^{2}-\varphi^{4}\right) \\
& \equiv \mathcal{N} \Omega_{N-1} S^{-N / 4} \bar{\varphi}_{N-1}(z), \\
& \Rightarrow \text { The scaling variable: } z=\sqrt{s} \hat{M}^{2} \overbrace{\left(L^{-1}\right) \hat{L}^{2} \lambda\left(L^{-1}\right)^{-1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\varphi}_{0}=\frac{\pi}{8} \exp \left(\frac{z^{2}}{32}\right) \sqrt{|z|}\left[I_{-1 / 4}\left(\frac{z^{2}}{32}\right)-\operatorname{Sgn}(z) I_{1 / 4}\left(\frac{z^{2}}{32}\right)\right] \\
& \bar{\varphi}_{1}=\frac{\sqrt{\pi}}{8} \exp \left(\frac{z^{2}}{16}\right)\left[1-\operatorname{Sgn}(z) \operatorname{Erf}\left(\frac{|z|}{4}\right)\right], \bar{\varphi}_{n+2}=-2 \frac{\mathrm{~d}}{\mathrm{~d} z} \bar{\varphi}_{n}
\end{aligned}
$$

$\Rightarrow$ Can compute $\left\langle\varphi^{k}\right\rangle$.
D. Y.-J. Chu, K. Jansen, B. Knippschild, C.-J. D. Lin, JHEP I90I (20I9)

# Then one has to numerically discern log scaling <br> That will be a challenging task ahead 

