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 General strategy
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is scale-invariant 
The potential,       , incorporates effects of scale-invariance breaking

is the value of        at the minimum of the potential 
 Can expand around the minimum 
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: effects of breaking scale invariance 

is the scaling dimension of

Dilaton chiral perturbation theory
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physical states. In the limit m → 0, the pseudoscalar mass is expected to extrapolate to

zero while the scalar mass should extrapolate to a small but finite value. We here use the

term NGB’s to refer only to the pseudoscalars.

The relative lightness of the scalar and NGB’s in the lattice simulations suggests that

they be treated via an effective field theory (EFT) with only these degrees of freedom.

Several authors have begun this program [9–13] building on early investigations [14, 15].

In ref. [16], we noted that the lattice data for Nf = 8 Dirac fermions in the fundamental

representation [2–5] can be fit employing such an EFT at only the classical level. In this

paper, we extend our treatment of this EFT, exploring its features at both the classical and

quantum levels and extending the comparison with lattice data to include Nf = 2 Dirac

fermions in the 2-index symmetric (sextet) representation [6–8]. It is notable that a rather

simple EFT employed at the classical level accurately captures the essential features of a

large set of lattice data.

In section 2, we describe the ingredients of the EFT including the small explicit break-

ing of scale invariance through a weak dilaton potential, and discuss features of the EFT

at the classical level. In section 3, we compare the classical (tree-level) EFT to the lat-

tice data, determining certain parameters of the theory and constraining the shape of the

dilaton potential at large field strength. In section 4, we discuss corrections to the tree-

level EFT arising from the heavy states present in the lattice data and from quantum loop

corrections computed within the EFT. In section 5, we summarize our results, comment

briefly on possible phenomenological applications and discuss open problems.

2 Classical EFT

2.1 Ingredients

To describe the light states appearing in lattice simulations, we employ an EFT consisting of

the NGB’s along with a description of a light singlet scalar consistent with its interpretation

as a dilaton. The Lagrangian density takes the form

L =
1

2
∂µχ∂

µχ + Lπ + LM − V (χ) , (2.1)

where χ is the real, scalar dilaton field.

The term Lπ is given by

Lπ =
f2
π

4

(
χ

fd

)2

Tr
[
∂µΣ(∂

µΣ)†
]
, (2.2)

where the Σ field describes the NGB’s arising from the spontaneous breaking of chiral

symmetry. It transforms as Σ → ULΣU
†
R, with UL and UR the matrices of SU(Nf )L

and SU(Nf )R transformations, and satisfies the nonlinear constraint ΣΣ† = I. It can be

written as Σ = exp [2iπ/fπ] where π =
∑

a π
aT a. The dilaton field acts here as a conformal

compensator. The parameter fπ is the NGB decay constant describing the spontaneous

breaking of chiral symmetry and fd is the vacuum value of the dilaton field describing the

spontaneous breaking of dilatation symmetry. These are independent parameters, since in
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the underlying theory there can be condensates that break scale symmetry but not chiral

symmetry. Still, we expect them to be similar in magnitude, set by the confinement scale

of the underlying gauge theory.

For lattice-simulation purposes, chiral symmetry must be broken explicitly by the

introduction of a fermion mass term of the form mψ̄ψ, with subsequent extrapolation to

m = 0. The effect of this mass can be captured by supplementing the EFT with the term

LM =
m2

πf
2
π

4

(
χ

fd

)y

Tr
[
Σ+ Σ†

]
, (2.3)

where m2
π = 2mBπ, and Bπ is a constant. The form of LM is such that it breaks scale

and chiral symmetries in the same way as the fermion-bilinear mass term in the underlying

gauge theory [15], with y taken to be the scaling dimension of ψ̄ψ. This is an RG-scale

dependent quantity; in the present context it should be taken to be defined at scales above

the confinement scale, where the gauge coupling varies slowly. It has been suggested that

y ≈ 2 at this scale [17, 18]. We take y to be a constant, but keep it as a free parameter to

be fit to the lattice data.

Finally, a dilaton potential V (χ) describes the explicit breaking of conformal symmetry

even in the limit m2
π → 0. It has a minimum at some value fd > 0, and we anticipate it to

be shallow satisfying m2
d ≪ (4πfd)2. Several proposed forms of the dilaton potential have

appeared in the literature, for example [9, 10, 19]. However we do not adopt an explicit

form, instead observing that some predictions of the EFT are form independent. We allow

the lattice data to determine certain features of the potential.

2.2 Scaling features

The term LM generates a mass for the NGB’s and contains a new scalar self-interaction.

The full dilaton potential becomes

W (χ) = V (χ)−
Nfm2

πf
2
π

2

(
χ

fd

)y

. (2.4)

This potential is minimized at some field strength χ = Fd (≥ fd), depending on the mag-

nitude of the chiral-symmetry breaking term, which is not restricted to being a small

contribution to W (χ). Fd is finite under the assumption that V (χ) increases more rapidly

than χy at large χ.

For any non-zero m2
π, it is convenient to express the EFT in terms of y and a set

of quantities Fd, M2
d , Fπ, and M2

π , which extrapolate to their corresponding lower-case

parameters in the m2
π → 0 limit. The mass M2

d is determined by the curvature of the full

potential at its minimum. The other two quantities, Fπ and M2
π , are identified from Lπ

and LM by taking χ = Fd and properly normalizing the NGB kinetic term. They are given

in general by simple scaling formulae [9, 10, 16]:

F 2
π

f2
π

=
F 2
d

f2
d

, (2.5)

M2
π

m2
π

=

(
F 2
d

f2
d

)y/2−1

. (2.6)
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The NGB’s arising from the spontaneous breaking of chiral symmetry are described

in terms of a field Σ transforming as Σ → ULΣU
†
R, with UL and UR the matrices of

SU(Nf )L and SU(Nf )R transformations. (This approach can be adapted to other symmetry

groups and breaking patterns). The Σ field satisfies the nonlinear constraint ΣΣ† = I. We

hence write:

Lπ =
f2
π

4

(
χ

fd

)2

Tr
[
∂µΣ(∂

µΣ)†
]
, (2.4)

where the coupling to the dilaton field (introduced here as a compensator field to maintain

the scale invariance of this term in the Lagrangian) is dictated by the fact that the Σ

kinetic term has scaling dimension d = 2. The Σ field can be parametrized through

Σ = exp [2iπ/fπ] where π =
∑

a π
aT a and T a are the N2

f − 1 generators of SU(Nf )

normalized as Tr [T aT b] = 1
2δ

ab. In contrast with the linear-sigma-model description of

chiral symmetry breaking, more generally fd and fπ are independent, as the underlying

strong dynamics may involve condensates besides the chiral-symmetry-breaking one.

In lattice calculations of particle masses and decay constants in the underlying gauge

theory, chiral symmetry (as well as conformal symmetry) must be explicitly broken by

the introduction of a small fermion mass term of the form mψ̄ψ. The explicit breaking is

implemented in the EFT through the term

LM =
m2

πf
2
π

4

(
χ

fd

)y

Tr
[
Σ+ Σ†

]
, (2.5)

where m2
π = 2mBπ, with Bπ determined by the chiral condensate of the underlying theory

(Bπ = ⟨ψ̄ψ⟩/2f2
π). The product mBπ is RG-scale independent, with each factor typically

defined at the UV cutoff (the lattice spacing). The parameter y has been argued to be

the scaling dimension of ψ̄ψ in the underlying theory [24]. This scaling dimension is an

RG-scale dependent quantity, which could vary from 3 at UV scales where the theory

is perturbative to smaller values near the confinement scale. Analyses of near-conformal

theories have suggested a scaling dimension ≈ 2 at this scale [26]. We keep y as a free

parameter to be fitted to the lattice data.

Expanding LM around πa = 0 gives

LM =
Nfm2

πf
2
π

2

(
χ

fd

)y

− m2
π

2

(
χ

fd

)y

πaπa + · · · , (2.6)

generating a negative contribution to the scalar potential as well as an NGB mass term.

The new contribution to the scalar potential shifts both the VEV and the mass of the

scalar field χ. The shifted VEV will, through eq. (2.4), re-scale the NGB kinetic term, and

hence the NGB decay constant.

3 Comparison to lattice data

3.1 General discussion

Lattice simulations are currently carried out for SU(Nc) gauge theories with fairly small

Nc (= 2, 3). For these cases, Nf cannot be too large if the theory is to be in the confining
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groups and breaking patterns). The Σ field satisfies the nonlinear constraint ΣΣ† = I. We

hence write:

Lπ =
f2
π

4

(
χ

fd

)2

Tr
[
∂µΣ(∂

µΣ)†
]
, (2.4)

where the coupling to the dilaton field (introduced here as a compensator field to maintain

the scale invariance of this term in the Lagrangian) is dictated by the fact that the Σ

kinetic term has scaling dimension d = 2. The Σ field can be parametrized through

Σ = exp [2iπ/fπ] where π =
∑

a π
aT a and T a are the N2

f − 1 generators of SU(Nf )

normalized as Tr [T aT b] = 1
2δ

ab. In contrast with the linear-sigma-model description of

chiral symmetry breaking, more generally fd and fπ are independent, as the underlying

strong dynamics may involve condensates besides the chiral-symmetry-breaking one.

In lattice calculations of particle masses and decay constants in the underlying gauge

theory, chiral symmetry (as well as conformal symmetry) must be explicitly broken by

the introduction of a small fermion mass term of the form mψ̄ψ. The explicit breaking is

implemented in the EFT through the term

LM =
m2

πf
2
π

4

(
χ

fd

)y

Tr
[
Σ+ Σ†

]
, (2.5)

where m2
π = 2mBπ, with Bπ determined by the chiral condensate of the underlying theory

(Bπ = ⟨ψ̄ψ⟩/2f2
π). The product mBπ is RG-scale independent, with each factor typically

defined at the UV cutoff (the lattice spacing). The parameter y has been argued to be

the scaling dimension of ψ̄ψ in the underlying theory [24]. This scaling dimension is an

RG-scale dependent quantity, which could vary from 3 at UV scales where the theory

is perturbative to smaller values near the confinement scale. Analyses of near-conformal

theories have suggested a scaling dimension ≈ 2 at this scale [26]. We keep y as a free

parameter to be fitted to the lattice data.

Expanding LM around πa = 0 gives

LM =
Nfm2

πf
2
π

2

(
χ

fd

)y

− m2
π

2

(
χ

fd

)y

πaπa + · · · , (2.6)

generating a negative contribution to the scalar potential as well as an NGB mass term.

The new contribution to the scalar potential shifts both the VEV and the mass of the

scalar field χ. The shifted VEV will, through eq. (2.4), re-scale the NGB kinetic term, and

hence the NGB decay constant.

3 Comparison to lattice data

3.1 General discussion

Lattice simulations are currently carried out for SU(Nc) gauge theories with fairly small

Nc (= 2, 3). For these cases, Nf cannot be too large if the theory is to be in the confining

– 3 –
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Computed from lattice to test EFT’s.
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d/(4πFd)2. These can remain small when each of the capitalized scales

increases as m2
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d is increased. The upper limit on the range of validity of the EFT,

determined by 4πFπ and 4πFd, increases commensurately.

The four capitalized quantities are directly related at tree level to physical processes

involving the NGB’s and the scalar. Three of them are measured by lattice studies of the

underlying, microscopic gauge theory. The masses Mπ and Md can be found by measuring

the exponential fall of appropriate correlation functions, and Fπ can be extracted from

simulations of the axial-vector current correlator. It is defined using the same conventions

as in [15]. The extraction of Fd from a lattice measurement of a correlation function in the

underlying gauge theory has not yet been reported. The connection between correlation

functions in the gauge theory and the Fd of our EFT requires further renormalization

analysis. While Fd enters our framework as the VEV of the scalar field, we do not require

its numerical value in our fit to the LSD data.

The comparison to lattice data will focus first on the quantities F 2
π and M2

π , which are

currently known most precisely. For this purpose, it is helpful to note that the two scaling

relations, eqs. (3.4) and (3.5) give

M2
π

(
F 2
π

)(1−y/2)
= Cm , (3.6)

where C = 2Bπ(f2
π)

(1−y/2). Fitting lattice data to eq. (3.6) can allow an accurate determi-

nation of y.

Another key question is to what extent the form of the scalar potential V (χ) can be

determined by a fit to lattice data. With the small amount of data available so far, only

limited progress can be made on this “inverse-scattering” problem. We will find it helpful,

even with the current data, to consider the slope of the scalar potential V (χ) at the value
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Since Fπ ∝ Fd, a plot of the data for M2
πFπ versus Fπ provides a measure of the slope of

V (χ) at χ = Fd versus Fd itself. This slope vanishes in the chiral limit m = 0, corresponding

to Fπ = fπ, since then Fd = fd (the minimal point of V (χ) itself). As Fπ(∝ Fd) is increased,

the slope of V (Fd) increases through positive values. We use eq. (3.7) to analyze data from

the LSD collaboration in the next sub-section.

This procedure can be taken to the next stage by bringing the lattice data on M2
d

into the analysis. From eqs. (3.4), (3.5) and (3.7), together with the definition M2
d ≡
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Thus data for M2
d could be used in the analysis alongside the M2

π and F 2
π data, to allow

a fit that can better constrain both the scalar potential, and the other free parameters of

the Lagrangian.
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Figure 1. Lattice data from the LSD collaboration for the SU(3) theory with Nf = 8 funda-
mentals [2]. Red circles represent the pseudoscalar data and their uncertainties are discussed in
section 3.2.1. Pink diamonds represent the scalar data with uncertainties discussed in section 3.3.
The lattice spacing is denoted by a.
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Figure 2. Lattice data extracted from plots in Refs. [5–7] for the SU(3) theory with Nf = 2
sextets. Red circles represent the pseudoscalar data and pink diamonds represent the scalar. The
lattice spacing is denoted by a. The errors are discussed in section 3.2.2.

Eq. (3.1) in a 2-parameter fit. We then make use of Eq. (3.2) to constrain the form of

V (χ) for large χ. This form, together with the scaling relation Eq. (2.5), determines the

relation between F 2
π and M2

π . The near linearity of both NGB data sets in Fig. 1 and Fig. 2

implies that they are (approximately) linearly related to each other. Using Eq. (3.2), it can

therefore be seen that for large χ, V (χ) behaves approximately like χ4.

We have kept open the form of V (χ), noting only that various proposals have appeared

in the literature. The large-χ behavior in these proposals, which attempt to describe the

scalar as a dilaton, typically include the power behavior χ4. This form is modulated by

the factor log χ if the underlying conformal symmetry is broken by a marginal deformation

[17]. Here, we explore the constraint of the lattice data alone on the large-χ behavior of

V (χ), by employing the simple phenomenological ansatz V ∝ χp. This form, while not in

general theoretically based, is adequate to quantify the large-χ behavior of the potential,

in particular its closeness to χ4. We obtain

M2
π = BF

p−2

π , (3.4)

where B depends on the coefficient of χp in the potential. The potential will be well
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Figure 1. Lattice data from the LSD collaboration for the SU(3) theory with Nf = 8 funda-
mentals [2]. Red circles represent the pseudoscalar data and their uncertainties are discussed in
section 3.2.1. Pink diamonds represent the scalar data with uncertainties discussed in section 3.3.
The lattice spacing is denoted by a.
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SU(3) gauge theory with 8 fund fermions, LSD collaboration, 2016 

SU(3) gauge theory with 2 sextet fermions, LHC collaboration, 2012 ~ 2016 

Figure from T. Appelquist, J. Ingoldby and M. Piai, JHEP 1803 (2018) 



10

Use of the dilaton ChPT
 T. Appelquist, J. Ingoldby and M. Piai, JHEP 1803 (2018) 
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Searching for relevant interaction:
Composite Higgs and partial compositeness



Basic idea ala CCWZ, naturally light Higgs

2.1. VACUUM MISALIGNEMENT 19

F⃗ ⟨θ⟩

v
H

Figure 2.1: A geometrical illustration of EWSB through vacuum misalignment, in
the case of the spatial rotations group G = SO(3) with H = SO(2). The SO(2)
breaking from vacuum misalignment is proportional to the projection of ~F on the
SO(2) plane, v = f sinh✓i.

are exact NGB’s, therefore they have no potential and their VEV’s h✓âi are
completely arbitrary. Moreover the VEV’s are unobservable because any con-
stant ✓ configuration merely corresponds to one equivalent vacuum obtained
by acting on

#„
F with the G transformation exp[�ih✓âi bT â]. Technically, we

will be able to get rid of any h✓âi by a suitable redefinition of the ✓ fields that
induces the transformation

#„
� ! exp[�ih✓âi bT â]

#„
�. In this way it is possible

to set, in full generality, h✓âi = 0. The concept that the composite Higgs
VEV is unobservable in the absence of explicit breaking of G is often useful
in the study of composite Higgs theories.

When we take G-breaking into account and ✓ becomes a pseudo NGB
(pNGB) the situation changes. First of all, ✓ develops a potential and its
VEV is not arbitrary anymore. Moreover, h✓i becomes observable as it can
not be set to zero by an exact symmetry transformation. Its physical e↵ect
is to break GEW, embedded in H , giving rise to EWSB. Geometrically, as
depicted in Fig. 2.1, h✓i measures the angle by which the vacuum is misaligned
with respect to the reference vector

#„
F , which we have chosen to be orthogonal

to the plane of H ◆ GEW. The convenience of this choice should now be clear:
the field ✓ defined by Eq. (2.1.3) behaves exactly like the SM Higgs field in the
sense that its non-vanishing VEV triggers EWSB. More precisely, we expect
all the EWSB e↵ects such as the SM particle masses to be controlled by the
projection of

#„
F on the GEW plane, i.e. we expect the EWSB scale to be set

by v = f sinh✓i where f = | #„F | is the scale of G ! H spontaneous breaking.
This expectation is confirmed by the examples that follow.

The actual value of h✓i depends on the details of the composite sector and
on those of the symmetry-breaking perturbations. It can be obtained, in each
given explicit model, by minimizing the pNGB potential. In the absence of
some special mechanism or of an ad-hoc cancellation, we generically expect

Figure in G. Panico and A. Wulzer, arXiv:1506.01961

D.B. Kaplan,  H. Georgi, M. Dugan, S. Dimopoulos,… circa 1985

D.B. Kaplan, 1991
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Challenge:  Obtain the correct Higgs mass
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UV completion and lattice calculation

Table from D. Franzosi and G. Ferretti, arXiv:1905.08273 [hep-ph] 

Before starting lattice simulations
Choose a model wisely before you’ll spend years on the simulation

15

3 Applications to Partial Compositeness

We are now in the position of applying the results of the previous section to models that are of

interest to partial compositeness. The candidate models of Partial Compositeness we are interested in

are summarized in Table 1. They were selected [6, 7] from a much longer list [5] as the most promising

ones after imposing a certain amount of criteria that we shall not review here.

Name Gauge group  � Baryon type

M1 SO(7) 5⇥ F 6⇥ Spin  ��

M2 SO(9) 5⇥ F 6⇥ Spin  ��

M3 SO(7) 5⇥ Spin 6⇥ F   �

M4 SO(9) 5⇥ Spin 6⇥ F   �

M5 Sp(4) 5⇥A2 6⇥ F  ��

M6 SU(4) 5⇥A2 3⇥ (F,F)  ��

M7 SO(10) 5⇥ F 3⇥ (Spin,Spin)  ��

M8 Sp(4) 4⇥ F 6⇥A2   �

M9 SO(11) 4⇥ Spin 6⇥ F   �

M10 SO(10) 4⇥ (Spin,Spin) 6⇥ F   �

M11 SU(4) 4⇥ (F,F) 6⇥A2   �

M12 SU(5) 4⇥ (F,F) 3⇥ (A2,A2)   �,  ��

Table 1: The gauge and matter content of the models of interest for Partial Compositeness. The

seemingly haphazard ordering is due to the fact that they were labeled following the cosets they give

rise to (not shown here). Spin denotes the spinorial representation of SO(N), A2 and F denote the

two-index anti-symmetric and fundamental representations. The “baryon” type denotes schematically

where the singlet is to be found (including also the possibility of using the charge conjugates). Note

that, because of ✏abcde, the last model admits baryons of both types.

By choosing X,Y, Z to be either  or � or, for complex irreps, their charge conjugates, one can

obtain the expressions for the respective �-functions to one-loop. In Table 2 we present the full list of

coe�cients A for the twelve models in Table 1, with the understanding that4

�(g) =
g2

16⇡2
A. (10)

4
Although this is unlikely to have caused any trouble, we feel compelled to mention that the preliminary results

presented by one of us (GF) at a few recent seminars used a di↵erent sign convention and incorrectly stated some of the

results for the (3/2, 0) case.

7



Gauge group repn and global cosetP.H. Damgaard et al. / Nuclear Physics B 633 (2002) 97–113 101

representation. It is real if there exists a unitary S so that

(5)
(

T a
)∗ =

(

T a
)T = −S−1T aS, SS∗ = 1.

For such a representation, U = exp[iωaT a] is equivalent to its complex conjugate (equal
after a similarity transformation). It is then possible to find a basis in which all T a are
purely imaginary (but of course still Hermitian). A pseudo-real representation is one for
which there exists a unitary S so that

(6)
(

T a
)∗ =

(

T a
)T = −S−1T aS, SS∗ = −1.

It is then no longer possible to find a basis in which all generators T a are purely imaginary.
The fundamental representation of SU(2) with its conventional Pauli matrices τ a/2 is
a good example. Since (5) implies S = ST, and (6) implies S = −ST, the one major
distinction between real and pseudo-real is whether S is symmetric or antisymmetric.
For a real representationwe thus find (V K)2 = −1 and the Dirac operator will belong to

the symplectic ensemble, β = 4, while for a pseudo-real representation (V K)2 = 1 and the
Dirac operator belongs to the orthogonal ensemble, β = 1. This is a little counter-intuitive,
compared to the symmetry breaking patterns. The reason is the behavior of the γ -matrices
in the Dirac operator under complex conjugation.
So far we have only been concerned with the symmetries of the (massless) Dirac

operator. In fact there is an intimate connection between the symmetries of the Dirac
operator and the pattern of spontaneous symmetry breaking. This may seem surprising,
since the conjectured symmetry breaking patterns are based on the symmetries of the
condensate ⟨$ΨΨ ⟩ rather than those of the Dirac operator. In order to elucidate the relation
between the two, let us first quickly recall how the appearance of the three different
patterns of spontaneous chiral symmetry breaking can be understood [1]. For this purpose
it is convenient to introduce the two-component van der Waerden notation of dotted and
undotted spinor indices, so familiar from, e.g., supersymmetry. We consider 4-component
massless Dirac spinors Ψ (x), and choose to work in a chiral basis of γ -matrices. Then
upper and lower parts of the 4-spinors simply correspond to the left-handed and right-
handed components:

(7)Ψ =
(

ΨL

ΨR

)

≡
(

ψα

χ̄ β̇

)

=
(

ψα
(

χβ
)∗

)

,

and the charge conjugate spinor is then given by

(8)Ψ C = C$Ψ T = −iγ 0γ 2$Ψ T =
(

χα

ψ̄β̇

)

.

In other words, instead of working with one 4-component Dirac spinor Ψ , we can equally
well work with two left-handed spinors from Ψ and its charge conjugate Ψ C ,

(9)ψα and χβ = ϵβγ χ
γ ,

where in the last equation we have made use of the fact that the two-component spinor
indices are raised and lowered by means of the antisymmetric ϵ-tensor. Consider now
a well-known example of spontaneous chiral symmetry breaking, that of a QCD-like
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where in the last equation we have made use of the fact that the two-component spinor
indices are raised and lowered by means of the antisymmetric ϵ-tensor. Consider now
a well-known example of spontaneous chiral symmetry breaking, that of a QCD-like

P.H. Damgaard et al. / Nuclear Physics B 633 (2002) 97–113 101

representation. It is real if there exists a unitary S so that

(5)
(

T a
)∗ =

(

T a
)T = −S−1T aS, SS∗ = 1.

For such a representation, U = exp[iωaT a] is equivalent to its complex conjugate (equal
after a similarity transformation). It is then possible to find a basis in which all T a are
purely imaginary (but of course still Hermitian). A pseudo-real representation is one for
which there exists a unitary S so that

(6)
(

T a
)∗ =

(

T a
)T = −S−1T aS, SS∗ = −1.

It is then no longer possible to find a basis in which all generators T a are purely imaginary.
The fundamental representation of SU(2) with its conventional Pauli matrices τ a/2 is
a good example. Since (5) implies S = ST, and (6) implies S = −ST, the one major
distinction between real and pseudo-real is whether S is symmetric or antisymmetric.
For a real representationwe thus find (V K)2 = −1 and the Dirac operator will belong to

the symplectic ensemble, β = 4, while for a pseudo-real representation (V K)2 = 1 and the
Dirac operator belongs to the orthogonal ensemble, β = 1. This is a little counter-intuitive,
compared to the symmetry breaking patterns. The reason is the behavior of the γ -matrices
in the Dirac operator under complex conjugation.
So far we have only been concerned with the symmetries of the (massless) Dirac

operator. In fact there is an intimate connection between the symmetries of the Dirac
operator and the pattern of spontaneous symmetry breaking. This may seem surprising,
since the conjectured symmetry breaking patterns are based on the symmetries of the
condensate ⟨$ΨΨ ⟩ rather than those of the Dirac operator. In order to elucidate the relation
between the two, let us first quickly recall how the appearance of the three different
patterns of spontaneous chiral symmetry breaking can be understood [1]. For this purpose
it is convenient to introduce the two-component van der Waerden notation of dotted and
undotted spinor indices, so familiar from, e.g., supersymmetry. We consider 4-component
massless Dirac spinors Ψ (x), and choose to work in a chiral basis of γ -matrices. Then
upper and lower parts of the 4-spinors simply correspond to the left-handed and right-
handed components:

(7)Ψ =
(

ΨL

ΨR

)

≡
(

ψα

χ̄ β̇

)

=
(

ψα
(

χβ
)∗

)

,

and the charge conjugate spinor is then given by

(8)Ψ C = C$Ψ T = −iγ 0γ 2$Ψ T =
(

χα

ψ̄β̇

)

.

In other words, instead of working with one 4-component Dirac spinor Ψ , we can equally
well work with two left-handed spinors from Ψ and its charge conjugate Ψ C ,

(9)ψα and χβ = ϵβγ χ
γ ,

where in the last equation we have made use of the fact that the two-component spinor
indices are raised and lowered by means of the antisymmetric ϵ-tensor. Consider now
a well-known example of spontaneous chiral symmetry breaking, that of a QCD-like

102 P.H. Damgaard et al. / Nuclear Physics B 633 (2002) 97–113

theory with Nf flavors of massless quarks transforming according to the fundamental
representation of gauge group G = SU(3). An order parameter is the well-known
condensate of !ΨΨ , which includes a summation of both color and flavor indices. Let us
make this explicit, and at the same time write the fermion bilinear in terms of the two-
component spinors:

(10)!ΨΨ = ϵαβχ ia
β ψαia + h.c.

Here α and β are the two-component spinor indices, while i and a denote flavor and color
indices, respectively. Now, ψαia transforms like a 3-representation under color while χβia

transforms like a 3̄ (see Eq. (7)). It is thus convenient to relabel the latter spinor as a
ψ-spinor with the color transformation property made explicit:

(11)!ΨΨ = ϵαβψ
i(3̄)
β ψ

(3)
αi + h.c.

Then it is immediately clear that the generalization to an arbitrary complex representation
r of gauge group G is

ϵαβψ
i(r̄ )
β ψ

(r)
αi + h.c.

Note how the left-handed and right-handed pieces trivially are invariant under the same
symmetries, since the right-handed part is just the Hermitian conjugate of the left-handed
part. The term above is in fact the G-invariant fermion bilinear of maximum vectorlike
flavor symmetry, and if it attains a non-vanishing expectation value it is thus consistent
with the Vafa–Witten theorem. The flavor symmetry remaining of the above expression is
only SU(Nf ), and the symmetry breaking pattern, if realized, thus corresponds to

(12)SU(Nf ) × SU(Nf ) → SU(Nf )

for all complex representations.
For real representations r of the gauge group G the representation r is equivalent to its

complex conjugate r̄ . The initial symmetry is then bigger, enlarged to SU(2Nf ) because
ψ and Sχ (with S symmetric, as discussed above) transform in the same way under color,
and thus can mix. The G-invariant fermion bilinear of maximal flavor symmetry is then

ϵαβψ ia
β ψ

b
αiS

−1
ab ,

where S is the symmetric matrix described above. Because of Fermi statistics this bilinear
can have non-vanishing expectation value. The continuous flavor symmetries remaining
are only those of orthogonal transformations, so the symmetry breaking in that case should
be

(13)SU(2Nf ) → SO(2Nf ).

Because of the doubling in symmetries it is in this case possible to consider also the
breaking pattern of Majorana fermions, which effectively corresponds to replacing 2Nf

by Nf (real, Majorana fermions).
Finally there is the pseudo-real case. Although the representation r in that case is not

equivalent to r̄ , it is possible to arrange for a fermion transforming according to, say,
r̄ to transform according to r by multiplying by the antisymmetric matrix S of Eq. (6).
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Pseudoreal : 
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We can thus again, by this relabelling, work with fields that only transform according to
the representation r . Because of its antisymmetry, the only way to form a non-vanishing
bilinear out of anticommuting fermion fields is by multiplying with a matrix antisymmetric
in flavor indices. The result is

ϵαβψ ia
β ψ

jb
α S−1

ab Eij ,

where now S = −ST, and also E = −ET. The group of continuous flavor transformations
leaving this quadratic form invariant is Sp(2Nf ), and the expected symmetry breaking
pattern is thus

(14)SU(2Nf ) → Sp(2Nf ).

All of this is standard. What is perhaps puzzling is that these considerations in no way
involve the symmetries of the Dirac operator, the starting point for the analysis in terms
of Random Matrix Theory. The conjectured symmetry breaking patterns were originally
based on the intuitive idea of maximally breaking chiral symmetry without breaking flavor
symmetries, an idea which subsequently found its justification in the Vafa–Witten theorem.
This suggests that the Random Matrix Theory approach, and its associated three chiral
matrix ensembles [23], in some way should contain the same ingredients that enter in
the proof of the Vafa–Witten theorem. This idea is not totally far-fetched because in
fact the main assumption on which the Vafa–Witten theorem rests [2] is positivity of the
measure, which for the fermionic part can be traced back to the fact that Dirac eigenvalue
density is even in λ: ρ(λ) = ρ(−λ). This property is automatically built into the chiral
Random Matrix Theory, with ρ(λ) now being replaced by the eigenvalue density of the
random matrices. As for the precise symmetry breaking patterns, we have seen that the
classification in terms of Random Matrix Theory goes parallel with the classification
based on the assumption of maximal chiral symmetry breaking (without breaking flavor
symmetries) in that it depends on the color representation only. Without any reference to
Random Matrix Theory, in a chiral basis the Dirac operator matrix elements are complex
for complex representations, can be chosen real for pseudo-real representations, and can
be chosen quaternion-real for real representations [23]. In the latter case the Dirac operator
eigenvalues are doubly degenerate. In this sense the classification according to the Dyson
indices β can be done independently of the specific chiral Random Matrix Theories. The
fact that the chiral Random Matrix Theories in the microscopic limit can be mapped to
precisely the zero-momentum mode effective chiral Lagrangian corresponding to just the
right cosets of symmetry breaking [25] is a remarkable fact for which there is clearly no
simple explanation based only on group theoretic arguments.

3. Staggered fermions

For staggered fermions the situation is both simpler and more complicated. More
complicated is the pattern of symmetry breaking. Simpler are the symmetries of the Dirac
operator. Since the staggered Dirac operator does not have any γ -matrices, but only sign
factors, the (real) Kogut–Susskind phases, ηµ(x) = ±1, the potential antiunitary symmetry

M. Peskin, 1980
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Idea and implementation of partial compositeness
D.B. Kaplan, 1991;  J. Barnard, T. Gherghetta and T.S. Ray, 2014
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The top partner and the top mass

QCD colour
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global SU(4) indices

Neutral under gauge-Sp(4) colour 

Carry QCD colour and mix with the top

Operators emerge at the flavour scale
Global SU(4) instead of Sp(4)

Called the chimera baryon by the TACO collab.
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Chimera
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HYPERBARYONS for the TOP QUARK PARTNER (Kaplan 1991)

All HC singlets made of Q’s in SU(4) will be bosons (mesons, diquarks, etc.)

So add fund rep fermions q to the hypercolor theory. Give them 3 colors:

Then Qqq is a colored, fermionic hyperbaryon, ready to mix with the top quark.

It’s a CHIMERA:

Pictures from Ben Svetitsky, LATTICE 2019 



The top partner and the top mass

mass (as in precursor top-color models) and to trigger electroweak symmetry breaking via
vacuum (mis)alignement. As an example, we borrow some of the construction in [8] and [27].
So many other, equally compelling, examples exist in the literature, that we refer the reader
to the review [16] and to the references therein.3

Let us assume that the microscopic theory admits the existence of Sp(4)-colour singlet
operators ˆ

 i and ˆ

 

c
i , that have spin-1/2, carry SU(3)c colour and, combined, span vectorial

representations of the SM gauge group. The index i = 1, 2 refers to the SU(2)L singlets and
doublets, respectively, and the notation refers to the fact that we write the operators as 2-
component fermions. Let us now consider the low-energy description of the lightest particles
excited from the vacuum by such operators, and write it in terms of new 2-component
spinorial fields  i and  c

i with the same quantum numbers as ˆ

 i and ˆ

 

c
i . Coarse-graining

over model-dependent details,  i and  c
i have the correct quantum numbers to couple to

the SM quarks, in particular to the SM top quark, represented by the 2-component Weyl
fermions t and tc, provided  i transforms on the fundamental of SU(3)c and  c

i on its
conjugate.

Below the electroweak symmetry-breaking scale vW , the mass terms take the form
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where �
1

, �
2

, � and y are dimensionless couplings, M⇤ represents the typical scale of the
masses of composite fermions in the Sp(4) gauge theory and ⇤ represents the underlying
scale at which (third-generation) flavour physics arises (see also [8]). d

 

= d
 

c is the
dimension of the operators ˆ

 and ˆ

 

c in the underlying theory.
Diagonalisation of the resulting mass matrix, under the assumption that yvW be small

in respect to the other scales, yields two heavy Dirac masses approximately given by
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and finally the mass (squared) of the top is given approximately by
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In order to assess the viability of these models, one needs to provide a microscopic origin
for all of the parameters appearing in Eq. (2.36). To do so, one must specify the (model-
dependent) microscopic details controlling the nature of the composite fermions. Spin-1/2

composite Sp(4)-neutral particles arise in the presence of fermions in higher-dimensional
3

See also the approach based on an extended EFT in [54].
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and finally the mass (squared) of the top is given approximately by
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– 13 –

mass (as in precursor top-color models) and to trigger electroweak symmetry breaking via
vacuum (mis)alignement. As an example, we borrow some of the construction in [8] and [27].
So many other, equally compelling, examples exist in the literature, that we refer the reader
to the review [16] and to the references therein.3

Let us assume that the microscopic theory admits the existence of Sp(4)-colour singlet
operators ˆ

 i and ˆ

 

c
i , that have spin-1/2, carry SU(3)c colour and, combined, span vectorial

representations of the SM gauge group. The index i = 1, 2 refers to the SU(2)L singlets and
doublets, respectively, and the notation refers to the fact that we write the operators as 2-
component fermions. Let us now consider the low-energy description of the lightest particles
excited from the vacuum by such operators, and write it in terms of new 2-component
spinorial fields  i and  c

i with the same quantum numbers as ˆ

 i and ˆ

 

c
i . Coarse-graining

over model-dependent details,  i and  c
i have the correct quantum numbers to couple to

the SM quarks, in particular to the SM top quark, represented by the 2-component Weyl
fermions t and tc, provided  i transforms on the fundamental of SU(3)c and  c

i on its
conjugate.

Below the electroweak symmetry-breaking scale vW , the mass terms take the form

Lmix

= �1

2

(

�
1

M⇤
✓

M⇤
⇤

◆d �5/2

 

T
1

˜Ctc + �
2

M⇤
✓

M⇤
⇤

◆d c�5/2

tT ˜C c
2

+

+�M⇤
h

 

T
1

˜C c
1

+  

T
2

˜C c
2

i

+ yvW
h

 

T
1

˜C c
2

+  

T
2

˜C c
1

i o

+ h.c. , (2.36)

where �
1

, �
2

, � and y are dimensionless couplings, M⇤ represents the typical scale of the
masses of composite fermions in the Sp(4) gauge theory and ⇤ represents the underlying
scale at which (third-generation) flavour physics arises (see also [8]). d

 

= d
 

c is the
dimension of the operators ˆ

 and ˆ

 

c in the underlying theory.
Diagonalisation of the resulting mass matrix, under the assumption that yvW be small

in respect to the other scales, yields two heavy Dirac masses approximately given by

m2

1

'
 

�2

+ �2

1

✓

M⇤
⇤

◆

2d �5

!

M2

⇤ , (2.37)

m2

2

'
 

�2

+ �2

2

✓

M⇤
⇤

◆

2d c�5

!

M2

⇤ , (2.38)

and finally the mass (squared) of the top is given approximately by

m2

t ' �2

1

�2

2

y2
�

M⇤
⇤

�

2d +2d c�10

v2WM4⇤
m2

1

m2

2

. (2.39)

In order to assess the viability of these models, one needs to provide a microscopic origin
for all of the parameters appearing in Eq. (2.36). To do so, one must specify the (model-
dependent) microscopic details controlling the nature of the composite fermions. Spin-1/2

composite Sp(4)-neutral particles arise in the presence of fermions in higher-dimensional
3

See also the approach based on an extended EFT in [54].

– 13 –

mass (as in precursor top-color models) and to trigger electroweak symmetry breaking via
vacuum (mis)alignement. As an example, we borrow some of the construction in [8] and [27].
So many other, equally compelling, examples exist in the literature, that we refer the reader
to the review [16] and to the references therein.3

Let us assume that the microscopic theory admits the existence of Sp(4)-colour singlet
operators ˆ

 i and ˆ

 

c
i , that have spin-1/2, carry SU(3)c colour and, combined, span vectorial

representations of the SM gauge group. The index i = 1, 2 refers to the SU(2)L singlets and
doublets, respectively, and the notation refers to the fact that we write the operators as 2-
component fermions. Let us now consider the low-energy description of the lightest particles
excited from the vacuum by such operators, and write it in terms of new 2-component
spinorial fields  i and  c

i with the same quantum numbers as ˆ

 i and ˆ

 

c
i . Coarse-graining

over model-dependent details,  i and  c
i have the correct quantum numbers to couple to

the SM quarks, in particular to the SM top quark, represented by the 2-component Weyl
fermions t and tc, provided  i transforms on the fundamental of SU(3)c and  c

i on its
conjugate.

Below the electroweak symmetry-breaking scale vW , the mass terms take the form

Lmix

= �1

2

(

�
1

M⇤
✓

M⇤
⇤

◆d �5/2

 

T
1

˜Ctc + �
2

M⇤
✓

M⇤
⇤

◆d c�5/2

tT ˜C c
2

+

+�M⇤
h

 

T
1

˜C c
1

+  

T
2

˜C c
2

i

+ yvW
h

 

T
1

˜C c
2

+  

T
2

˜C c
1

i o

+ h.c. , (2.36)

where �
1

, �
2

, � and y are dimensionless couplings, M⇤ represents the typical scale of the
masses of composite fermions in the Sp(4) gauge theory and ⇤ represents the underlying
scale at which (third-generation) flavour physics arises (see also [8]). d

 

= d
 

c is the
dimension of the operators ˆ

 and ˆ

 

c in the underlying theory.
Diagonalisation of the resulting mass matrix, under the assumption that yvW be small

in respect to the other scales, yields two heavy Dirac masses approximately given by

m2

1

'
 

�2

+ �2

1

✓

M⇤
⇤

◆

2d �5

!

M2

⇤ , (2.37)

m2

2

'
 

�2

+ �2

2

✓

M⇤
⇤

◆

2d c�5

!

M2

⇤ , (2.38)

and finally the mass (squared) of the top is given approximately by

m2

t ' �2

1

�2

2

y2
�

M⇤
⇤

�

2d +2d c�10

v2WM4⇤
m2

1

m2

2

. (2.39)

In order to assess the viability of these models, one needs to provide a microscopic origin
for all of the parameters appearing in Eq. (2.36). To do so, one must specify the (model-
dependent) microscopic details controlling the nature of the composite fermions. Spin-1/2

composite Sp(4)-neutral particles arise in the presence of fermions in higher-dimensional
3

See also the approach based on an extended EFT in [54].

– 13 –

1

Field Sp(4) gauge SU(4) global SU(6) global

Aµ 10 1 1

 4 4 1

� 5 1 6

Field Sp(4) gauge SU(4) global

Aµ 10 1

 4 4

GHC = Sp(4), G/H = {SU(4)⇥ SU(6)}/{Sp(4)⇥ SO(6)}

GHC = SU(4), G/H = {SU(4)⇥ [SU(2)L ⇥ SU(2)R]}/{SO(4)⇥ SU(2)V }

GHC = SU(2), G/H = SU(4)/Sp(4)

q q

SU(2)L ⇥ SU(2)R ⇢ H

v << fsinh✓i, f = |�!F | ⇠ ⇤HC

2

⇤

⇤HC ⇠ f

vEW ⇠ v

G

G ! H

Lmix

� = 6.4

� = 6.5

� = 6.6

� = 2Nc/g2
0

SU(4)/Sp(4)

SU(2)L ⇥ SU(2)R

Sp(4)

SU(6) ! SO(6) � SU(3)

SU(3)

 ↵
ij = ( i�↵ j),  

c,↵
ij = ( i�c,↵ j)

where

Prefer                        , ie, large anomalous dimension 

IR conformality with more fermion flavours?
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Spectrum results
Lattice Sp(2N) Jong-Wan Lee
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Figure 5: Masses and decay constants of pseudoscalar (circle), vector (square) and axial-vector (diamond)
mesons constructed from fermions in the anti-symmetric (red) and fundamental (blue) representation in the
quenched Sp(4) theory at b = 8.0. The lattice volume was 48⇥243.
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Figure 6: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at b = 6.4, 6.5 and
6.6 from left to right, respectively. The red and blue symbols denote the expectation values of the plaquette
hPi obtained from random (hot) and unit (cold) initial configurations on a 84 lattice.

non-zero (symmetric) condensate. Pseudo NG bosons correspond to 2N2
f +Nf � 1 broken gen-

erators which belongs to the coset SU(2Nf )/SO(2Nf ). In terms of Dirac flavors, the NG bosons
are N2

f � 1 mesons in the adjoint representation, and Nf (Nf + 1)/2 diquarks and anti-diquarks in
the symmetric representation. As in the case with fundamental fermions, we focus on the spec-
trum of flavored PS, V, and AV mesons which are degenerate with the corresponding diquark and
anti-diquark states transformed in the same way under the global symmetry in the massless limit.
As dynamical ensembles are not available yet, we calculate the masses and decay constants in the
quenched limit from the same ensembles used for the fundamental fermions in [5]. The results for
b = 8.0 are shown as red symbols in Fig. 5. For a comparison we also present the results for the
quenched spectrum with fundamental fermions denoted by blue symbols. The masses and decay
constants for both representations show similar dependence on the PS meson mass, but the overall
scale is substantially different.

Toward the dynamical simulation with anti-symmetric fermions, the primary task is to search
for any singularity associated with the bulk-phase transition by exploring the bare lattice parameter

5

Sp(4) gauge,  two fundamental Dirac fermions in the action 

fund
fund

antisymm
antisymm

Typically higher scale for antisymmetric repn
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J.-W. Lee et al., arXiv:1811.00276 [hep-lat] (LATTICE 2018)



Spectrum results
SU(4) gauge,  two fundamental and two sextet Dirac fermions in the action 

FIG. 10. Baryon and meson masses in the m
6

! 0 limit. The chimera (J, I) = (1/2, 0) state
corresponds to the top partner of Ferretti’s model. The small rise of the sextet quantities in this
limit is due to the mild variation of F̂

6

with the fundamental fermion mass. Mesonic quantities
were determined in [20].

corrections to be small, just as perturbative electromagnetic corrections to hadron masses
are small in QCD. We note that the present work has not attempted a detailed budgeting
of systematic e↵ects from the lattice computation itself. This includes, of course, those due
to the slightly di↵erent fermion content of the model we studied in comparison with the
Ferretti model.

Although our results for the chimera mass indicate that it is somewhat heavier than
assumed in Ref. [2], it remains to be seen whether this leads to any significant phenomeno-
logical tension or fine-tuning requirement. The most crucial role of the top partner is in
the generation of a realistic potential for the Higgs boson; we plan to investigate the top
contribution to the Higgs potential non-perturbatively in a future work. We are also plan-
ning a follow-up study of the decay matrix elements of the chimera baryon, which will allow
the calculation of its decay width; experimental bounds on the top-partner mass typically
assume a narrow width, and could be significantly weaker for a wide resonance.
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What would be interesting for future work?



The Higgs potential
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The gauge contribution near the origin
Analogous to the                  difference in QCD+QED

TACO collab., PRD99 (2019)
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Computed in M6 and obtained the expected positive contribution

The top-quark contribution near the origin

It can be negative

Crucial for breaking electroweak symmetry

G. Cacciapaglia et al.,  Golterman and Shamir, recent years



Where to search for large anomalous dimension

27

D.B. Franzosi and G. Ferretti, arXiv:1905.08273 [hep-ph]
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Figure 3: Models M1 to M6 and their neighbours with N
X

representing the number of Weyl fermions

in the X representation. Yellow circles represent potentially confining models whereas blue circles

represent models likely to be in the conformal window, with the estimated maximal and minimal

value of �⇤ displayed. Our heuristic arguments for this classification are described in the text. The

red dashed curve indicates the “conformal house” [20] prescription.
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Figure 4: Models M7 to M12 and their neighbours with N
X

representing the number of Weyl fermions

in the X representation. Yellow circles represent potentially confining models whereas blue circles

represent models likely to be in the conformal window, with the estimated maximal and minimal

value of �⇤ displayed. Our heuristic arguments for this classification are described in the text. The

red dashed curve indicates the “conformal house” [20] prescription.
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To facilitate partial compositeness



Summary and outlook
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Looking for BSM physics is inevitable

S. Capitani et al., arXiv: 1901.09872 [hep-th]
Recent lattice works on other scenarios

V. Afferrante, A. Maas, P. Torek, arXiv: 1906.11193 [hep-lat]

Lattice BSM programmes are part of the effort 
Deliver useful information for phenomenologists
Study interesting topics in strongly-coupled field theory

…
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