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Outline
Lecture 1

• Motivation/Background/Overview

Lecture 2

• Deriving the two-particle quantization condition (QC2)

• Examples of applications

Lecture 3

• Sketch of the derivation of the three-particle quantization condition (QC3)

Lecture 4

• Applications of QC3

• Summary of topics not discussed and open issues
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Main references for these lectures
• Briceño, Dudek & Young, “Scattering processes & resonances from LQCD,” 1706.06223, RMP 2018

• Hansen & SS, [HS19REV] “LQCD & three-particle decays of resonances,” 1901.00483, to appear in ARNPS

• Lectures by Dudek, Hansen & Meyer at HMI Institute on “Scattering from the lattice: applications to 
phenomenology and beyond,” May 2018, https://indico.cern.ch/event/690702/

• Lüscher, Commun.Math.Phys. 105 (1986) 153-188; Nucl.Phys. B354 (1991) 531-578 & B364 (1991) 237-251 
(foundational papers)

• Kim, Sachrajda & SS [KSS05], hep-lat/0507006 , NPB 2015 (direct derivation in QFT of QC2)

• Hansen & SS [HS14, HS15], 1408.5933 , PRD14 & 1504.04248 , PRD15 (derivation of QC3 in QFT)

• Briceño, Hansen & SS [BHS17], 1701.07465 , PRD17 (including 2↔3 processes in QC3)

• Briceño, Hansen & SS [BHS18], 1803.04169, PRD18 (numerical study of QC3 in isotropic approximation)

• Briceño, Hansen & SS [BHS19], 1810.01429 , PRD19 (allowing resonant subprocesses in QC3)

• Blanton, Romero-López & SS [BRS19], 1901.07095 , JHEP19 (numerical study of QC3 including d waves)

• Blanton, Briceño, Hansen, Romero-López & SS [BBHRS19], in progress, poster at Lattice 2019
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https://indico.cern.ch/event/690702/
http://arxiv.org/abs/hep-lat/0507006
http://arxiv.org/abs/arXiv:1408.5933
http://arxiv.org/abs/arXiv:1504.04248
http://arxiv.org/abs/arXiv:1701.07465
http://arxiv.org/abs/arXiv:1803.04169
http://arxiv.org/abs/arXiv:1810.01429
http://arxiv.org/abs/arXiv:1901.07095


/70S. Sharpe, “Resonances from LQCD”, Lecture 4, 7/12/2019,  Peking U. Summer School

Other references for this lecture
• Meißner, Ríos & Rusetsky, 1412.4969, PRL15 & Hansen & SS [HS16BS], 1609.04317 , PRD17 (finite-volume 

dependence of three-particle bound state in unitary limit)

• Hansen & SS [HS15PT], 1509.07929 , PRD16 & SS [S17PT], 1707.04279, PRD17 (checking threshold 
expansion in PT in scalar field theory up to 3-loop order)

• Hansen & SS [HS16TH], 1602.00324, PRD16 (Threshold expansion from relativistic QC3)

• Hammer, Pang & Rusetsky, 1706.07700, JHEP17 & 1707.02176 , JHEP17 (NREFT derivation of QC3)

• Mai & Döring, 1709.08222 , EPJA17 (derivation of QC3 based on finite-volume unitarity [FVU])

• Pang et al., 1902.01111 , PRD19 (large volume expansion from NREFT QC3 for excited levels) 

• Mai et al., 1706.06118, EPJA17 (unitary parametrization of M3 used in FVU approach to QC3)

• Mai and Döring, 1807.04746 , PRL19 (3 pion spectrum at finite-volume from FVU QC3)

• Döring et al., 1802.03362 , PRD18 (numerical implementation of NREFT & FVU QC3)

• Agadjanov, Döring, Mai, Meißner & Rusetsky, 1603.07205 , JHEP16 (optical potential method)

• Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys.12 (3 nucleon potentials from HALQCD method)
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http://arxiv.org/abs/arXiv:1412.4969
http://arxiv.org/abs/arXiv:1609.04317
http://arxiv.org/abs/arXiv:1509.07929
http://arxiv.org/abs/arXiv:1707.04279
http://arxiv.org/abs/arXiv:1602.00324
http://arxiv.org/abs/arXiv:1706.07700
http://arxiv.org/abs/arXiv:1707.02176
http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1902.01111
http://arxiv.org/abs/arXiv:1706.06118
http://arxiv.org/abs/arXiv:1807.04746
http://arxiv.org/abs/arXiv:1802.03362
http://arxiv.org/abs/arXiv:1603.07205
http://arxiv.org/abs/arXiv:1106.2276
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Outline for Lecture 4

• Status of relativistic QC3

• Tests of the formalism 

• Alternative approaches to obtaining QC3

• Applications of QC3

• Summary, open questions, and outlook
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Status of relativistic  
QC3
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Summary of lecture 3

det [F−1
3 + 𝒦df,3] = 0

• QC3 for identical scalars with G-parity-like Z2 symmetry [HS14,HS15]

• Subchannel resonances allowed by modifying PV prescription [BBHRS, in progress]

E0(L)

E1(L)

E2(L)

Kdf,3 M3
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• QC3 for identical scalars, but now allowing 2↔3 processes [BHS17]

• Must account for both 2- and 3-particle on-shell intermediate states

• A step on the way to, e.g., N(1440)→Nπ, Nππ

�8

Removing the Z2 symmetry

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0

F2 appears
in 2-particle
quantization
condition

E0(L)

E1(L)

E2(L)
M22 M23

M32 M33

Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33
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• QC3 for identical scalars, with subchannel resonances included explicitly [BHS19]

• Our first solution to the shortcoming of the original formalism

• Supplanted in practice by new approach using modified PV prescription

�9

Including poles in K2

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0

resonance + 
particle channel 
(not physical, but 
forced on us by 

derivation)

Determined by K2 & 
Lüscher finite-volume 

zeta functions 

E0(L)

E1(L)

E2(L)
Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33

M3

No unphysical 
channel in final 

scattering amplitude 
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Tests of the formalism

�10
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Tests of the formalism

�11

Threshold expansion [HS16TH]

• Matches 1/L3—1/L5 terms from NRQM [Beane, Detmold & Savage 07; Tan 08]

• Matches 1/L3—1/L6 terms from relativistic φ4 theory up to O(λ4) [HS15PT; 
S17PT]

Finite-volume dependence of Efimov-like 3-particle bound state (trimer) 
[HS16BS]

• Matches NRQM result [Meissner, Ríos & Rusetsky, 1412.4969]

• Obtain a new result for the “wavefunction” of the trimer
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• Non-interacting 3-particle states

Threshold expansion

�12

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

(2,2,0)

(2,1,1)

These two states are 
degenerate in the NR theory

Threshold state: 
3 particles at rest

E=3m

• What happens to the threshold state when one turns on 2- and 3-particle 
interactions?

• Can expand energy shift in powers of 1/L
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Threshold expansion
• For P=0 and near threshold: E=3m+ΔE, with ΔE~1/L3+…

• Energy shift from overlap of pairs of particles

• Dominant effects (1/L3, 1/L4, 1/L5) involve 2-particle interactions and are 
described by NRQM [Huang & Yang, 1957; Lüscher, 1986],

• 3-particle interaction enters at 1/L6, at the same order as relativistic effects

�13
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NREFT results

�14

[Beane, Detmold & Savage, 0707.1670; Tan, 0709.2530]

2 particles

• Scattering amplitude at 
threshold is proportional 
to scattering length a 

• r is effective range 
• I, J, K are numerical 

constants

ΔE(2,L)
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NREFT results

�14

[Beane, Detmold & Savage, 0707.1670; Tan, 0709.2530]

2 particles

• Scattering amplitude at 
threshold is proportional 
to scattering length a 

• r is effective range 
• I, J, K are numerical 

constants

• Agrees with result obtained by expanding [Luscher] QC2, aside from 1/L6 rel. correction 

−
4π2a2

m3L6
+𝒪(1/L7)

ΔE(2,L)



/70S. Sharpe, “Resonances from LQCD”, Lecture 4, 7/12/2019,  Peking U. Summer School

NREFT results

�15

[Beane, Detmold & Savage, 0707.1670; Tan, 0709.2530]

2 particles

3 particles

• 2-particle result agrees 
with [Luscher]

• Scattering amplitude at 
threshold is proportional 
to scatt. length a 

• r is effective range 
• I, J, K are zeta-functions

• 3 particle result through 
L-4 is 3x(2-particle result) 
from number of pairs

• Not true at L-5,L-6, where 
additional finite-volume 
functions Q, R enter

• η3(μ) is 3-particle contact 
potential, which requires 
renormalization

ΔE(2,L)

ΔE(3,L)
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NREFT results

�15

[Beane, Detmold & Savage, 0707.1670; Tan, 0709.2530]

2 particles

3 particles

• 2-particle result agrees 
with [Luscher]

• Scattering amplitude at 
threshold is proportional 
to scatt. length a 

• r is effective range 
• I, J, K are zeta-functions

• 3 particle result through 
L-4 is 3x(2-particle result) 
from number of pairs

• Not true at L-5,L-6, where 
additional finite-volume 
functions Q, R enter

• η3(μ) is 3-particle contact 
potential, which requires 
renormalization

Tan has 36 instead of 24, 
but a different definition of η3 

ΔE(2,L)

ΔE(3,L)
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Threshold expansion of QC3 [HS16TH]

�16

• Obtaining 1/L3, 1/L4 & 1/L5 terms is relatively straightforward, and results agree 
with those from NREFT, checking details of F and G

ΔE(3,L) =
12πa
ML3 {1 − ( a

πL ) ℐ + ( a
πL )

2

[ℐ2 + 𝒥] ✔
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• Obtaining 1/L6 term is nontrivial, requiring all values of k, l, m and using the QC3 
together with the “K to M” relation to write the result in terms of a divergence-
subtracted 3-particle amplitude at threshold, M3,thr

ΔE(3,L) = … +
12πa
ML3 ( a

π )
3

[−ℐ3 + ℐ𝒥 + 15𝒦 +
16π3

3
(3 3 − 4π)log ( mL

2π ) + �̃�]
✔

+
12πa
ML3 [ 64π2a2

M
𝒞3 +

3πa
M2

+ 6πra2] −
ℳ3,thr

48M3
+ 𝒪(1/L7)

• Agreement of coefficient of log(L) is another non-trivial check

Threshold expansion of QC3 [HS16TH]

�16

• Obtaining 1/L3, 1/L4 & 1/L5 terms is relatively straightforward, and results agree 
with those from NREFT, checking details of F and G

ΔE(3,L) =
12πa
ML3 {1 − ( a

πL ) ℐ + ( a
πL )

2

[ℐ2 + 𝒥] ✔
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• Obtaining 1/L6 term is nontrivial, requiring all values of k, l, m and using the QC3 
together with the “K to M” relation to write the result in terms of a divergence-
subtracted 3-particle amplitude at threshold, M3,thr

ΔE(3,L) = … +
12πa
ML3 ( a

π )
3

[−ℐ3 + ℐ𝒥 + 15𝒦 +
16π3

3
(3 3 − 4π)log ( mL

2π ) + �̃�]
✔

+
12πa
ML3 [ 64π2a2

M
𝒞3 +

3πa
M2

+ 6πra2] −
ℳ3,thr

48M3
+ 𝒪(1/L7)

• Agreement of coefficient of log(L) is another non-trivial check

Threshold expansion of QC3 [HS16TH]

�16

• Obtaining 1/L3, 1/L4 & 1/L5 terms is relatively straightforward, and results agree 
with those from NREFT, checking details of F and G

ΔE(3,L) =
12πa
ML3 {1 − ( a

πL ) ℐ + ( a
πL )

2

[ℐ2 + 𝒥] ✔

• To check the full 1/L6 contribution we cannot use NREFT result

• To provide a check, we have evaluated the energy shift in relativistic λφ4 theory 
to three-loop (λ4) order, and confirmed all terms [HS15PT, S17PT]

✔

✔
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Tests of the formalism

�17

Threshold expansion [HS16TH]

• Matches 1/L3—1/L5 terms from NRQM [Beane, Detmold & Savage 07; Tan 08]

• Matches 1/L3—1/L6 terms from relativistic φ4 theory up to O(λ4) [HS15PT; 
S17PT]

Finite-volume dependence of Efimov-like 3-particle bound state (trimer) 
[HS16BS]

• Matches NRQM result [Meissner, Ríos & Rusetsky, 1412.4969]

• Obtain a new result for the “wavefunction” of the trimer
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Trimer in unitary limit

�18

• In unitary limit, |am|→∞, Efimov showed that there is a tower of 3-particle bound 
states (trimers), with universal properties [Efimov, 1970]

• This limit corresponds to a strongly attractive two-particle interaction, leading to a 
dimer slightly above threshold (a > 0) or slightly unbound (a < 0)

• Trimer energies: EN = 3m-E0/cN, N=0,1,2,…, with c=515, and E0 non universal

• Infinite tower is truncated by nonuniversal effects, e.g.1/(am), rm, Kdf,3 

• Confirmed experimentally with ultra cold Caesium atoms (2005)
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Trimer in unitary limit

�18

• [Meißner, Ríos & Rusetsky, 1412.4969] used NRQM (Fadeev equations) to determine 
the asympotic volume dependence of the energy of an Efimov trimer

• Aim was to provide a nontrivial analytic result to serve as a testing ground for 
finite-volume 3-particle formalisms

• In unitary limit, |am|→∞, Efimov showed that there is a tower of 3-particle bound 
states (trimers), with universal properties [Efimov, 1970]

• This limit corresponds to a strongly attractive two-particle interaction, leading to a 
dimer slightly above threshold (a > 0) or slightly unbound (a < 0)

• Trimer energies: EN = 3m-E0/cN, N=0,1,2,…, with c=515, and E0 non universal

• Infinite tower is truncated by nonuniversal effects, e.g.1/(am), rm, Kdf,3 

• Confirmed experimentally with ultra cold Caesium atoms (2005)
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Volume-dependence of trimer energy

�19

• [Meißner, Ríos & Rusetsky, 1412.4969] NRQM, P=0

c=-96.35 from
Efimov wavefunction

FV energy shift

since NR, 
so this exp. dependence can be

determined from QC3

κ ≪ m
EB ≡ 3m − κ2/m

ΔE(3)L = c |A |2 κ2

m
1

(κL)3/2
e−2κL/ 3 [1 + 𝒪(1/[κL]) + …]

Normalization factor
expected close to unity
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Volume-dependence of trimer energy

�19

• [Meißner, Ríos & Rusetsky, 1412.4969] NRQM, P=0

c=-96.35 from
Efimov wavefunction

FV energy shift

since NR, 
so this exp. dependence can be

determined from QC3

κ ≪ m

• Compare to corresponding result for dimer, which follows from QC2 [Lüscher]

ΔE(2)L = − 12
κ2

2

m
1

κ2L
e−κ2L + …

EB ≡ 3m − κ2/m

ΔE(3)L = c |A |2 κ2

m
1

(κL)3/2
e−2κL/ 3 [1 + 𝒪(1/[κL]) + …]

Normalization factor
expected close to unity
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Reproducing the MRR result [HS17BS]

�20

• Assume that there is an Efimov trimer, and thus a pole in M3

• Assume, following [MRR], that only s-wave interactions are relevant (l=0)

ℳ3( ⃗p , ⃗k ) = −
Γ( ⃗p )Γ( ⃗k )*

E*2 − E2
B

+ non-pole

“Wavefunction” only depends
on spectator momentum
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Reproducing the MRR result [HS17BS]

�20

• Assume that there is an Efimov trimer, and thus a pole in M3

• Assume, following [MRR], that only s-wave interactions are relevant (l=0)

ℳ3( ⃗p , ⃗k ) = −
Γ( ⃗p )Γ( ⃗k )*

E*2 − E2
B

+ non-pole

“Wavefunction” only depends
on spectator momentum

• Insert pole form into our expression for ML,3, use unitary limit liberally, … and find

ΔE(3)L = −
1

2EB

1
L3 ∑⃗

k

− ∫ ⃗k

Γ(u)*( ⃗k )Γ(u)( ⃗k )

2ωkℳs
2( ⃗k )

Unsymmetrized 
“wavefunction”
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Reproducing the MRR result [HS17BS]

�20

• Assume that there is an Efimov trimer, and thus a pole in M3

• Assume, following [MRR], that only s-wave interactions are relevant (l=0)

ℳ3( ⃗p , ⃗k ) = −
Γ( ⃗p )Γ( ⃗k )*

E*2 − E2
B

+ non-pole

“Wavefunction” only depends
on spectator momentum

• Insert pole form into our expression for ML,3, use unitary limit liberally, … and find

ΔE(3)L = −
1

2EB

1
L3 ∑⃗

k

− ∫ ⃗k

Γ(u)*( ⃗k )Γ(u)( ⃗k )

2ωkℳs
2( ⃗k )

Unsymmetrized 
“wavefunction”

• Inserting into general expression reproduce exactly MRR form for energy shift!

• Use NRQM to determine Γ(u)(k) — a new result, that we use below

20

where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.

0.0 0.2 0.4 0.6 0.8 1.0

k/m

10�5

10�3

10�1

101

|�
(u

) (
k
)|

2
⇥

10
�

6 mL = 65
mL = 60

mL = 70

FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

s0=1.00624
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Alternative approaches 
to obtaining QC3

�21
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NREFT

• Considers a general NREFT for scalars, with a Z2 symmetry, with interactions 
parametrized by an infinite tower of low-energy coefficients (LECs) ordered in an 
expansion in p/m, which play the role of the function Kdf,3

• Derivation of QC3 much simpler than that of [HS14] as one can explicitly include all 
diagrams;  however, so far restricted to l=0

• Second step is required to determine M3 in terms of LECs in an infinite volume 
calculation (plays the role of the “K to M” relation)

• Subchannel resonances (poles in K2) can be handled without problems

• The resulting QC3 can be shown to be equivalent to the NR limit of the l=0 restriction 
of the QC of [HS14], if one uses the isotropic approximation of the latter

• Generalization to l > 0, and to relativistic kinematics, claimed to be straightforward

• Numerical implementation is straightforward [Döring et al., 1802.03362] 

• Used to derive 1/L expansion for energy shift of excited states [Pang et al., 1902.01111]

[Hammer, Pang & Rusetsky, 1706.07700 & 1707.02176]
See [HS19REV] for a brief review
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NREFT

• PROs: simplicity, implying ease of generalization to nondegenerate, spin, etc.

• CONs: nonrelativistic; l=0 only (so far)

• Importance of having a relativistic formalism illustrated by fact that, for m=Mπ, even 
first excited state is relativistic in present box sizes (Mπ L= 4-6)

[Hammer, Pang & Rusetsky, 1706.07700 & 1707.02176]
See [HS19REV] for a brief review

E1

Mπ
= 1 + ( 2π

MπL )
2

= 1.5 − 1.9
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Finite-volume unitarity

• Relativistic approach based on an (infinite-volume) unitary parametrization of M3 in 
terms of two-particle isobars, given in [Mai et al, 1706.06118]

• Argue that can replace unitarity cuts with finite-volume “cuts”—plausible but no proof

• Leads quickly to a relativistic QC3 that contains an unknown, real function analogous 
to Kdf,3

• Implemented so far only for s-wave isobars (equivalent to setting l=0 in [HS14] QC3)

• Poles in K2 do not present a problem since no sum-integral differences occur

• In second step, obtain M3 by solving infinite-volume integral equations

• Relation to [HS14] partially understood in [HS19REV]; more work needed

• Numerical implementation is similar to that for the NREFT approach, and has been 
carried out for the 3π+ system [Mai & Döring, 1807.04746]

[Mai & Döring, 1709.08222]
See [HS19REV] for a brief review
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Optical potential

• Method to “integrate out” channels in multichannel scattering

• e.g. consider   system, and obtain   

• Applies even if channels integrated out have 3 or more particles

• Can search for resonances in the channel that is kept

• Method is tricky to apply in practice

• Requires partially twisted BC, only possible for some systems, e.g. Zc(3900)

• Requires analytic continuation to complex E

• So far applied only to synthetic data

ππ, KK ℳKK→KK

�25

[Agadjanov, Döring, Mai, Meißner & Rusetsky, 1603.07205]
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HALQCD method

• The HALQCD formalism, based on the Bethe-Salpeter amplitudes, has been 
extended to 3 (and more) particles in the NR domain [Doi et al, 1106.2276]

• It is not known how to generalize to include relativistic effects

• Method may be useful for studying 3 nucleon systems, but not for most 
resonances, where relativistic effects are important

• Not implemented in practice so far

�26
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Implementing the QC3

�27

Focus on implementing the QC3 of [HS14, HS15]
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Overview

�28�28

det [F−1
3 + 𝒦df,3]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0

DREAM: LQCD determine predict

Integral equations
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Overview

�28�28

det [F−1
3 + 𝒦df,3]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0

DREAM: LQCD determine predict

Integral equations

E0(L)

E1(L)

E2(L)

Kdf,3 M3

REALITY: fit parametrize predict
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Overview

�28�28

det [F−1
3 + 𝒦df,3]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0

DREAM: LQCD determine predict

Integral equations

E0(L)

E1(L)

E2(L)

Kdf,3 M3

REALITY: fit parametrize predictTODAY: predict
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Status

�29�29

• Formalism of [HS14, HS15] (Z2 symmetry) has been implemented numerically in 
three approximations: 

1. Isotropic, s-wave low-energy approximation, with no dimers [BHS18]

2. Including d waves in K2 and Kdf,3, with no dimers [BRS19]

3. Both 1 & 2 with dimers (using modified PV prescription) [BBHRS, in progress]

• NREFT & FVU formalisms [HPR17, MD17] (Z2 symmetry, s-wave only) have been 
implemented numerically [Pang et al., 18, MD18]

• Corresponds to first approximation above

• Ease of implementation comparable in the three approaches
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Truncation 

�30�30

• To use quantization condition, one must truncate matrix space, as for the two-
particle case

• Spectator-momentum space is truncated by cut-off function H(k)

• Need to truncate sums over l,m in K2 & Kdf,3

det [F−1
3 + 𝒦df,3] = 0

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

matrices with indices:
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Cutoff function

�31�31

��� ��� ��� ��� ���

���

���

���

���

���
H(~k)

[E⇤
2,k/(2m)]2

Smooth interpolation between 0 & 1 
Appears in F & G

E=3m, P=0

�
⃗k ⃗k

F ∼ H( ⃗k )[ ]

(E2,k*)2 is invariant mass of upper pair
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Cutoff function

�31�31

��� ��� ��� ��� ���

���

���

���

���

���
H(~k)

[E⇤
2,k/(2m)]2

Smooth interpolation between 0 & 1 
Appears in F & G

E⇤2
2,k = (E � !k)

2 � (~P � ~k)2
Energy of top two particles is:

��� ��� ��� ��� ��� ���
-�

�

��

��

k/mE
⇤2 2
,k
/m

2 on-shell

sub-threshold

t-channel cut

E=3m, P=0

�
⃗k ⃗k

F ∼ H( ⃗k )[ ]

(E2,k*)2 is invariant mass of upper pair
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Truncating sum over l 

�32�32

• In 2-particle case, we know that s-wave scattering dominates at low energies; can 
then systematically add in higher waves (suppressed by q2l)

• Implement using the effective-range expansion for partial waves of K2 (using 
absence of cusps)

1
𝒦(0)

2
=

1
16πE2 [−

1
a0

+ r0
q2

2
+ P0r3

0q4 + …],
1

𝒦(2)
2

= −
1

16πE2

1
q4

1
a5

2
+ …

No p wave since
identical particles

s wave d wave

q is momentum
in CM frame

E2 = s
CM energy of 
two particles
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Truncating sum over l 

�33�33

• Alternative view: expand K2 about threshold using 2 independent Mandelstam 
variables, and enforce relativistic invariance, particle interchange symmetry and T

𝒦2

p1

p2

p′ �1

p′ �2

1
𝒦(0)

2
=

1
16πE2 [−

1
a0

+ r0
q2

2
+ P0r3

0q4 + …],
1

𝒦(2)
2

= −
1

16πE2

1
q4

1
a5

2
+ …

s = (p1 + p2)2 , Δ =
s − 4m2

4m2
=

q2

m2

t = (p1 − p′�1)2 , t̃ =
t

4m2
= −

q2

m2

1 − cos θ
2

𝒦2 = c0 + c1Δ + c2aΔ2 + c2bt̃2 + 𝒪(q6)

s wave s & d waves
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Truncating sum over l 

�34�34

• Implement the same approach for Kdf,3, making use of the facts that it is 
relativistically invariant and completely symmetric under initial- & final-state 
permutations, and T invariant, and expanding about threshold [BHS18, BRS19]

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a
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It is then a tedious but straightforward exercise to write down the allowed terms at each
order in �, and simplify them using the constraints (2.10)–(2.11). Through quadratic order
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that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in Eqs. (2.15) and (2.16) (and in particular the subtraction of
�2 in �(2)

A and �(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic
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• Enforcing the symmetries, one finds [BRS19]
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order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic
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having only an overall linear dependence on s. Furthermore, at quadratic order, we find
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B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic
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Decomposing into spectator/dimer basis

�36�36

spectator momentum

} Decompose into harmonics 
in dimer CM frame: l,m

spectator momentum

{ l’,m’

• Quadratic terms: Δ(2)
A , Δ(2)

B ⇒ ℓ′� = 0,2 & ℓ = 0,2

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

• Isotropic terms: ⇒ ℓ′� = ℓ = 0

• Cubic terms ~ q6: Δ(3)
A,B,… ⇒ ℓ′� = 0,2 & ℓ = 0,2

…
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Summary of approximations

�37�37

1. Isotropic: ℓmax = 0

• Parameters:
• Corresponds to approximations used in NREFT & FVU approaches   

a0 ≡ a & 𝒦iso
df,3

• Interchange of any two outgoing particles: p0i $ p0j ) �0
i $ �0

j and etki $ etkj

• Time reversal: pi $ p0i (8i) ) �i $ �0
i and etij $ etji (8ij)

It is then a tedious but straightforward exercise to write down the allowed terms at each
order in �, and simplify them using the constraints (2.10)–(2.11). Through quadratic order
we find
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df,3 are real, dimensionless constants. We thus see

that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in Eqs. (2.15) and (2.16) (and in particular the subtraction of
�2 in �(2)

A and �(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic
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As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
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it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.
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a0 ≡ a & 𝒦iso
df,3

2.“d wave”: ℓmax = 2
• Parameters:   a0, r0, P0, a2, 𝒦iso

df,3, 𝒦iso,1
df,3 , 𝒦iso,2

df,3 , 𝒦2,A
df,3, & 𝒦2,B

df,3

• Interchange of any two outgoing particles: p0i $ p0j ) �0
i $ �0

j and etki $ etkj

• Time reversal: pi $ p0i (8i) ) �i $ �0
i and etij $ etji (8ij)

It is then a tedious but straightforward exercise to write down the allowed terms at each
order in �, and simplify them using the constraints (2.10)–(2.11). Through quadratic order
we find

m2
Kdf,3 = K

iso + K
(2,A)
df,3 �(2)

A + K
(2,B)
df,3 �(2)

B + O(�3) , (2.13)

K
iso = K

iso
df,3 + K

iso,1
df,3 � + K

iso,2
df,3 �2 (2.14)

�(2)
A =

3X

i=1

(�2
i + �0 2

i ) � �2, (2.15)

�(2)
B =

3X

i,j=1

et 2
ij � �2 , (2.16)

where K
iso
df,3, K

iso,1
df,3 , K

iso,2
df,3 , K

(2,A)
df,3 and K

(2,B)
df,3 are real, dimensionless constants. We thus see

that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in Eqs. (2.15) and (2.16) (and in particular the subtraction of
�2 in �(2)

A and �(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic

– 8 –
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1
𝒦(0)

2
= −

1
16πE2 [ 1

a0
+ r0

q2

2
+ P0r3

0q4],
1

𝒦(2)
2

= −
1

16πE2

1
q4

1
a5

2

Only implemented for P=0, although straightforward to extend
Also have implemented projections onto cubic-group irreps
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Implementing the isotropic QC3

�39�39

1/Kiso
df,3(E

⇤) = �F iso
3 [E, ~P ,L,Ms

2]det [F−1
3 + 𝒦df,3]

sij ¼ ðpi þ pjÞ2 and s0ij ¼ ðp0
i þ p0

jÞ2 ½i < j&; ð3Þ

tij ¼ ðpi − p0
jÞ2; ð4Þ

where i, j ¼ 1–3, whilepi are the initial andp0
j the final four-

momenta. Note that, at threshold, s ¼ 9m2, sij ¼ 4m2 ¼ s0ij,
and tij ¼ 0. There are many relations between these varia-
bles, so that, in addition to s, there are only seven independent
kinematic variables.8 For fixed s, the remaining variables are
all “angular,” in the sense that they span a compact seven-
dimensional space [33]. In particular, for fixed s ¼ 9m2 þ Δ,
the quantities that measure the distance from threshold,
namely δij ≡ sij − 4m2, δ0ij ≡ s0ij − 4m2 and tij, are all
bounded inmagnitude by cΔ, where c ¼ Oð1Þ. This follows
because of the relations

X

i<j

δij ¼
X

i<j

δ0ij ¼ −
1

2

X

i;j

tij ¼ Δ; ð5Þ

together with the fact that δij, δ0ij and −tij are all positive.
The key input now is that, at fixed s, Kdf;3 should be an

analytic function of the kinematic variables in the vicinity
of the threshold. Performing a Taylor expansion about
threshold, the leading term is independent of δij, δ0ij and tij,
with the leading dependence on these variables propor-
tional to Δ. Thus, close to threshold, the dominant con-
tribution is independent of the angular variables. One
choice of these variables is given by those introduced in
Ref. [9], namely the initial and final spectator momenta
introduced above, k⃗ and p⃗, together with the initial and final
directions of the nonspectator pairs in their respective c.m.
frames, â' and â0' . These ten variables are reduced to seven
by overall rotation invariance. Thus we conclude that the
dominant near-threshold contribution is not only indepen-
dent of â' and â0' (which is the s-wave approximation for
Kdf;3 already introduced above), but also of k⃗ and p⃗,
yielding the isotropic approximation.9

We close by commenting that, in the two-particle sector,
the s-wave approximation holds both for the K matrix, K2,
and the scattering amplitude, M2. Indeed the harmonic
components of these two objects have the same low-
momentum scaling, the usual ðq'2Þ2l. This differs from
the situation in the three-particle sector, where the argument
holds for Kdf;3 but fails for the scattering amplitude, M3.
The reason is that the latter exhibits kinematic singularities,
discussed at length in Refs. [9,10]. In particular, M3 is not
smooth (indeed it diverges) at threshold and one cannot
expect its harmonic coefficients to show low-energy
suppression. This is a key advantage of Kdf;3 over M3.

B. Quantization condition in the
isotropic approximation

We now return to the main argument. As shown in
Ref. [9], the isotropic approximation reduces the quantiza-
tion condition to an algebraic equation,

Fiso
3 ðE; P⃗; LÞ ¼ −1=Kiso

df;3ðE' Þ: ð6Þ

To reach this form we first note that the determinant over
angular momentum appearing in Eq. (1) is trivial given that
only the l ¼ 0 contribution to the K matrix is nonzero.
Second, in the isotropic approximation, the K matrix is
independent of the spectator momentum. Therefore, the
only eigenvector ofKdf;3 in the space of spectator momenta
with nonzero eigenvalue is that in which every entry is
unity, i.e., j1i ¼ ð1; 1;…; 1Þ.10 In this way only a one-
dimensional block of the matrices contributes, leading to
Eq. (6). As noted above, this form is analogous to the
s-wave approximation of the two-particle formalism. In
Fig. 1 we give an example of how this condition is used and
compare to the s-wave two-particle case.
For any fixed L, P⃗ and any given finite-volume energy,

EnðL; P⃗Þ, Eq. (6) directly gives the value of Kiso
df;3ðE' Þ at

E' ¼ ½EnðL; P⃗Þ2 − P⃗2&1=2. This assumes that Ks
2ðE'

2Þ is
known for all E'

2 < E' −m, as this is needed to determine
Fiso
3 , defined below. GivenKiso

df;3ðE' Þ, one can determine the
corresponding M3ðE' ;Ω3

0;Ω3Þ at the same energy. Note
that, although we are considering Kdf;3 only in the isotropic
approximation, the three-to-three scattering amplitude still
depends on the incoming and outgoing three-particle phase
space, indicated here with the shorthand Ω3 ≡ ðk⃗; â' Þ. The
primary motivation of this work is to demonstrate the
practical utility of our result. Thus, for the sake simplicity,
we consider only the ðP⃗ ¼ 0Þ frame. This allow us to use E
rather than E' to denote the simultaneous finite-volume and
c.m.-frame energy. In the same spirit, and following
Ref. [18], we take Ks

2 to be given by the leading-order term
in the threshold expansion, i.e., the term involving the
scattering length a.
The expression for Fiso

3 with P⃗ ¼ 0 is

Fiso
3 ðE; LÞ ¼ h1jFs

3j1i ¼
X

k;p

½Fs
3&kp; ð7Þ

where j1i has been defined above, and the sum over the
momenta k, p is of finite range because Fs

3 is truncated by
the cutoff function, Hðk⃗Þ. Here and below we keep
dependence on E and L implicit. The matrix Fs

3 is given by

½Fs
3&kp ¼ 1

L3

!
F̃s

3
− F̃s 1

1=ð2ωKs
2Þ þ F̃s þ G̃s F̃

s

"

kp
; ð8Þ

8One choice is s12, s13, s012, s
0
13, t11, t22, and t33.9It would be interesting to extend this argument to determine

the form of the OðΔÞ corrections in terms of k⃗, p⃗, â' and â0' , but
this is beyond the scope of the present work.

10The other eigenvectors, which have vanishing eigenvalues of
Kdf;3, lead to free three-particle states, as discussed in Ref. [9].
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= 0

• Isotropic approx. reduces QC3 to 1-dimensional condition, with intermediate 
matrices involve finite-volume momenta up to cutoff at |k|~m

• All solutions lie in the A1+ irrep

F̃s
kp =

H( ⃗k )
4ωk [ 1

L3 ∑⃗
a

− PV∫ ⃗a ] H( ⃗a )H( ⃗P − ⃗k − ⃗a )
4ωaωP−k−a(E − ωk − ωa − ωP−k−a)

G̃s
kp =

H( ⃗k )H( ⃗p )
4L3ωkωp((P − k − p)2 − m2)
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Implementing the isotropic QC3

�40�40

1/Kiso
df,3(E

⇤) = �F iso
3 [E, ~P ,L,Ms

2]det [F−1
3 + 𝒦df,3]= 0

• Isotropic approx. reduces QC3 to 1-dimensional condition, with intermediate 
matrices involve finite-volume momenta up to cutoff at |k|~m

• All solutions lie in the A1+ irrep

3 4 5
E/m

�5

0

5

10
4 F

is
o

3
/m

2

ma = �20, mL = 6

Finite-volume energies wherever these curves intersect �1/Kiso
df,3(E)

Fiso
3 /m2 Does not diverge at 

noninteracting 3-
particle energies 

[BRS19]
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Implementing the “K to M” relation

�41�41

M3(E
⇤,⌦0

3,⌦3) = S
"
D + L 1

1/Kiso
df,3 + F iso

3,1
R
#

• Relation of Kdf,3 to M3 (matrix equation that becomes integral equation when L→∞)

• Implement below or at threshold simply by taking L→∞ limit of matrix relation for ML,3

L→∞ limit of 
F3iso depends on 
M2 & kinematical 

factors

symmetrization

D, L & R depend 
on M2 & 

kinematical factors

M3
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Solutions with Kdf,3=0

�42�42

iM2

iM2

iM2

iM2

iM2
+ + · · ·iM3 = S

 �

• Useful benchmark: deviations measure impact of 3-particle interaction

• Caveat: scheme-dependent since Kdf,3 depends on cut-off function H

• Qualitative meaning of this limit for M3:
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Solutions with Kdf,3=0

�43�43

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

(2,2,0)

(2,1,1)

These two states are 
degenerate in the NR theory

•Non-interacting states

Typical lattice box sizes
in LQCD
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Solutions with Kdf,3=0

�44�44

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

• Weakly attractive two-particle interaction

1/L expansion

m

[Beane, Detmold, Savage;
Tan; Hansen & SS]

2-particle interaction enters at 1/L3, 
3-particle interaction (and 

relativistic effects) enter at 1/L6

1/L expansion for
excited levels also now

known [Pang et al.]
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Solutions with Kdf,3=0

�45�45
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a = �1/2

• Strongly attractive two-particle interaction
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m

a = �10m

Threshold expansion not useful since need |a/L| << 1
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Impact of Kdf,3 

�46�46

11
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0.0
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�10�4m2
K

iso

df,3 = �10�4m2
K

iso

df,3 =

FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

ma = −10 (strongly attractive interaction)

Local 3-particle interaction has significant effect 
on energies, especially in region of simulations 

(mL<5), and thus can be determined
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FIG. 6. Finite-volume energy dependence for the bound state that arises for m
2
K

iso

df,3 = 2500 and ma = �10
4
. In all three

figures the solutions to the quantization condition are marked in orange, as points in (a) and (b) and as the curved solid line

in (c). The curving (turquoise) line in panel (a) is a fit of Eq. (35) (neglecting the higher-order corrections) to the data in

this panel. The same fit line is shown in panel (b) for lower values of mL, along with a horizontal, solid (red) line showing

the infinite-volume energy of the bound state EB(1). The horizontal dashed (black) line shows the threshold energy E = 3m.

Panel (c) displays EB(L) for smaller mL, along with the same two horizontal lines as in (b) and the asymptotic prediction.

scattering states. Extrapolating the results for K
iso

df,3 to subthreshold energies, one can use the quantization condition
to predict the volume dependence of the bound state. We see from Fig. 6(c) that, in the regime of mL accessible
to simulations, the finite-volume energy shifts are large, and the asymptotic formula does not hold. Thus the full
quantization condition is needed to remove the finite-volume shift and determine the infinite-volume binding energy.
We also stress that, in this regime, the bound-state energy is pushed so far below threshold that relativistic momenta
are sampled. Thus a relativistic formalism is required to reliably describe even the near threshold state.

D. Volume-dependence of the threshold-state energy

In this section we investigate in detail the energy of the threshold state. We have already shown examples of this
energy for various values of a in Fig. 3, and our aim here is to provide a detailed comparison with the predicted
large-volume behavior. The analytic prediction is

E(L) � 3 =
c3

L3
+

c4

L4
+

c5

L5
+

c̃6

L6
�

M3,thr

48L6
+ O

✓
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◆
, (36)
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Nonrelativistic
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Need full QC3 
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quantization condition is needed to remove the finite-volume shift and determine the infinite-volume binding energy.
We also stress that, in this regime, the bound-state energy is pushed so far below threshold that relativistic momenta
are sampled. Thus a relativistic formalism is required to reliably describe even the near threshold state.
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• Determine wavefunction from residue at bound-state pole

• Compare to analytic prediction from NRQM in unitary limit [HS17BS]
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event. As k increases the scattered pair lies increasingly far below threshold. For a bound state, L(k) is related to
the Bethe-Salpeter amplitude, as discussed in the following subsection.
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FIG. 13. L(k) versus k/m for choices of ma shown in the legend. Results using either choice of finite-volume quantity,

Eq. (A14) or (A15), and using any choice of mL � 50, lie on a common curve. Here we show the results using Eq. (A15) and

mL = 70. Note that, if a = 0, L(k) = 1/3 independent of k. For su�ciently large k, L(k) = 1/3 for all a, since the cuto↵

functions vanish and remove the correction term.

The results for F1
3

and L(k) can be combined to determine results for Mdf,3, using Eq. (45). We choose not to quote
results here since the symmetrization that is needed is complicated, and the results produced are not transparent.
We will, however, quote the corresponding results below when working at threshold.

B. Determining the wavefunction of the bound state

A specific application of the subthreshold relation between K
iso

df,3 and Mdf,3 is provided by the bound state studied

in Sec. III C. For the fixed values of K
iso

df,3 = 2500 and a = �104, one can calculate F1
3

and identify the infinite-volume
bound state pole in Mdf,3, as described in the previous subsection. Since this is equivalent to solving the quantization
condition K

iso

df,3 = �1/F iso

3
for asymptotically large volumes, one finds the same result for the infinite-volume bound-

state energy as from the fit in Sec. III C, namely EB = 2.98858 (corresponding to  = 0.106844).
The residues of the pole in Mdf,3 contain information about the Bethe-Salpeter amplitudes of the bound state.

Specifically, as discussed in Ref. [29], the unsymmetrized version of Mdf,3 takes the following factorized form near the
bound state

M
(u,u)

df,3 (k, p) ⇠ �
�(u)(k)�(u)(p)⇤

E2 � E2

B

. (46)

This assumes that pairwise scattering occurs only in the s-wave, as is the case in the isotropic approximation. The
quantity �(u)(k) is related to the Bethe-Salpeter amplitude by amputating and going on shell, as explained in detail
in Appendix B of Ref. [29]. We call �(u)(k) the residue function. Combining this expression with Eq. (45) we find
that �(u)(k) is proportional to L(k),

|�(u)(k)|2 = lim
E!EB

(E2

B � E2)
L(k)2

1/Kiso

df,3(E) + F1
3

(E)
. (47)

In our approach both F1
3

(E) and L(k) are determined by taking infinite-volume limits of appropriate finite-volume
quantities. For the purposes of extracting |�(u)(k)|2 it turns out to be convenient to define a finite-volume version as

|�(u)(k)|2(L) = lim
E!EB(L)

(E2

B(L) � E2)
LL(E, k, L)2

1/Kiso

df,3(E) + F iso

3
(E, L)

, (48)
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

Known constant

Known constant

Determined by fit to
volume-dependence of

bound-state energy
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.
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with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K
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df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.
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with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.
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with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.
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with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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k/m
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10�1

101

|�
(u

) (
k
)|

2
⇥
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�
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FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

mL→∞ gives infinite-volume result

0-parameter prediction

Works over many orders of magnitude to expected accuracy!
Example of QC3/KtoM giving infinite-volume results
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2. Beyond isotropic: 
including d waves 

�50

[BRS19]
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d-wave approximation: lmax =2

�51�51

• Parameters:   a0, r0, P0, a2, 𝒦iso
df,3, 𝒦iso,1

df,3 , 𝒦iso,2
df,3 , 𝒦2,A

df,3, & 𝒦2,B
df,3

• Interchange of any two outgoing particles: p0i $ p0j ) �0
i $ �0

j and etki $ etkj

• Time reversal: pi $ p0i (8i) ) �i $ �0
i and etij $ etji (8ij)

It is then a tedious but straightforward exercise to write down the allowed terms at each
order in �, and simplify them using the constraints (2.10)–(2.11). Through quadratic order
we find

m2
Kdf,3 = K

iso + K
(2,A)
df,3 �(2)

A + K
(2,B)
df,3 �(2)

B + O(�3) , (2.13)

K
iso = K

iso
df,3 + K

iso,1
df,3 � + K

iso,2
df,3 �2 (2.14)

�(2)
A =

3X

i=1

(�2
i + �0 2

i ) � �2, (2.15)

�(2)
B =

3X

i,j=1

et 2
ij � �2 , (2.16)

where K
iso
df,3, K

iso,1
df,3 , K

iso,2
df,3 , K

(2,A)
df,3 and K

(2,B)
df,3 are real, dimensionless constants. We thus see

that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in Eqs. (2.15) and (2.16) (and in particular the subtraction of
�2 in �(2)

A and �(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic

– 8 –
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that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in Eqs. (2.15) and (2.16) (and in particular the subtraction of
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A and �(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic

– 8 –

1
𝒦(0)

2
=

1
16πE2 [ 1

a0
+ r0

q2

2
+ P0r3

0q4],
1

𝒦(2)
2

=
1

16πE2

1
q4

1
a5

2

• QC3 now involves the determinant of a (finite) matrix

• Project onto irreps, determine vanishing of eigenvalues of 1/F3 + Kdf,3

det [F−1
3 + 𝒦df,3]= 0
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First results including l=2

�52�52

Threshold expansion works well.
What happens to this level as a2 is turned on?

Results from Isotropic approximation with 𝒦df,3 = 0

effect of the three-body contact interaction on the energy is
suppressed by 1=L6. In this regard, we stress that such large
values of jKiso

df;3j are not unphysical. Indeed, as can be seen
from Eq. (26), the three-particle scattering amplitude is
finite in the jKiso

df;3j → ∞ limit. This is analogous to the two-
particle sector where K2 → ∞ corresponds to the unitary
limit, M2 ¼ i16πE"

2=q
"
2.

One noticeable feature of Fig. 4 is the appearance of a
“bump” in the curves around L ¼ 5.5. IfKiso

df;3 is made even
more negative the spectral lines double back, which is an
unphysical result. We discuss this issue further in Sec. V.

What we want to stress here is that, for most values ofKiso
df;3,

a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels
that are sensitive to the three-particle interaction.
A more striking example of this sensitivity is shown in

Fig. 5, where we use the freedom to allow Kiso
df;3 to depend

on energy to model a three-particle resonance. The ansatz
we use is

Kiso
df;3ðEÞ ¼ − c × 103

E2 −M2
R
; ð34Þ

FIG. 3. En ðLÞ=m vs mL for Kiso
df;3 ¼ 0 and various values of the scattering length, a. Notation as in Fig. 2, although a larger range of

mL is displayed here, as well as additional noninteracting levels. The dashed black curve shows the threshold expansion, Eq. (36)
through Oð1=L5Þ.

FIG. 4. Finite-volume energy levels for ma¼ −10 and various negative values of m2Kiso
df;3. The left plot shows results from two

nonzero values of Kiso
df;3, as well as reproducing the Kiso

df;3 ¼ 0 results and the noninteracting levels from Fig. 2. Note that the extent to
which Kiso

df;3 shifts the energy depends significantly on the level being considered. The right panel magnifies the region shown by the
dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of nonzero values of Kiso

df;3.

NUMERICAL STUDY OF THE RELATIVISTIC THREE- … PHYS. REV. D 98, 014506 (2018)

014506-9
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First results including l=2

�53�53

δEd = [E(a2, L) − E(a2 = 0,L)]/m

δEd = 294
(a0m)2(a2m)5

(mL)6
+ 𝒪(a3

0 /L6,1/L7)

Determine

Compare to prediction:

Works well (also for a0 
and a2 dependence)

Tiny effect, but checks 
our numerical 

implementation

5 10 20 30 40

mL

10�13

10�12

10�11

10�10

10�9

10�8

10�7

�Ed

m

analytical

numerical

10�11

2 ⇥ 10�11

using quantization condition
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4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

First results including l=2

�54�54

What happens to
these levels as

a2 is turned on?

Results from Isotropic approximation with 𝒦df,3 = 0
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First results including l=2

�55�55

Projected onto
cubic-group

irrep A1+

�2.0 �1.5 �1.0 �0.5 0.0
ma2

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

E
A+

1
n
m

E0

E1

E2

E3

E4

E5

E6

mL = 8.1, ma0 = − 0.1, r0 = P0 = 𝒦df,3 = 0
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First results including l=2

�55�55

Projected onto
cubic-group

irrep A1+

�2.0 �1.5 �1.0 �0.5 0.0
ma2

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

E
A+

1
n
m

E0

E1

E2

E3

E4

E5

E6

mL = 8.1, ma0 = − 0.1, r0 = P0 = 𝒦df,3 = 0

d-wave attrac
tion can 

have very significant  

effect on energy levels
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Evidence for trimer bound by a2

�56�56

ma0 = − 0.1, ma2 = − 1.3, r0 = P0 = 𝒦df,3 = 0

22 24 26 28 30 32 34 36

mL

2.874

2.875

2.876

2.877

2.878

2.879

EA+
1

m
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Evidence for trimer bound by a2

�56�56

ma0 = − 0.1, ma2 = − 1.3, r0 = P0 = 𝒦df,3 = 0

22 24 26 28 30 32 34 36

mL

2.874

2.875

2.876

2.877

2.878

2.879

EA+
1

m

Binding caused by d-

wave attraction! 

Relevant for atomic 

physics?
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Evidence for trimer bound by a2

�56�56

ma0 = − 0.1, ma2 = − 1.3, r0 = P0 = 𝒦df,3 = 0

22 24 26 28 30 32 34 36

mL

2.874

2.875

2.876

2.877

2.878

2.879

EA+
1

m

Binding caused by d-

wave attraction! 

Relevant for atomic 

physics?

Quantization 

condition is useful as 

tool for studying 

infinite-volume!
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Impact of quadratic terms in Kdf,

�57�57

Energies of 3π+ states need to be determined very accurately to be sensitive 
to Kdf,3(2,B), but this is achievable in ongoing simulations

4.0 4.5 5.0 5.5 6.0 6.5 7.0

mL

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

�EE+
1

m

K(2,B)
df,3 = 40

K(2,B)
df,3 = 80

K(2,B)
df,3 = 400

s- and d-wave

5

0.0134

0.0139

4.1

0.0195

0.0205

a0, r0, P0, & a2 set to
physical values

for 3π+ 

Energy shift relative to
noninteracting energy for

first excited state.
Projected into E+ irrep.
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3. Numerical 
implementation:  

isotropic approximation 
including dimers

�58

[Blanton, Briceño, Hansen, Romero-López & SS, poster at Lat19 & in progress]
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Isotropic approximation: v2

�59�59

• Same set-up as in [BHS18], except that by modifying the PV pole-prescription, 
the formalism works for a > 1 

• Allows us to study cases where, in infinite-volume, there is a two-particle 
bound state (“dimer’’), which can have relativistic binding energy

EB/m = 2 1 − 1/a2 a=2 3

• Interesting case:  choose parameters so that there is both a dimer and a trimer

• This is the analog (without spin) of studying the n+n+p system in which there 
are neutron + deuteron and tritium states

• Finite-volume states will have components of all three types
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6 8 10 12 14 16 18

2.5

3.0

3.5

4.0

4.5
E/m

mL

Free 3-particle states (1+1+1)

Free dimer+particle (2+1)

E
m

= 1+ 3

Preliminary

Isotropic approximation: a=2, Kdf,3=0
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6 8 10 12 14 16 18

2.5

3.0

3.5

4.0

4.5
E/m

mL

Free 3-particle states (1+1+1)

Free dimer+particle (2+1)

E
m

= 1+ 3

Avoided level-crossing

3=trimer

2+1
pushed up

1+1+1

2+1

Preliminary

Isotropic approximation: a=2, Kdf,3=0
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Looks similar to NREFT QC3 result 
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[Döring et al., 2018]
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Contrast with a < 0

�62�62

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

• Strongly attractive two-particle interaction

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �10m

All states asymptote to E=3m
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20 25 30 35 40 45 50 55

mL

2.68

2.70

2.72

2.74

2.76
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2.86

E
m

bound state

ground state

excited states

free particle+dimer

L ! 1

trimer!

Dominantly
2+1 states

Preliminary

Isotropic approximation: a=2, Kdf,3=0
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Isotropic approximation: ma=2, Kdf,3=0

�64�64

2+1 EFT: solve QC2 for nondegenerate particles

2+1 relative CM momentum

�0.4 �0.2 0.0 0.2 0.4

(k/m)2

�0.6

�0.4

�0.2

0.0

0.2

k
m cot �0

Kdf,3 = 0,

ma0 = 2

Trimer as a
particle-dimer
bound state

linear fit

quartic global fit

E = 3m

Preliminary

E=3m

2+1 phase shift

b0=6.4
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Isotropic approximation: ma=2, Kdf,3=0

�64�64

2+1 EFT: solve QC2 for nondegenerate particles

2+1 relative CM momentum

�0.4 �0.2 0.0 0.2 0.4

(k/m)2
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�0.2

0.0
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m cot �0

Kdf,3 = 0,

ma0 = 2

Trimer as a
particle-dimer
bound state

linear fit

quartic global fit

E = 3m

Preliminary

E=3m

2+1 phase shift

Can map out 2+1 

phase shift using 

multiple levels

b0=6.4
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Isotropic approximation: ma=2, Kdf,3=0

�64�64

2+1 EFT: solve QC2 for nondegenerate particles

2+1 relative CM momentum

�0.4 �0.2 0.0 0.2 0.4

(k/m)2

�0.6

�0.4

�0.2

0.0

0.2

k
m cot �0

Kdf,3 = 0,

ma0 = 2

Trimer as a
particle-dimer
bound state

linear fit

quartic global fit

E = 3m

Preliminary

Trimer is 2+1 bound 

state!

E=3m

2+1 phase shift

Can map out 2+1 

phase shift using 

multiple levels

b0=6.4
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Choose parameters so that mdimer : m = MD : M and vary 𝒦df,3

trimer binding
energy

particle-dimer scattering length

Preliminary
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Phillips curve in toy N+D / Tritium system

�65�65

Choose parameters so that mdimer : m = MD : M and vary 𝒦df,3

trimer binding
energy

particle-dimer scattering length

Preliminary

Similar to curve 

found in potential 

models and chiral 

EFT
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2+1 phase shift

2+1 relative CM momentum
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fit to pole

E = 3m

Toy N+D / Tritium system

�66�66

Choose parameters so that mtrimer : mdimer : m= MT : MD : M
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Summary, Open Problems 
& Outlook

�67
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• Substantial progress implementing the three-particle formalism for scalars

• Relationship between approaches reasonably well understood

• Given 2- and 3-particle scattering parameters, QC3 can be implemented 
straightforwardly, and spectrum predicted, including d waves

• Modified PV prescription allows [HS14] formalism to study cases with 2-particle 
bound states and resonances, as already possible with other approaches

• QC3 also provides a tool to study infinite-volume dimer & trimer properties

• Ready for simplest LQCD application—3π+—for which first results from 
simulations are now available; already used for φ4 theory [Roméro-Lopez et al.]

Summary of Lecture 4
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20

where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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k/m
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10�1

101

|�
(u

) (
k
)|

2
⇥
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FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k
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• Generalize formalism to broaden applications

• Nondegenerate particles with spin for, e.g., N(1440) (“straighforward”)

• Determination of Lellouch-Lüscher factors to allow application to K→3π etc

• Understand appearance of unphysical solutions (wrong residue) for some values of 
parameters—observed in [BHS18; BRS19]

• May be due to truncation, or due to exponentially suppressed effects, or both

• Can investigate the latter by varying the cutoff function [BBHRS, in progress]

• Develop physics-based parametrizations of Kdf,3 to describe resonances

• Use relation of Kdf,3 to alternative K matrices derived in [Jackura, SS, et al., 19]? 

• Need to learn how to relate Kdf,3 to M3 above threshold

To-do list for 3 particles

�69
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There is a lo
t to do, but a fair

ly clear path to follow!
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• Can we develop a lattice method to calculate CP violation in D decays?

• D→ππ, K K-bar, ηη, 4π, 6π, …

• Similar issues arise in predicted D—D-bar mixing

• Requires generalization to 4+ particles

• A first step is to simplify derivation for 3-particle case 

• No obvious new effects enter with more particles—just complications

• Inclusion of QED effects important for precision prediction of CP violation in 
K→ππ decays

• Important first steps by [Christ & Feng, 1711.09339] and [Cai & Davoudi, 
1812.11015]

Long-term outlook
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http://arxiv.org/abs/arXiv:1711.09339
http://arxiv.org/abs/arXiv:1812.11015
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Thank you! 
Questions?

�71


