Physics beyond the Standard Model and lattice calculations:

Higgs physics, the origin of mass and lattice field theory

Lecture III

10/07/2019 ~ 12/07/2019
Peking University, Beijing
C.-J. David Lin
National Chiao-Tung University, Hsinchu

Spectrum and dilaton EFT Including the light scalar in the EFT

Including the dilaton in the EFT

太 Basic ideas of "conformal compensator" explained in S. Coleman, "Aspects of Symmetry"
\star Various similar methods formulated over time
\Rightarrow Incomplete list of works include

```
Migdal and Shifman, PLB II4 (I982)
    \vdots
W. Goldberger, B. Grinstein,W. Skiba, PRL IO0 (2008)
S. Matsuzaki and K.Yamawaki, PRL II3 (2014)
M. Golterman and Y. Shamir, PRD }94\mathrm{ (2016)
T.Appelquist, J. Ingoldby and M. Piai, JHEP I707 (20I7), JHEP I803 (20I8)
```

* I will follow the approach of Appelquist, Ingoldby and Piai

Including the dilaton in the EFT

General strategy

\star Under the scale transformation $x^{\mu} \rightarrow e^{\alpha} x^{\mu}$
\Rightarrow Operator with mass dimension $d_{i}: \mathcal{O}_{i}(x) \rightarrow e^{\alpha d_{i}} \mathcal{O}_{i}\left(e^{\alpha} x\right)$
\Rightarrow Scalar field $\chi(x)$ in 4-d: $\chi(x) \rightarrow e^{\alpha} \chi\left(e^{\alpha} x\right)$
\star Non-linear parameterisation: $\chi(x)=f_{d} e^{\sigma(x) / f_{d}}$
$\Rightarrow f_{d}$ is a low-energy constant
$\Rightarrow f_{d}$ is the value of $\chi(x)$ at the minimum of the potential $V(\chi)$
\Rightarrow Can expand around the minimum
$\star \mathcal{L}_{\chi}=\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi$ is scale-invariant
\Rightarrow The potential, $V(\chi)$, incorporates effects of scale-invariance breaking
Conformal compensator for $\mathcal{L}=\sum g_{i}(\mu) \mathcal{O}_{i}(x)$
$\Rightarrow g_{i}(\mu) \rightarrow g_{i}\left(\mu \chi / f_{d}\right)\left(\chi / f_{d}\right)^{4-d_{i}}$ works in the same way as spurions

Including the dilaton in the EFT

Dilaton chiral perturbation theory

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi+\mathcal{L}_{\pi}-\mathcal{L}_{M}-V(\chi)+\ldots
$$

$\star \mathcal{L}_{\pi}=\frac{f_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{2} \operatorname{Tr}\left[\partial_{\mu} \Sigma\left(\partial^{\mu} \Sigma\right)^{\dagger}\right], \Sigma=\exp \left[2 i \pi / f_{\pi}\right], \pi=\sum_{a} \pi^{a} T^{a}$
$\star \mathcal{L}_{M}=\frac{m_{\pi}^{2} f_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{y} \operatorname{Tr}\left[\Sigma+\Sigma^{\dagger}\right], m_{\pi}^{2}=2 m B_{\pi}, \quad B_{\pi}=\langle\bar{\psi} \psi\rangle / 2 f_{\pi}^{2}$
$\rightarrow y$ is the scaling dimension of $\langle\bar{\psi} \psi\rangle$
$\star V(\chi)$: effects of breaking scale invariance

$$
\rightarrow \text { e.g., } V_{1}=\frac{m_{d}^{2}}{2 f_{d}^{2}}\left(\frac{\chi^{2}}{2}-\frac{f_{d}^{2}}{2}\right)(S M), V_{2}=\frac{m_{d}^{2}}{16 f_{d}^{2}} \chi^{4}\left(4 \ln \frac{\chi}{f_{d}}-1\right)
$$

\star Study the dependence on $m_{\pi}^{2}=2 m B_{\pi}$ in physical quantities
\rightarrow in terms of 4 parameters: $f_{\pi}, f_{d}, m_{d}^{2}, y$

Use of the dilaton ChPT

T. Appelquist, J. Ingoldby and M. Piai, JHEP I707 (2017), JHEP I803 (2018)
\star Expand the nonlinear pion field
$\Rightarrow \mathcal{L}_{M}=\frac{N_{f} m_{\pi}^{2} f_{\pi}^{2}}{2}\left(\frac{\chi}{f_{d}}\right)^{y}-\frac{m_{\pi}^{2}}{2}\left(\frac{\chi}{f_{d}}\right)^{y} \pi^{a} \pi^{a}+\ldots$
\star This modifies the dilaton potential
$\Rightarrow W(\chi)=V(\chi)-\frac{N_{f} m_{\pi}^{2} f_{\pi}^{2}}{2}\left(\frac{\chi}{f_{d}}\right)^{y}$

* Denote the value of χ at to minimum of $W(\chi)$ as F_{d}
\Rightarrow Need details of $V(\chi)$ to determine F_{d} in the EFT
\Rightarrow But it can also be related to the dilaton decay constant
\Rightarrow Computed from lattice to test EFT's.

Use of the dilaton ChPT

Information extracted without details of the dilaton potential

T. Appelquist, J. Ingoldby and M. Piai, JHEP I707 (2017), JHEP I803 (2018)

\star Expand around the minimum of $W(\chi): \chi=F_{d}+\bar{\chi}$
$\Rightarrow \mathcal{L}_{\pi}=\frac{f_{\pi}^{2}}{4}\left(\frac{\bar{\chi}^{2}+2 \bar{\chi} F_{d}+F_{d}^{2}}{f_{d}^{2}}\right) \operatorname{Tr}\left[\partial_{\mu} \Sigma\left(\partial^{\mu} \Sigma\right)^{\dagger}\right]=\frac{f_{\pi}^{2}}{4}\left(\frac{F_{d}^{2}}{f_{d}^{2}}\right) \operatorname{Tr}\left[\partial_{\mu} \Sigma\left(\partial^{\mu} \Sigma\right)^{\dagger}\right]+\ldots$
\Rightarrow Compare with $\mathcal{L}_{\pi}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left[\partial_{\mu} \Sigma\left(\partial^{\mu} \Sigma\right)^{\dagger}\right]+\ldots$
$\Rightarrow \frac{F_{\pi}^{2}}{f_{\pi}^{2}}=\frac{F_{d}^{2}}{f_{d}^{2}}$
\star Can do the same to \mathcal{L}_{M}
$\Rightarrow \frac{M_{\pi}^{2}}{m_{\pi}^{2}}=\left(\frac{F_{d}^{2}}{f_{d}^{2}}\right)^{y / 2-1}$
$\star(\mathrm{I})$ and (2) gives $M_{\pi}^{2}\left(F_{\pi}^{2}\right)^{(1-y / 2)}=C m, C=2 B_{\pi}\left(f_{\pi}^{2}\right)^{(1-y / 2)}$
\Rightarrow No reference to details of $V(\chi)$, can be used to determine y

Use of the dilaton ChPT

Extracting more information

T. Appelquist, J. Ingoldby and M. Piai, JHEP I803 (2018)
\star Use (I), (2) and the following
$\Rightarrow\left(\frac{\partial W}{\partial \chi}\right)_{\chi=F_{d}}=0,\left(\frac{\partial^{2} W}{\partial \chi^{2}}\right)_{\chi=F_{d}}=M_{d}^{2} \quad$ (dilaton mass)
\Rightarrow Phenomenological assumption: $V(\chi) \propto \chi^{p}$
Can easily derive
$\Rightarrow M_{\pi}^{2}=B F_{\pi}^{p-2}$
$\left.\Rightarrow M_{d}^{2}=\frac{y N_{f} f_{\pi}^{2}}{2 f_{d}^{2}}(p-y) B F_{\pi}^{p-2}\right\}$ same B
Can further fit p and $f_{\pi}^{2} / f_{d}^{2}=F_{\pi}^{2} / F_{d}^{2}$

Data used in the AIP analysis

$\mathrm{SU}(3)$ gauge theory with 8 fund fermions, LSD collaboration, 2016

SU(3) gauge theory with 2 sextet fermions, LHC collaboration, 2012~2016

Figure from T.Appelquist, J. Ingoldby and M. Piai, JHEP I803 (2018)

Use of the dilaton ChPT

T.Appelquist, J. Ingoldby and M. Piai, JHEP I803 (2018)
$\star \mathrm{SU}(3)$ with 8 fundamental fermions

$$
\begin{aligned}
y & =2.1 \pm 0.1 \\
p & =4.3 \pm 0.2 \\
\frac{f_{\pi}^{2}}{f_{d}^{2}} & =0.08 \pm 0.04
\end{aligned}
$$

$\star \mathrm{SU}(3)$ with 2 sextet fermions

$$
\begin{aligned}
y & =1.9 \pm 0.1 \\
p & =4.4 \pm 0.3 \\
\frac{f_{\pi}^{2}}{f_{d}^{2}} & =0.09 \pm 0.06
\end{aligned}
$$

$\star F_{d} \sim 3 F_{\pi}:$ prediction, can be tested with future lattice result

Searching for relevant interaction:

Composite Higgs and partial compositeness

Basic idea àla CCWZ, naturally light Higgs

D.B. Kaplan, H. Georgi, M. Dugan, S. Dimopoulos, ... circa I985

\star Global symmetry G / H, Higgs doublet \in Goldsone
\star SM $S U(2)_{L} \times S U(2)_{R} \subset H$
EW symm breaking induced by additional interactions
\Rightarrow Vacuum misalignment
$\Rightarrow v \ll f \sin \langle\theta\rangle, f=|\vec{F}| \sim \Lambda_{H C}$
太Fermion masses generated via partial compositeness

\Rightarrow Spin-I/2 bound states mixing with the top
D.B. Kaplan, I99 I

Main difference between TC and CH

Global symmetry breaking $\mathrm{G} \rightarrow \mathrm{H}$
\star Technicolour: Higgs $\in \mathrm{H}$
\Rightarrow Challenge: Have a light Higgs state
\star Technicolour: Higgs $\in \mathrm{G} / \mathrm{H}$
\Rightarrow Challenge: Obtain the correct Higgs mass

Hierarchy of scales in composite Higgs models

An analogy: QCD plus weak interaction

\star The relevant operator in the UV completion above $\Lambda_{H C}$
\Rightarrow Details of the misalignment is model-dependent

UV completion and lattice calculation

Name	Gauge group	ψ	χ	Baryon type
M1	$S O(7)$	$5 \times \mathbf{F}$	$6 \times \mathbf{S p i n}$	$\psi \chi \chi$
M2	$S O(9)$	$5 \times \mathbf{F}$	$6 \times$ Spin	$\psi \chi \chi$
M3	$S O(7)$	$5 \times$ Spin	$6 \times \mathbf{F}$	$\psi \psi \chi$
M4	$S O(9)$	$5 \times$ Spin	$6 \times \mathbf{F}$	$\psi \psi \chi$
M5	$S p(4)$	$5 \times \mathbf{A}_{2}$	$6 \times \mathbf{F}$	$\psi \chi \chi$
M6	$S U(4)$	$5 \times \mathbf{A}_{2}$	$3 \times(\mathbf{F}, \overline{\mathbf{F}})$	$\psi \chi \chi$
M7	$S O(10)$	$5 \times \mathbf{F}$	$3 \times(\mathbf{S p i n}, \overline{\mathbf{S p i n}})$	$\psi \chi \chi$
M8	$S p(4)$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_{2}$	$\psi \psi \chi$
M9	$S O(11)$	$4 \times \mathbf{S p i n}$	$6 \times \mathbf{F}$	$\psi \psi \chi$
M10	$S O(10)$	$4 \times(\mathbf{S p i n}, \overline{\mathbf{S p i n}})$	$6 \times \mathbf{F}$	$\psi \psi \chi$
M11	$S U(4)$	$4 \times(\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_{2}$	$\psi \psi \chi$
M12	$S U(5)$	$4 \times(\mathbf{F}, \overline{\mathbf{F}})$	$3 \times\left(\mathbf{A}_{2}, \overline{\mathbf{A}_{2}}\right)$	$\psi \psi \chi, \psi \chi \chi$

Table from D. Franzosi and G. Ferretti, arXiv: I 905.08273 [hep-ph]
\star Before starting lattice simulations
\Rightarrow Choose a model wisely before you'll spend years on the simulation

Gauge group repn and global coset

* Real :

$$
\left(T^{a}\right)^{*}=\left(T^{a}\right)^{\mathrm{T}}=-S^{-1} T^{a} S, \quad S S^{*}=1 .
$$

Pseudoreal : $\left(T^{a}\right)^{*}=\left(T^{a}\right)^{\mathrm{T}}=-S^{-1} T^{a} S, \quad S S^{*}=-1$.

$$
\Psi=\binom{\Psi_{L}}{\Psi_{R}} \equiv\binom{\psi_{\alpha}}{\bar{\chi}^{\dot{\beta}}}=\binom{\psi_{\alpha}}{\left(\chi^{\beta}\right)^{*}}, \quad \bar{\Psi} \Psi=\epsilon^{\alpha \beta} \chi_{\beta}^{i a} \psi_{\alpha i a}+\text { h.c. }
$$

gauge repn
condensate

$$
\epsilon^{\alpha \beta} \psi_{\beta}^{i(\bar{r})} \psi_{\alpha i}^{(r)}+\text { h.c. } \quad S U\left(N_{f}\right) \times S U\left(N_{f}\right) \rightarrow S U\left(N_{f}\right)
$$

Real

$$
\epsilon^{\alpha \beta} \psi_{\beta}^{i a} \psi_{\alpha i}^{b} S_{a b}^{-1}
$$

$$
S U\left(2 N_{f}\right) \rightarrow S O\left(2 N_{f}\right)
$$

Pseudoreal

$$
\epsilon^{\alpha \beta} \psi_{\beta}^{i a} \psi_{\alpha}^{j b} S_{a b}^{-1} E_{i j}
$$

$$
S U\left(2 N_{f}\right) \rightarrow S p\left(2 N_{f}\right)
$$

On-going lattice projects

\star Colorado - Tel Aviv (TACO) collaboration
V.Ayyar, T. Degrand, D.C. Hacket, W.I. Jay, E. Neil, Y. Shamir, B. Svetiteky
$\Rightarrow G_{H C}=S U(4), G / H=\left\{S U(4) \times\left[S U(2)_{L} \times S U(2)_{R}\right]\right\} /\left\{S O(4) \times S U(2)_{V}\right\}$
\star CP3-Origin - Plymouth collaboration
V. Drach, M. Hansen, T. Janowski, C. Pica, J. Rantaharju, F. Sannino,
$\Rightarrow G_{H C}=S U(2), G / H=S U(4) / S p(4)$
\star Hsinchu - Pusan - Swansea collaboration
E. Bennet, D.K. Hong, J.-W. Lee, C.J.D.L., B. Lucini, M. Piai, D.Vadacchino
$\Rightarrow G_{H C}=S p(4), G / H=\{S U(4) \times S U(6)\} /\{S p(4) \times S O(6)\}$
\star Edinburgh - Torino collaboration
G. Cossu, L. Del Debbio, M. Panero, D. Preti
$\Rightarrow G_{H C}=S U(4), G / H=\left\{S U(4) \times\left[S U(2)_{L} \times S U(2)_{R}\right]\right\} /\left\{S O(4) \times S U(2)_{V}\right\}$

Composite Higgs with $\mathrm{Sp}(4)$ gauge group

J. Barnard, T. Gherghetta, T.S. Ray, 2014

Field	$S p(4)$ gauge	$S U(4)$ global
A_{μ}	10	1
ψ	4	4

* Two Dirac fermions in the fundamental repn pseudoreal

The Higss doublet in the coset $S U(4) / S p(4)$

The $\operatorname{SM} S U(2)_{L} \times S U(2)_{R}$ in the unbroken global $S p(4)$

Idea and implementation of partial compositeness

D.B. Kaplan, I99I; J. Barnard, T. Gherghetta and T.S. Ray, 2014

Field	$S p(4)$ gauge	$S U(4)$ global	$S U(6)$ global
A_{μ}	10	1	1
ψ	4	4	1
χ	5	1	6

\star Two Dirac fermions in the fundamental repn pseudoreal
\star Three Dirac fermions in the antisymmetric repn real
$\star S U(6) \rightarrow S O(6) \supset S U(3)$
Gauge the $S U(3)$ to be the QCD colour group

The top partner and the top mass

$$
\begin{aligned}
& \hat{\Psi}_{i j}^{\alpha} \xrightarrow[=\left(\psi_{i} \chi^{\alpha} \psi_{j}\right), \hat{\Psi}_{i j}^{c, \alpha}]{\text { QCD colour }}=\left(\psi_{i} \chi^{c, \alpha} \psi_{j}\right) \\
& \text { global SU(4) indices }
\end{aligned}
$$

* Neutral under gauge-Sp(4) colour
\star Carry QCD colour and mix with the top
\star Operators emerge at the flavour scale
\rightarrow Global SU(4) instead of Sp(4)
\star Called the chimera baryon by the TACO collab.

Chimera

Pictures from Ben Svetitsky, LATTICE 2019

The top partner and the top mass

$$
\hat{\Psi}_{i j}^{\alpha}=\left(\psi_{i} \chi^{\alpha} \psi_{j}\right), \hat{\Psi}_{i j}^{c, \alpha}=\left(\psi_{i} \chi^{c, \alpha} \psi_{j}\right)
$$

$$
\begin{aligned}
\mathcal{L}^{\mathrm{mix}}= & -\frac{1}{2}\left\{\lambda_{1} M_{*}\left(\frac{M_{*}}{\Lambda}\right)^{d_{\Psi}-5 / 2} \Psi_{1}^{T} \tilde{C} t^{c}+\lambda_{2} M_{*}\left(\frac{M_{*}}{\Lambda}\right)^{d_{\Psi c} c-5 / 2} t^{T} \tilde{C} \Psi_{2}^{c}+\right. \\
& \left.+\lambda M_{*}\left[\Psi_{1}^{T} \tilde{C} \Psi_{1}^{c}+\Psi_{2}^{T} \tilde{C} \Psi_{2}^{c}\right]+y v_{W}\left[\Psi_{1}^{T} \tilde{C} \Psi_{2}^{c}+\Psi_{2}^{T} \tilde{C} \Psi_{1}^{c}\right]\right\}+ \text { h.c. }
\end{aligned}
$$

$$
m_{t}^{2} \simeq \frac{\lambda_{1}^{2} \lambda_{2}^{2} y^{2}\left(\frac{M_{*}}{\Lambda}\right)^{2 d_{\Psi}+2 d_{\Psi}^{c}-10} v_{W}^{2} M_{*}^{4}}{m m_{1}^{2} m_{2}^{2}} \quad w^{2} \quad m_{1}^{2} \simeq\left(\lambda^{2}+\lambda_{1}^{2}\left(\frac{M_{*}}{\Lambda}\right)^{2 d_{\Psi}-5} M_{*}^{2}\right.
$$

\star Prefer $d_{\Psi}=d_{\Psi^{c}} \lesssim 5 / 2$, ie, large anomalous dimension
$\Rightarrow \lambda_{1,2}$ estimated to be small in \sim M6 [TACO collab., PRD99 (2019)]
\Rightarrow IR conformality with more fermion flavours?

Spectrum results

$\mathrm{Sp}(4)$ gauge, two fundamental Dirac fermions in the action J.-W. Lee et al., arXiv:I8I I 00276 [hep-lat] (LATTICE 2018)

* Typically higher scale for antisymmetric repn

Spectrum results

SU(4) gauge, two fundamental and two sextet Dirac fermions in the action

——Sextet J=0

- Fundamental $\mathrm{J}=0$
——Chimera $(J, I)=(1 / 2,0)$
- Fundamental Pseudoscalar
- Fundamental Vector
- Sextet Vector

TACO collab., PRD97 (2018)

What would be interesting for future work?

The Higgs potential

\star The gauge contribution near the origin
\Rightarrow Analogous to the $M_{\pi^{+}}-M_{\pi^{0}}$ difference in QCD+QED
\Rightarrow Computed in M6 and obtained the expected positive contribution TACO collab., PRD99 (2019)

The top-quark contribution near the origin
G. Cacciapaglia et al., Golterman and Shamir, recent years
\Rightarrow It can be negative
\Rightarrow Crucial for breaking electroweak symmetry

Where to search for large anomalous dimension

D.B. Franzosi and G. Ferretti, arXiv: I 905.08273 [hep-ph]

\star To facilitate partial compositeness

Summary and outlook

\star Looking for BSM physics is inevitable
\star Lattice BSM programmes are part of the effort
\Rightarrow Deliver useful information for phenomenologists
\Rightarrow Study interesting topics in strongly-coupled field theory
\star Recent lattice works on other scenarios
\Rightarrow S. Capitani et al., arXiv: 1901.09872 [hep-th]
\Rightarrow V.Afferrante,A. Maas, P.Torek, arXiv: I906.III93 [hep-lat]

Thank you, Xu!

Also thanks to the organisers and all the participants

