Physics beyond the Standard Model and lattice calculations:

Higgs physics, the origin of mass and lattice field theory

Lecture III

10/07/2019 ~ 12/07/2019 Peking University, Beijing

C.-J. David Lin National Chiao-Tung University, Hsinchu

Spectrum and dilaton EFT Including the light scalar in the EFT

Including the dilaton in the EFT

★ Basic ideas of "conformal compensator" explained in S. Coleman, "Aspects of Symmetry"

***** Various similar methods formulated over time

Incomplete list of works include

Migdal and Shifman, PLB 114 (1982)

W. Goldberger, B. Grinstein, W. Skiba, PRL 100 (2008)

S. Matsuzaki and K. Yamawaki, PRL 113 (2014)

M. Golterman and Y. Shamir, PRD 94 (2016)

T.Appelquist, J. Ingoldby and M. Piai, JHEP 1707 (2017), JHEP 1803 (2018)

★ I will follow the approach of Appelquist, Ingoldby and Piai

Including the dilaton in the EFT

General strategy

★Under the scale transformation $x^{\mu} \rightarrow e^{\alpha} x^{\mu}$

→ Operator with mass dimension $d_i: \mathcal{O}_i(x) \to e^{\alpha d_i} \mathcal{O}_i(e^{\alpha} x)$

→ Scalar field $\chi(x)$ in 4-d: $\chi(x) \to e^{\alpha} \chi(e^{\alpha} x)$

★Non-linear parameterisation: $\chi(x) = f_d \ e^{\sigma(x)/f_d}$

- f_d is a low-energy constant
- \bullet f_d is the value of $\chi(x)$ at the minimum of the potential $V(\chi)$
- Can expand around the minimum
- $\star \mathcal{L}_{\chi} = \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi$ is scale-invariant

The potential, $V(\chi)$, incorporates effects of scale-invariance breaking

 \bigstar Conformal compensator for $\mathcal{L} = \sum g_i(\mu) \mathcal{O}_i(x)$

 $\rightarrow g_i(\mu) \rightarrow g_i(\mu\chi/f_d)(\chi/f_d)^{4-d_i}$ works in the same way as spurions

Including the dilaton in the EFT

Dilaton chiral perturbation theory

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi + \mathcal{L}_{\pi} - \mathcal{L}_{M} - V(\chi) + \dots$$

$$\bigstar \mathcal{L}_{\pi} = \frac{f_{\pi}^2}{4} \left(\frac{\chi}{f_d}\right)^2 \operatorname{Tr} \left[\partial_{\mu} \Sigma (\partial^{\mu} \Sigma)^{\dagger}\right], \Sigma = \exp\left[2i\pi/f_{\pi}\right], \pi = \sum_{a} \pi^a T^a$$

$$\bigstar \mathcal{L}_{M} = \frac{m_{\pi}^{2} f_{\pi}^{2}}{4} \left(\frac{\chi}{f_{d}}\right)^{y} \operatorname{Tr} \left[\Sigma + \Sigma^{\dagger}\right], \quad m_{\pi}^{2} = 2mB_{\pi}, \quad B_{\pi} = \langle \bar{\psi}\psi \rangle / 2f_{\pi}^{2}$$

$$\Longrightarrow \quad \mathcal{Y} \text{ is the scaling dimension of } \langle \bar{\psi}\psi \rangle$$

★ $V(\chi)$: effects of breaking scale invariance → e.g., $V_1 = \frac{m_d^2}{2f_d^2} \left(\frac{\chi^2}{2} - \frac{f_d^2}{2}\right)$ (SM), $V_2 = \frac{m_d^2}{16f_d^2}\chi^4 \left(4 \ln \frac{\chi}{f_d} - 1\right)$ ★ Study the dependence on $m_\pi^2 = 2mB_\pi$ in physical quantities → in terms of 4 parameters: f_π , f_d , m_d^2 , y

Use of the dilaton ChPT

T.Appelquist, J. Ingoldby and M. Piai, JHEP 1707 (2017), JHEP 1803 (2018)

 $\star \text{Expand the nonlinear pion field}$ $\star \mathcal{L}_{M} = \frac{N_{f}m_{\pi}^{2}f_{\pi}^{2}}{2} \left(\frac{\chi}{f_{d}}\right)^{y} - \frac{m_{\pi}^{2}}{2} \left(\frac{\chi}{f_{d}}\right)^{y} \pi^{a} \pi^{a} + \dots$

★ This modifies the dilaton potential → $W(\chi) = V(\chi) - \frac{N_f m_\pi^2 f_\pi^2}{2} \left(\frac{\chi}{f_d}\right)^y$

★ Denote the value of χ at to minimum of $W(\chi)$ as F_d

- Need details of $V(\chi)$ to determine F_d in the EFT

- But it can also be related to the dilaton decay constant

Computed from lattice to test EFT's.

Use of the dilaton ChPT

Information extracted without details of the dilaton potential

T. Appelquist, J. Ingoldby and M. Piai, JHEP 1707 (2017), JHEP 1803 (2018)

★ Expand around the minimum of $W(\chi)$: $\chi = F_d + \bar{\chi}$ → $\mathcal{L}_{\pi} = \frac{f_{\pi}^2}{4} \left(\frac{\bar{\chi}^2 + 2\bar{\chi}F_d + F_d^2}{f_d^2} \right) \operatorname{Tr} \left[\partial_{\mu} \Sigma (\partial^{\mu} \Sigma)^{\dagger} \right] = \frac{f_{\pi}^2}{4} \left(\frac{F_d^2}{f_d^2} \right) \operatorname{Tr} \left[\partial_{\mu} \Sigma (\partial^{\mu} \Sigma)^{\dagger} \right] + \dots$ → Compare with $\mathcal{L}_{\pi} = \frac{F_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} \Sigma (\partial^{\mu} \Sigma)^{\dagger} \right] + \dots$ → $\frac{F_{\pi}^2}{f_{\pi}^2} = \frac{F_d^2}{f_d^2}$ (1) ★ Can do the same to \mathcal{L}_M

 $\stackrel{}{\bullet} \frac{M_{\pi}^2}{m_{\pi}^2} = \left(\frac{F_d^2}{f_d^2}\right)^{y/2-1}$ (2)

★ (1) and (2) gives $M_{\pi}^2 (F_{\pi}^2)^{(1-y/2)} = Cm$, $C = 2B_{\pi}(f_{\pi}^2)^{(1-y/2)}$

 \blacktriangleright No reference to details of $V(\chi)$, can be used to determine $\mathcal Y$

Use of the dilaton ChPT Extracting more information

T.Appelquist, J. Ingoldby and M. Piai, JHEP 1803 (2018)

★ Use (1), (2) and the following → $\left(\frac{\partial W}{\partial \chi}\right)_{\chi=F_d} = 0$, $\left(\frac{\partial^2 W}{\partial \chi^2}\right)_{\chi=F_d} = M_d^2$ (dilaton mass) → Phenomenological assumption: $V(\chi) \propto \chi^p$ ★ Can easily derive → $M_\pi^2 = BF_\pi^{p-2}$ → $M_d^2 = \frac{yN_f f_\pi^2}{2f_d^2} (p-y)BF_\pi^{p-2}$ same B

★ Can further fit P and $f_{\pi}^2/f_d^2 = F_{\pi}^2/F_d^2$

SU(3) gauge theory with 2 sextet fermions, LHC collaboration, 2012 ~ 2016

Use of the dilaton ChPT

T. Appelquist, J. Ingoldby and M. Piai, JHEP 1803 (2018)

 $\star F_d \sim 3F_\pi$: prediction, can be tested with future lattice result

Searching for relevant interaction: Composite Higgs and partial compositeness

Basic idea àla CCWZ, naturally light Higgs

D.B. Kaplan, H. Georgi, M. Dugan, S. Dimopoulos,... circa 1985

 \bigstar Global symmetry G/H, Higgs doublet \in Goldsone

 $\bigstar SM SU(2)_L \times SU(2)_R \subset H$

★ EW symm breaking induced by additional interactions → Vacuum misalignment → $v << f \sin \langle \theta \rangle, f = |\vec{F}| \sim \Lambda_{HC}$

Fermion masses generated via partial compositeness

Spin-1/2 bound states mixing with the top

D.B. Kaplan, 1991

Main difference between TC and CH

Global symmetry breaking $G \rightarrow H$

Technicolour: Higgs \in H

Challenge: Have a light Higgs state

Technicolour: Higgs \in G/H

Challenge: Obtain the correct Higgs mass

Hierarchy of scales in composite Higgs models

An analogy: QCD plus weak interaction

★ The relevant operator in the UV completion above Λ_{HC} **→** Details of the misalignment is model-dependent

UV completion and lattice calculation

Name	Gauge group	$\eta/2$	\mathcal{V}	Barvon type	
	Guuge group	Ψ	Λ	Daryon type]
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$\psi\chi\chi$	
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$\psi\chi\chi$	
M3	SO(7)	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$	
M4	SO(9)	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$	
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi\chi\chi$	
M6	SU(4)	$5 \times \mathbf{A}_2$	$3 imes({f F},\overline{f F})$	$\psi\chi\chi$	\square
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi \chi \chi$	
M8	Sp(4)	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$	\square
M9	SO(11)	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$\psi\psi\chi$	
M10	SO(10)	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$\psi\psi\chi$	
M11	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$	
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$	
	Name M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12	Name Gauge group M1 SO(7) M2 SO(9) M3 SO(7) M4 SO(9) M5 Sp(4) M6 SU(4) M7 SO(10) M8 Sp(4) M9 SO(11) M10 SO(10) M11 SU(4) M12 SU(4)	Name Gauge group ψ M1 $SO(7)$ $5 \times F$ M2 $SO(9)$ $5 \times F$ M3 $SO(7)$ $5 \times Spin$ M4 $SO(9)$ $5 \times Spin$ M4 $SO(9)$ $5 \times Spin$ M5 $Sp(4)$ $5 \times A_2$ M6 $SU(4)$ $5 \times A_2$ M7 $SO(10)$ $5 \times F$ M8 $Sp(4)$ $4 \times F$ M9 $SO(11)$ $4 \times Spin$ M10 $SO(10)$ $4 \times (Spin, \overline{Spin})$ M11 $SU(4)$ $4 \times (F, \overline{F})$ M12 $SU(5)$ $4 \times (F, \overline{F})$	NameGauge group ψ χ M1 $SO(7)$ $5 \times \mathbf{F}$ $6 \times \mathbf{Spin}$ M2 $SO(9)$ $5 \times \mathbf{F}$ $6 \times \mathbf{Spin}$ M3 $SO(7)$ $5 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ M4 $SO(9)$ $5 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ M5 $Sp(4)$ $5 \times \mathbf{A}_2$ $6 \times \mathbf{F}$ M6 $SU(4)$ $5 \times \mathbf{A}_2$ $3 \times (\mathbf{F}, \mathbf{F})$ M7 $SO(10)$ $5 \times \mathbf{F}$ $3 \times (\mathbf{Spin}, \mathbf{Spin})$ M8 $Sp(4)$ $4 \times \mathbf{F}$ $6 \times \mathbf{A}_2$ M9 $SO(11)$ $4 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ M10 $SO(10)$ $4 \times (\mathbf{Spin}, \mathbf{Spin})$ $6 \times \mathbf{F}$ M11 $SU(4)$ $4 \times (\mathbf{F}, \mathbf{F})$ $6 \times \mathbf{A}_2$ M12 $SU(5)$ $4 \times (\mathbf{F}, \mathbf{F})$ $3 \times (\mathbf{A}_2, \mathbf{A}_2)$	NameGauge group ψ χ Baryon typeM1 $SO(7)$ $5 \times \mathbf{F}$ $6 \times \mathbf{Spin}$ $\psi\chi\chi$ M2 $SO(9)$ $5 \times \mathbf{F}$ $6 \times \mathbf{Spin}$ $\psi\chi\chi$ M3 $SO(7)$ $5 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ $\psi\psi\chi$ M4 $SO(9)$ $5 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ $\psi\psi\chi$ M4 $SO(9)$ $5 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ $\psi\psi\chi$ M5 $Sp(4)$ $5 \times \mathbf{A}_2$ $6 \times \mathbf{F}$ $\psi\chi\chi$ M6 $SU(4)$ $5 \times \mathbf{A}_2$ $3 \times (\mathbf{F}, \mathbf{F})$ $\psi\chi\chi$ M7 $SO(10)$ $5 \times \mathbf{F}$ $3 \times (\mathbf{Spin}, \mathbf{Spin})$ $\psi\chi\chi$ M8 $Sp(4)$ $4 \times \mathbf{F}$ $6 \times \mathbf{A}_2$ $\psi\psi\chi$ M9 $SO(11)$ $4 \times \mathbf{Spin}$ $6 \times \mathbf{F}$ $\psi\psi\chi$ M10 $SO(10)$ $4 \times (\mathbf{F}, \mathbf{F})$ $6 \times \mathbf{A}_2$ $\psi\psi\chi$ M11 $SU(4)$ $4 \times (\mathbf{F}, \mathbf{F})$ $3 \times (\mathbf{A}_2, \mathbf{A}_2)$ $\psi\psi\chi, \psi\chi\chi$

Table from D. Franzosi and G. Ferretti, arXiv:1905.08273 [hep-ph]

★Before starting lattice simulations

Choose a model wisely before you'll spend years on the simulation

Gauge group repn and global coset M. Peskin, 1980

- **★ Real :** $(T^a)^* = (T^a)^T = -S^{-1}T^aS, \qquad SS^* = 1.$
- **★** Pseudoreal : $(T^a)^* = (T^a)^T = -S^{-1}T^aS$, $SS^* = -1$.

$$\Psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix} \equiv \begin{pmatrix} \psi_\alpha \\ \bar{\chi}^{\dot{\beta}} \end{pmatrix} = \begin{pmatrix} \psi_\alpha \\ (\chi^\beta)^* \end{pmatrix}, \quad \overline{\Psi}\Psi = \epsilon^{\alpha\beta}\chi^{ia}_{\beta}\psi_{\alpha ia} + \text{h.c.}$$

gauge repncondensateglobal symmetryComplex $\epsilon^{\alpha\beta}\psi^{i(\bar{r})}_{\beta}\psi^{(r)}_{\alpha i} + h.c.$ $SU(N_f) \times SU(N_f) \rightarrow SU(N_f)$ Real $\epsilon^{\alpha\beta}\psi^{ia}_{\beta}\psi^{b}_{\alpha i}S^{-1}_{ab}$ $SU(2N_f) \rightarrow SO(2N_f)$ Pseudoreal $\epsilon^{\alpha\beta}\psi^{ia}_{\beta}\psi^{jb}_{\alpha}S^{-1}_{ab}E_{ij}$ $SU(2N_f) \rightarrow Sp(2N_f)$

On-going lattice projects

★ Colorado - Tel Aviv (TACO) collaboration

V.Ayyar, T. Degrand, D.C. Hacket, W.I. Jay, E. Neil, Y. Shamir, B. Svetiteky $ightarrow G_{HC} = SU(4), G/H = \{SU(4) \times [SU(2)_L \times SU(2)_R]\}/\{SO(4) \times SU(2)_V\}$

★ CP3-Origin - Plymouth collaboration

V. Drach, M. Hansen, T. Janowski, C. Pica, J. Rantaharju, F. Sannino, $- G_{HC} = SU(2), G/H = SU(4)/Sp(4)$

★ Hsinchu - Pusan - Swansea collaboration

E. Bennet, D.K. Hong, J.-W. Lee, C.J.D.L., B. Lucini, M. Piai, D.Vadacchino $G_{HC} = Sp(4), G/H = \{SU(4) \times SU(6)\}/\{Sp(4) \times SO(6)\}$

★ Edinburgh - Torino collaboration

G. Cossu, L. Del Debbio, M. Panero, D. Preti

 $= SU(4), G/H = \{SU(4) \times [SU(2)_L \times SU(2)_R]\} / \{SO(4) \times SU(2)_V\}$

Composite Higgs with Sp(4) gauge group

J. Barnard, T. Gherghetta, T.S. Ray, 2014

Field	Sp(4) gauge	SU(4) global
A_{μ}	10	1
$ $ ψ	4	4

Two Dirac fermions in the <u>fundamental repn</u> pseudoreal

★ The Higss doublet in the coset SU(4)/Sp(4)

★ The SM $SU(2)_L \times SU(2)_R$ in the unbroken global Sp(4)

Idea and implementation of partial compositeness

D.B. Kaplan, 1991; J. Barnard, T. Gherghetta and T.S. Ray, 2014

Field	Sp(4) gauge	SU(4) global	SU(6) global
A_{μ}	10	1	1
ψ	4	4	1
χ	5	1	6

Two Dirac fermions in the fundamental repn pseudoreal

★ Three Dirac fermions in the antisymmetric repn real ★ $SU(6) \rightarrow SO(6) \supset SU(3)$

 \bigstar Gauge the SU(3) to be the QCD colour group

The top partner and the top mass

$$\begin{split} & \underbrace{\hat{\Psi}_{ij}^{\alpha} = (\psi_i \chi^{\alpha} \psi_j), \\ \hat{\Psi}_{ij}^{c,\alpha} = (\psi_i \chi^{c,\alpha} \psi_j), \\ & \underbrace{\hat{\Psi}_{ij}^{c,\alpha} = (\psi_i \chi^{c,\alpha} \psi_j) \\ & \text{global SU(4) indices} \end{split} } \end{split}$$

- Neutral under gauge-Sp(4) colour
- **★** Carry QCD colour and mix with the top
- Operators emerge at the flavour scale
 Global SU(4) instead of Sp(4)
- \star Called the chimera baryon by the TACO collab.

Chimera

Pictures from Ben Svetitsky, LATTICE 2019

$$\begin{split} & \mathbf{Free top \ partner \ and \ the \ top \ mass}} \\ & \mathbf{\hat{\Psi}_{ij}^{\alpha} = (\psi_i \chi^{\alpha} \psi_j), \ \mathbf{\hat{\Psi}_{ij}^{c,\alpha}} = (\psi_i \chi^{c,\alpha} \psi_j) \\ & \mathcal{L}^{\text{mix}} = -\frac{1}{2} \left\{ \lambda_1 M_* \left(\frac{M_*}{\Lambda} \right)^{d_{\Psi} - 5/2} \Psi_1^T \tilde{C} t^c + \lambda_2 M_* \left(\frac{M_*}{\Lambda} \right)^{d_{\Psi} c - 5/2} t^T \tilde{C} \Psi_2^c + \\ & + \lambda M_* \left[\Psi_1^T \tilde{C} \Psi_1^c + \Psi_2^T \tilde{C} \Psi_2^c \right] + y v_W \left[\Psi_1^T \tilde{C} \Psi_2^c + \Psi_2^T \tilde{C} \Psi_1^c \right] \right\} + \text{h.c.} \\ & \mathbf{m}_t^2 \simeq \frac{\lambda_1^2 \lambda_2^2 y^2 \left(\frac{M_*}{\Lambda} \right)^{2d_{\Psi} + 2d_{\Psi} c - 10} v_W^2 M_*^4}{m_1^2 m_2^2} \quad \mathbf{where} \quad \\ & \mathbf{m}_2^2 \simeq \left(\lambda^2 + \lambda_1^2 \left(\frac{M_*}{\Lambda} \right)^{2d_{\Psi} c - 5} \right) M_*^2, \end{split}$$

★ Prefer $d_{\Psi} = d_{\Psi^c} \lesssim 5/2$, ie, large anomalous dimension → $\lambda_{1,2}$ estimated to be small in ~M6 [TACO collab., PRD99 (2019)] → IR conformality with more fermion flavours?

Spectrum results

Sp(4) gauge, two fundamental Dirac fermions in the action J.-W. Lee *et al.*, arXiv:1811.00276 [hep-lat] (LATTICE 2018)

★Typically higher scale for antisymmetric repn

Spectrum results

SU(4) gauge, two fundamental and two sextet Dirac fermions in the action

What would be interesting for future work?

The Higgs potential

The gauge contribution near the origin Analogous to the $M_{\pi^+} - M_{\pi^0}$ difference in QCD+QED Computed in M6 and obtained the expected positive contribution TACO collab., PRD99 (2019)

★ The top-quark contribution near the origin

G. Cacciapaglia et al., Golterman and Shamir, recent years

- It can be negative
- Crucial for breaking electroweak symmetry

Where to search for large anomalous dimension

D.B. Franzosi and G. Ferretti, arXiv:1905.08273 [hep-ph]

To facilitate partial compositeness

Summary and outlook

★ Looking for BSM physics is inevitable

- **★** Lattice BSM programmes are part of the effort
 - Deliver useful information for phenomenologists
 - Study interesting topics in strongly-coupled field theory
- ***** Recent lattice works on other scenarios
 - S. Capitani et al., arXiv: 1901.09872 [hep-th]
 - V.Afferrante, A. Maas, P.Torek, arXiv: 1906.11193 [hep-lat]

Thank you, Xu! Also thanks to the organisers and all the participants