Resonances from lattice QCD: Lecture 4

Steve Sharpe University of Washington

Outline

V Lecture 1

- Motivation/Background/Overview

VLecture 2

- Deriving the two-particle quantization condition (QC2)
- Examples of applications

VLecture 3

- Sketch of the derivation of the three-particle quantization condition (QC3)

DLecture 4

- Applications of QC3
- Summary of topics not discussed and open issues

Main references for these lectures

- Briceño, Dudek \& Young, "Scattering processes \& resonances from LQCD," 1706.06223, RMP 2018
- Hansen \& SS, [HS19REV] "LQCD \& three-particle decays of resonances," 1901.00483 , to appear in ARNPS
- Lectures by Dudek, Hansen \& Meyer at HMI Institute on "Scattering from the lattice: applications to phenomenology and beyond," May 2018, https://indico.cern.ch/event/690702/
- Lüscher, Commun.Math.Phys. 105 (1986) 153-188; Nucl.Phys. B354 (1991) 531-578 \& B364 (1991) 237-251 (foundational papers)
- Kim, Sachrajda \& SS [KSSO5], hep-lat/0507006, NPB 2015 (direct derivation in QFT of QC2)
- Hansen \& SS [HS14, HS15], 1408.5933, PRD14 \& 1504.04248, PRD15 (derivation of QC3 in QFT)
- Briceño, Hansen \& SS [BHS17], 1701.07465, PRD17 (including $2 \leftrightarrow 3$ processes in QC3)
- Briceño, Hansen \& SS [BHS18], 1803.04160, PRD18 (numerical study of QC3 in isotropic approximation)
- Briceño, Hansen \& SS [BHS19], 1810.01429, PRD19 (allowing resonant subprocesses in QC3)
- Blanton, Romero-López \& SS [BRS19], 1901.07095, JHEP19 (numerical study of QC3 including d waves)
- Blanton, Briceño, Hansen, Romero-López \& SS [BBHRS19], in progress, poster at Lattice 2019

otherreferences for this Iecture

- Meißner, Ríos \& Rusetsky, 1412.4969, PRL15 \& Hansen \& SS [HS16BS], 1609.04317, PRD17 (finite-volume dependence of three-particle bound state in unitary limit)
- Hansen \& SS [HS15PT], 1509.07929, PRD16 \& SS [S17PT], 1707.04279, PRD17 (checking threshold expansion in PT in scalar field theory up to 3-loop order)
- Hansen \& SS [HS16TH], 1602.00324, PRD16 (Threshold expansion from relativistic QC3)
- Hammer, Pang \& Rusetsky, 1706.07700, JHEP17 \& 1707.02176, JHEP17 (NREFT derivation of QC3)
- Mai \& Döring, 1709.08222, EPJA17 (derivation of QC3 based on finite-volume unitarity [FVU])
- Pang et al., 1902.01111, PRD19 (large volume expansion from NREFT QC3 for excited levels)
- Mai et al., 1706.06118, EPJA17 (unitary parametrization of \mathcal{M}_{3} used in FVU approach to QC3)
- Mai and Döring, 1807.04746, PRL19 (3 pion spectrum at finite-volume from FVU QC3)
- Döring et al., 1802.03362, PRD18 (numerical implementation of NREFT \& FVU QC3)
- Agadjanov, Döring, Mai, Meißner \& Rusetsky, 1603.07205, JHEP16 (optical potential method)
- Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. 12 (3 nucleon potentials from HALQCD method)

Outline for Lecture 4

- Status of relativistic QC3
- Tests of the formalism
- Alternative approaches to obtaining QC3
- Applications of QC3
- Summary, open questions, and outlook

Status of relativistic QC3

Summary of lecture 3

- QC3 for identical scalars with G-parity-like Z_{2} symmetry [HSI4,HSI5]
- Subchannel resonances allowed by modifying PV prescription [BBHRS, in progress]

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]=0
$$

Removing the Z_{2} symmetry

- QC3 for identical scalars, but now allowing $2 \leftrightarrow 3$ processes [BHSI7]
- Must account for both 2- and 3-particle on-shell intermediate states
- A step on the way to, e.g., $\mathrm{N}(\mathrm{I} 440) \rightarrow \mathrm{N} \pi$, $\mathrm{N} \pi \pi$

Including poles in \mathcal{K}_{2}

- QC3 for identical scalars, with subchannel resonances included explicitly [BHSI9]
- Our first solution to the shortcoming of the original formalism
- Supplanted in practice by new approach using modified PV prescription
resonance + particle channel (not physical, but forced on us by derivation)
Determined by K_{2} \& Lüscher finite-volume zeta functions

No unphysical channel in final

Tests of the formalism

Tests of the formalism

-Threshold expansion [HSI6TH]

- Matches I/L3—I/L ${ }^{5}$ terms from NRQM [Beane, Detmold \& Savage 07;Tan 08]
- Matches I/L ${ }^{3}$ —I/L6 ${ }^{6}$ terms from relativistic φ^{4} theory up to $O\left(\lambda^{4}\right)$ [HSI5PT; SI7PT]
-Finite-volume dependence of Efimov-like 3-particle bound state (trimer) [HSI6BS]
- Matches NRQM result [Meissner, Ríos \& Rusetsky, 14I2.4969]
- Obtain a new result for the "wavefunction" of the trimer

Threshold expansion

- Non-interacting 3-particle states

- What happens to the threshold state when one turns on 2- and 3-particle interactions?
- Can expand energy shift in powers of I/L

Threshold expansion

- For $\mathbf{P}=0$ and near threshold: $\mathrm{E}=3 \mathrm{~m}+\Delta \mathrm{E}$, with $\Delta \mathrm{E} \sim \mathrm{I} / \mathrm{L}^{3+}+\ldots$
- Energy shift from overlap of pairs of particles

- Dominant effects (I/L3, I/L4, I/L5) involve 2-particle interactions and are described by NRQM [Huang \& Yang, I957; Lüscher, I 986],
- 3-particle interaction enters at $\mathrm{I} / \mathrm{L}^{6}$, at the same order as relativistic effects

NREFT results

[Beane, Detmold \& Savage, 0707.1670;Tan, 0709.2530]

2 particles

$$
\begin{align*}
\Delta E(2, L)= & \frac{4 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}-\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+3 I \mathcal{J}-\mathcal{K}\right]\right\} \\
& +\frac{8 \pi^{2} a^{3}}{M L^{6}} r \tag{11}
\end{align*}
$$

- Scattering amplitude at threshold is proportional to scattering length a
- r is effective range
- I, J, \mathcal{K} are numerical constants

NREFT results

[Beane, Detmold \& Savage, 0707.1670;Tan, 0709.2530]
2 particles

$$
\begin{align*}
\Delta E(2, L)= & \frac{4 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}-\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+3 I \mathcal{J}-\mathcal{K}\right]\right\} \\
& +\frac{8 \pi^{2} a^{3}}{M L^{6}} r-\frac{4 \pi^{2} a^{2}}{m^{3} L^{6}}+\mathcal{O}\left(1 / L^{7}\right) \tag{11}
\end{align*}
$$

- Scattering amplitude at threshold is proportional to scattering length a
- r is effective range
- I, J, \mathcal{K} are numerical constants
- Agrees with result obtained by expanding [Luscher] QC2, aside from I/L6 rel. correction

NREFT results

[Beane, Detmold \& Savage, 0707.1670;Tan, 0709.2530]

2 particles

$$
\begin{align*}
\Delta E(2, L)= & \frac{4 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}-\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+3 I \mathcal{J}-\mathcal{K}\right]\right\} \\
& +\frac{8 \pi^{2} a^{3}}{M L^{6}} r+\mathcal{O}\left(L^{-7}\right) \tag{11}
\end{align*}
$$

3 particles

$$
\begin{align*}
\Delta E(3, L)= & \frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}+\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+I \mathcal{J}+15 \mathcal{K}-8(2 \mathcal{Q}+\mathcal{R})\right]\right\} \\
& +\frac{64 \pi a^{4}}{M L^{6}}(3 \sqrt{3}-4 \pi) \log (\mu L)+\frac{24 \pi^{2} a^{3}}{M L^{6}} r \\
& +\frac{1}{L^{6}} \eta_{3}(\mu)+\mathcal{O}\left(L^{-7}\right) \tag{12}
\end{align*}
$$

- 2-particle result agrees with [Luscher]
- Scattering amplitude at threshold is proportional to scatt. length a
- r is effective range
- I, J, \mathcal{K} are zeta-functions
- 3 particle result through L^{-4} is $3 \times$ (2-particle result) from number of pairs
- Not true at $\mathrm{L}^{-5}, \mathrm{~L}^{-6}$, where additional finite-volume functions \mathcal{Q}, \mathcal{R} enter
- $\eta_{3}(\mu)$ is 3-particle contact potential, which requires renormalization

NREFT results

[Beane, Detmold \& Savage, 0707.1670;Tan, 0709.2530]

2 particles

$$
\begin{align*}
\Delta E(2, L)= & \frac{4 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}-\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+3 I \mathcal{J}-\mathcal{K}\right]\right\} \\
& +\frac{8 \pi^{2} a^{3}}{M L^{6}} r+\mathcal{O}\left(L^{-7}\right) \tag{11}
\end{align*}
$$

3 particles

$$
\begin{align*}
\Delta E(3, L)= & \frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) I+\left(\frac{a}{\pi L}\right)^{2}\left[I^{2}+\mathcal{J}\right]\right. \\
& \left.+\left(\frac{a}{\pi L}\right)^{3}\left[-I^{3}+I \mathcal{J}+15 \mathcal{K}-8(2 \mathcal{Q}+\mathcal{R})\right]\right\} \\
& +\frac{64 \pi a^{4}}{M L^{6}}(3 \sqrt{3}-4 \pi) \log (\mu L)+\frac{24 \pi^{2} a^{3}}{M L^{6}} r \\
& +\frac{1}{L^{6}} \eta_{3}(\mu)+\mathcal{O}\left(L^{-7}\right), \tag{12}
\end{align*}
$$ but a different definition of η_{3}

- 2-particle result agrees with [Luscher]
- Scattering amplitude at threshold is proportional to scatt. length a
- r is effective range
- I, J, \mathcal{K} are zeta-functions
- 3 particle result through L^{-4} is $3 \times$ (2-particle result) from number of pairs
- Not true at L-5, L-6, where additional finite-volume functions \mathcal{Q}, \mathcal{R} enter
- $\eta_{3}(\mu)$ is 3-particle contact potential, which requires renormalization

Threshold expansion of QC3 [HS16TH]

- Obtaining $I / L^{3}, I / L^{4} \& I / L^{5}$ terms is relatively straightforward, and results agree with those from NREFT, checking details of F and G

$$
\Delta E(3, L)=\frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) \mathscr{I}+\left(\frac{a}{\pi L}\right)^{2}\left[\mathscr{F}^{2}+\mathscr{J}\right]\right.
$$

Threshold expansion of QC3 [HS16TH]

- Obtaining $I / L^{3}, I / L^{4} \& I / L^{5}$ terms is relatively straightforward, and results agree with those from NREFT, checking details of F and G

$$
\Delta E(3, L)=\frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) \mathscr{J}+\left(\frac{a}{\pi L}\right)^{2}\left[\mathscr{F}^{2}+\mathscr{J}\right]\right.
$$

- Obtaining I/L ${ }^{6}$ term is nontrivial, requiring all values of \mathbf{k}, l, m and using the QC3 together with the " K to M " relation to write the result in terms of a divergencesubtracted 3 -particle amplitude at threshold, $\mathcal{M}_{3, \text { thr }}$

$$
\begin{aligned}
\Delta E(3, L)=\ldots & +\frac{12 \pi a}{M L^{3}}\left(\frac{a}{\pi}\right)^{3}\left[-\mathscr{F}^{3}+\mathscr{F} \mathscr{J}+15 \mathscr{K}+\frac{16 \pi^{3}}{3}(3 \sqrt{3}-4 \pi) \log \left(\frac{m L}{2 \pi}\right)+\widetilde{\mathscr{C}}\right] \\
& +\frac{12 \pi a}{M L^{3}}\left[\frac{64 \pi^{2} a^{2}}{M} \mathscr{C}_{3}+\frac{3 \pi a}{M^{2}}+6 \pi r a^{2}\right]-\frac{\mathscr{M}_{3, \mathrm{thr}}}{48 M^{3}}+\mathcal{O}\left(1 / L^{7}\right)
\end{aligned}
$$

- Agreement of coefficient of $\log (\mathrm{L})$ is another non-trivial check

Threshold expansion of QC3 [HS16TH]

- Obtaining $I / L^{3}, I / L^{4} \& I / L^{5}$ terms is relatively straightforward, and results agree with those from NREFT, checking details of F and G

$$
\Delta E(3, L)=\frac{12 \pi a}{M L^{3}}\left\{1-\left(\frac{a}{\pi L}\right) \mathscr{I}+\left(\frac{a}{\pi L}\right)^{2}\left[\mathscr{F}^{2}+\mathscr{J}\right]\right.
$$

- Obtaining I/L ${ }^{6}$ term is nontrivial, requiring all values of \mathbf{k}, l, m and using the QC3 together with the " K to M " relation to write the result in terms of a divergencesubtracted 3 -particle amplitude at threshold, $\mathcal{M}_{3, \text { thr }}$

$$
\begin{aligned}
\Delta E(3, L)=\ldots & +\frac{12 \pi a}{M L^{3}}\left(\frac{a}{\pi}\right)^{3}\left[-\mathscr{F}^{3}+\mathscr{F} \mathscr{J}+15 \mathscr{K}+\frac{16 \pi^{3}}{3}(3 \sqrt{3}-4 \pi) \log \left(\frac{m L}{2 \pi}\right)+\widetilde{\mathscr{C}}\right] \\
& +\frac{12 \pi a}{M L^{3}}\left[\frac{64 \pi^{2} a^{2}}{M} \mathscr{C}_{3}+\frac{3 \pi a}{M^{2}}+6 \pi r a^{2}\right]-\frac{\mathscr{M}_{3, \mathrm{thr}}}{48 M^{3}}+\mathscr{O}\left(1 / L^{7}\right)
\end{aligned}
$$

- Agreement of coefficient of $\log (\mathrm{L})$ is another non-trivial check
- To check the full I/L6 contribution we cannot use NREFT result
- To provide a check, we have evaluated the energy shift in relativistic $\lambda \varphi^{4}$ theory to three-loop (λ^{4}) order, and confirmed all terms [HSI5PT, SI7PT]

Tests of the formalism

[Threshold expansion [HSI6TH]

- Matches I/L3—I/L ${ }^{5}$ terms from NRQM [Beane, Detmold \& Savage 07;Tan 08]
- Matches I/L ${ }^{3}$ —I/L6 ${ }^{6}$ terms from relativistic φ^{4} theory up to $O\left(\lambda^{4}\right)$ [HSI5PT; SI7PT]
-Finite-volume dependence of Efimov-like 3-particle bound state (trimer) [HSI6BS]
- Matches NRQM result [Meissner, Ríos \& Rusetsky, 14I2.4969]
- Obtain a new result for the "wavefunction" of the trimer

Trimer in unitary limit

- In unitary limit, $|\mathrm{am}| \rightarrow \infty$, Efimov showed that there is a tower of 3-particle bound states (trimers), with universal properties [Efimov, I970]
- This limit corresponds to a strongly attractive two-particle interaction, leading to a dimer slightly above threshold ($\mathrm{a}>0$) or slightly unbound ($\mathrm{a}<0$)
- Trimer energies: $\mathrm{E}_{\mathrm{N}}=3 \mathrm{~m}-\mathrm{E}_{0} / \mathrm{c}^{\mathrm{N}}, \mathrm{N}=0,1,2, \ldots$, with $\mathrm{c}=515$, and E_{0} non universal
- Infinite tower is truncated by nonuniversal effects, e.g.1/(am), rm, $\mathcal{K}_{\mathrm{df}, 3}$
- Confirmed experimentally with ultra cold Caesium atoms (2005)

Trimer in unitary limit

- In unitary limit, $|\mathrm{am}| \rightarrow \infty$, Efimov showed that there is a tower of 3-particle bound states (trimers), with universal properties [Efimov, 1970]
- This limit corresponds to a strongly attractive two-particle interaction, leading to a dimer slightly above threshold ($\mathrm{a}>0$) or slightly unbound ($\mathrm{a}<0$)
- Trimer energies: $\mathrm{E}_{\mathrm{N}}=3 \mathrm{~m}-\mathrm{E}_{0} / \mathrm{c}^{\mathrm{N}}, \mathrm{N}=0,1,2, \ldots$, with $\mathrm{c}=515$, and E_{0} non universal
- Infinite tower is truncated by nonuniversal effects, e.g.1/(am), rm, $\mathcal{K}_{\mathrm{df}, 3}$
- Confirmed experimentally with ultra cold Caesium atoms (2005)
- [Meißner, Ríos \& Rusetsky, I4I2.4969] used NRQM (Fadeev equations) to determine the asympotic volume dependence of the energy of an Efimov trimer
- Aim was to provide a nontrivial analytic result to serve as a testing ground for finite-volume 3-particle formalisms

Volume-dependence of trimer energy

- [Meißner, Ríos \& Rusetsky, I4I2.4969] NRQM, $\mathbf{P}=0$
$\mathrm{c}=-96.35$ from
Efimov wavefunction

$E_{B} \equiv 3 m-\kappa^{2} / m \quad$| Normalization factor |
| :---: |
| expected close to unity |
| so this exp. dependence can be |
| determined from QC3 |

$\Delta E(3)_{L}=c|A|^{2} \frac{\kappa^{2}}{m} \frac{1}{(\kappa L)^{3 / 2}} e^{-2 \kappa L / \sqrt{3}}[1+\mathcal{O}(1 /[\kappa L])+\ldots] \quad$ FV energy shift

Volume-dependence of trimer energy

- [Meißner, Ríos \& Rusetsky, I4I2.4969] NRQM, $\mathbf{P}=0$

- Compare to corresponding result for dimer, which follows from QC2 [Lüscher]

$$
\Delta E(2)_{L}=-12 \frac{\kappa_{2}^{2}}{m} \frac{1}{\kappa_{2} L} e^{-\kappa_{2} L}+\ldots
$$

Reproducing the MRR result [HS17BS]

- Assume that there is an Efimov trimer, and thus a pole in \mathcal{M}_{3}
- Assume, following [MRR], that only s-wave interactions are relevant ($l=0$)

$$
\mathscr{M}_{3}(\vec{p}, \vec{k})=-\frac{\Gamma(\vec{p}) \Gamma(\vec{k})^{*} \leftarrow+\text { non-pole }}{E^{* 2}-E_{B}^{2}} \quad \begin{gathered}
\text { "Wavefunction" only depends } \\
\text { on spectator momentum }
\end{gathered}
$$

Reproducing the MRR result [HS17BS]

- Assume that there is an Efimov trimer, and thus a pole in \mathcal{M}_{3}
- Assume, following [MRR], that only s-wave interactions are relevant ($l=0$)

$$
\mathscr{M}_{3}(\vec{p}, \vec{k})=-\frac{\Gamma(\vec{p}) \Gamma(\vec{k})^{*} \longleftarrow+\text { non-pole }}{E^{* 2}-E_{B}^{2}} \quad \begin{gathered}
\text { "Wavefunction" only depends } \\
\text { on spectator momentum }
\end{gathered}
$$

- Insert pole form into our expression for $\mathcal{M}_{\mathrm{L}, 3}$, use unitary limit liberally, \ldots and find

$$
\Delta E(3)_{L}=-\frac{1}{2 E_{B}}\left[\frac{1}{L^{3}} \sum_{\vec{k}}-\int_{\vec{k}}\right] \frac{\Gamma^{(u)^{*}(\vec{k}) \Gamma^{(u)}(\vec{k})} \longleftarrow 2 \omega_{k} \mathscr{M}_{2}^{s}(\vec{k})}{\text { "wavefunction" }} \begin{gathered}
\text { Unsymerized } \\
\text { "water }
\end{gathered}
$$

Reproducing the MRR result [HS17BS]

- Assume that there is an Efimov trimer, and thus a pole in \mathcal{M}_{3}
- Assume, following [MRR], that only s-wave interactions are relevant ($l=0$)

$$
\mathscr{M}_{3}(\vec{p}, \vec{k})=-\frac{\Gamma(\vec{p}) \Gamma(\vec{k})^{*} \leftarrow}{E^{* 2}-E_{B}^{2}} \leftarrow \text { non-pole } \quad \begin{gathered}
\text { "Wavefunction" only depends } \\
\text { on spectator momentum }
\end{gathered}
$$

- Insert pole form into our expression for $\mathcal{M}_{\mathrm{L}, 3}$, use unitary limit liberally, \ldots and find

$$
\Delta E(3)_{L}=-\frac{1}{2 E_{B}}\left[\frac{1}{L^{3}} \sum_{\vec{k}}-\int_{\vec{k}}\right] \frac{\Gamma^{(u)^{*}}(\vec{k}) \Gamma^{(u)}(\vec{k}) \longleftarrow}{2 \omega_{k} M_{2}^{s}(\vec{k})} \longleftarrow \text { "wavefunction" }
$$

- Use NRQM to determine $\Gamma^{(\mathrm{u})}(\mathbf{k})$ - a new result, that we use below

$$
\left|\Gamma^{(u)}(k)_{\mathrm{NR}}\right|^{2}=|c||A|^{2} \frac{256 \pi^{5 / 2}}{3^{1 / 4}} \frac{m^{2} \kappa^{2}}{k^{2}\left(\kappa^{2}+3 k^{2} / 4\right)} \frac{\sin ^{2}\left(s_{0} \sinh ^{-1} \frac{\sqrt{3} k}{2 \kappa}\right)}{\sinh ^{2} \frac{\pi s_{0}}{2} \longleftarrow} \mathrm{~s}_{0}=1.00624
$$

- Inserting into general expression reproduce exactly MRR form for energy shift!

Alternative approaches to obtaining QC3

NREFT

[Hammer, Pang \& Rusetsky, I706.07700 \& I707.02I76] See [HSI9REV] for a brief review

- Considers a general NREFT for scalars, with a Z_{2} symmetry, with interactions parametrized by an infinite tower of low-energy coefficients (LECs) ordered in an expansion in p / m, which play the role of the function $\mathcal{K}_{\mathrm{df}, 3}$
- Derivation of QC3 much simpler than that of [HSI4] as one can explicitly include all diagrams; however, so far restricted to $l=0$
- Second step is required to determine \mathcal{M}_{3} in terms of LECs in an infinite volume calculation (plays the role of the "K to M" relation)
- Subchannel resonances (poles in \mathcal{K}_{2}) can be handled without problems
- The resulting QC3 can be shown to be equivalent to the NR limit of the $l=0$ restriction of the QC of [HSI4], if one uses the isotropic approximation of the latter
- Generalization to $1>0$, and to relativistic kinematics, claimed to be straightforward
- Numerical implementation is straightforward [Döring et al., I 802.03362]
- Used to derive I/L expansion for energy shift of excited states [Pang et al., I902.01III]

NREFT

[Hammer, Pang \& Rusetsky, I706.07700 \& I707.02I76] See [HSI9REV] for a brief review

- PROs: simplicity, implying ease of generalization to nondegenerate, spin, etc.
- CONs: nonrelativistic; $l=0$ only (so far)
- Importance of having a relativistic formalism illustrated by fact that, for $m=M_{\pi}$, even first excited state is relativistic in present box sizes $\left(\mathrm{M}_{\pi} \mathrm{L}=4-6\right)$

$$
\frac{E_{1}}{M_{\pi}}=\sqrt{1+\left(\frac{2 \pi}{M_{\pi} L}\right)^{2}}=1.5-1.9
$$

Finite-volume unitarity

[Mai \& Döring, I709.08222]
See [HSI9REV] for a brief review

- Relativistic approach based on an (infinite-volume) unitary parametrization of \mathcal{M}_{3} in terms of two-particle isobars, given in [Mai et al, I706.061 I8]
- Argue that can replace unitarity cuts with finite-volume "cuts"-plausible but no proof
- Leads quickly to a relativistic QC3 that contains an unknown, real function analogous to $\mathcal{K}_{\mathrm{df}, 3}$
- Implemented so far only for s-wave isobars (equivalent to setting $l=0$ in [HSI4] QC3)
- Poles in \mathcal{K}_{2} do not present a problem since no sum-integral differences occur
- In second step, obtain \mathcal{M}_{3} by solving infinite-volume integral equations
- Relation to [HSI4] partially understood in [HSI9REV]; more work needed
- Numerical implementation is similar to that for the NREFT approach, and has been carried out for the $3 \pi^{+}$system [Mai \& Döring, I807.04746]

Optical potential

[Agadjanov, Döring, Mai, Meißner \& Rusetsky, I603.07205]

- Method to "integrate out" channels in multichannel scattering
- e.g. consider $\pi \pi, \bar{K} K$ system, and obtain $\mathscr{M}_{\bar{K} K \rightarrow \bar{K} K}$
- Applies even if channels integrated out have 3 or more particles
- Can search for resonances in the channel that is kept
- Method is tricky to apply in practice
- Requires partially twisted $B C$, only possible for some systems, e.g. $Z_{c}(3900)$
- Requires analytic continuation to complex E
- So far applied only to synthetic data

HALQCD method

- The HALQCD formalism, based on the Bethe-Salpeter amplitudes, has been extended to 3 (and more) particles in the NR domain [Doi et al, I I 06.2276]
- It is not known how to generalize to include relativistic effects
- Method may be useful for studying 3 nucleon systems, but not for most resonances, where relativistic effects are important
- Not implemented in practice so far

Implementing the QC3

Focus on implementing the QC3 of [HSI4, HSI5]

Overview

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]=0
$$

DREAM: LQCD

Overview

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]=0
$$

Integral equations

DREAM: LQCD

REALITY: fit
parametrize
predict

Overview

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{dff}, 3}\right]=0
$$

Integral equations

DREAM: LQCD

TODAY:
predict
parametrize
predict

Status

- Formalism of [HSI4, HSI5] (Z_{2} symmetry) has been implemented numerically in three approximations:
I. Isotropic, s-wave low-energy approximation, with no dimers [BHSI8]

2. Including d waves in \mathcal{K}_{2} and $\mathcal{K}_{\mathrm{df}, 3}$, with no dimers [BRSI9]
3. Both I \& 2 with dimers (using modified PV prescription) [BBHRS, in progress]

- NREFT \& FVU formalisms [HPRI7, MDI7] (Z2 symmetry, s-wave only) have been implemented numerically [Pang et al., I8, MD I8]
- Corresponds to first approximation above
- Ease of implementation comparable in the three approaches

Status

- Formalism of [HSI4, HSI5] (Z_{2} symmetry) has been impleallated numerically in three approximations:
I. Isotropic, s-wave low-energy approximatioche ${ }^{s}$ th no dimers [BHSI8]

2. Including d waves in \mathcal{K}_{2} and \mathcal{T} tesith no dimers [BRSI9]
3. Both I \& 2 with dimegnsing modified PV prescription) [BBHRS, in progress]

- NREFT \& FVU formalisms [HPRI7, MDI7] (Z2 symmetry, s-wave only) have been implemented numerically [Pang et al., I8, MD I8]
- Corresponds to first approximation above
- Ease of implementation comparable in the three approaches

Truncation

[finite volume "spectator" momentum: $\mathbf{k}=2 \pi \mathbf{n} / \mathrm{L}$] \times [2-particle CM angular momentum: I,m]

- To use quantization condition, one must truncate matrix space, as for the twoparticle case
- Spectator-momentum space is truncated by cut-off function $\mathrm{H}(\mathbf{k})$
- Need to truncate sums over l, m in $\mathcal{K}_{2} \& \mathcal{K}_{\mathrm{df}, 3}$

Cutoff function

Smooth interpolation between 0 \& I Appears in F \& G

 $\left(E_{2,{ }^{*}}\right)^{2}$ is invariant mass of upper pair

$\mathrm{E}=3 \mathrm{~m}, \mathbf{P}=0$

Cutoff function

Smooth interpolation between 0 \& I
Appears in F \& G

$\left(E_{2, k^{*}}\right)^{2}$ is invariant mass of upper pair

Energy of top two particles is:

$$
E_{2, k}^{* 2}=\left(E-\omega_{k}\right)^{2}-(\vec{P}-\vec{k})^{2}
$$

Truncating sum over l

- In 2-particle case, we know that s-wave scattering dominates at low energies; can then systematically add in higher waves (suppressed by $q^{2 l}$)
- Implement using the effective-range expansion for partial waves of \mathcal{K}_{2} (using absence of cusps)
$\frac{1}{\mathscr{K}_{2}^{(0)}}=\frac{1}{16 \pi E_{2}}\left[-\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}+\ldots\right], \frac{1}{\mathscr{K}_{2}^{(2)}}=-\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}}+\ldots$
Nave wave p wave since
identical particles

Truncating sum over l

$$
\frac{1}{\mathscr{K}_{2}^{(0)}}=\frac{1}{16 \pi E_{2}}\left[-\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}+\ldots\right], \quad \frac{1}{\mathscr{K}_{2}^{(2)}}=-\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}}+\ldots
$$

- Alternative view: expand \mathcal{K}_{2} about threshold using 2 independent Mandelstam variables, and enforce relativistic invariance, particle interchange symmetry and T

$$
s=\left(p_{1}+p_{2}\right)^{2}, \Delta=\frac{s-4 m^{2}}{4 m^{2}}=\frac{q^{2}}{m^{2}}
$$

$$
t=\left(p_{1}-p_{1}^{\prime}\right)^{2}, \quad \tilde{t}=\frac{t}{4 m^{2}}=-\frac{q^{2}}{m^{2}} \frac{1-\cos \theta}{2}
$$

Truncating sum over l

- Implement the same approach for $\mathcal{K}_{\mathrm{df}, 3}$, making use of the facts that it is relativistically invariant and completely symmetric under initial- \& final-state permutations, and T invariant, and expanding about threshold [BHSI8, BRSI9]

Truncating sum over l

- Enforcing the symmetries, one finds [BRSI9]

$$
\begin{aligned}
& m^{2} \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{(2, A)} \Delta_{A}^{(2)}+\mathcal{K}_{\mathrm{df}, 3}^{(2, B)} \Delta_{B}^{(2)}+\mathcal{O}\left(\Delta^{3}\right) \\
& \mathcal{K}^{\text {iso }}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{A}^{(2)} & =\sum_{i=1}^{3}\left(\Delta_{i}^{2}+\Delta_{i}^{\prime 2}\right)-\Delta^{2} \\
\Delta_{B}^{(2)} & =\sum_{i, j=1}^{3} \widetilde{t}_{i j}^{2}-\Delta^{2}
\end{aligned}
$$

Convenient linear combinations

Truncating sum over l

- Enforcing the symmetries, one finds [BRSI9]

$$
m^{2} \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}^{\text {iso }}+\mathcal{K}_{\mathrm{df}, 3}^{(2, A)} \Delta_{A}^{(2)}+\mathcal{K}_{\mathrm{df}, 3}^{(2, B)} \Delta_{B}^{(2)}+\mathcal{O}\left(\Delta^{3}\right)
$$

$$
\begin{aligned}
\Delta_{A}^{(2)} & =\sum_{i=1}^{3}\left(\Delta_{i}^{2}+\Delta_{i}^{\prime 2}\right)-\Delta^{2} \\
\Delta_{B}^{(2)} & =\sum_{i, j=1}^{3} \widetilde{t}_{i j}^{2}-\Delta^{2}
\end{aligned}
$$

Convenient linear combinations

Truncating sum over l

- Enforcing the symmetries, one finds [BRSI9]

Decomposing into spectator/dimer basis

spectator momentum

- Isotropic terms: $\Rightarrow \ell^{\prime}=\ell=0$
- Quadratic terms: $\Delta_{A}^{(2)}, \Delta_{B}^{(2)} \Rightarrow \ell^{\prime}=0,2 \& \ell=0,2$
- Cubic terms $\sim q^{6}: \quad \Delta_{A, B, \ldots}^{(3)} \Rightarrow \ell^{\prime}=0,2 \& \ell=0,2$

Summary of approximations

$$
\begin{aligned}
& \frac{1}{\mathscr{K}_{2}^{(0)}}=-\frac{1}{16 \pi E_{2}}\left[\frac{1}{a_{0}}+r_{g} \frac{q^{2}}{2}+P_{g} q^{4}\right], \quad \frac{1}{\mathscr{K}_{2}^{(2)}}=-\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}} \\
& m^{2} \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}^{\text {iso }}+\mathcal{K}_{\mathrm{df}, \mathcal{Z}}^{(2, \mathcal{M}} \Delta_{A}^{(2)}+\mathcal{K}_{\mathrm{df}, \mathcal{Z}}^{(2, \mathbb{Z})} \Delta_{B}^{(2)} \\
& \mathcal{K}^{\text {iso }}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{d}, \mathrm{~K}}^{1 \mathrm{O}} \Delta+\mathcal{K}_{\mathrm{df}}^{\mathrm{isO}} \boldsymbol{\sigma}^{2} \Delta^{2}
\end{aligned}
$$

1. Isotropic: $\ell_{\max }=0$

- Parameters: $a_{0} \equiv a \& \mathscr{K}_{\text {dft } 3}^{\text {iso }}$
- Corresponds to approximations used in NREFT \& FVU approaches

Summary of approximations

$$
\begin{aligned}
& \frac{1}{\mathscr{K}_{2}^{(0)}}=-\frac{1}{16 \pi E_{2}}\left[\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}\right], \quad \frac{1}{\mathscr{K}_{2}^{(2)}}=-\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}} \\
& m^{2} \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{(2, A)} \Delta_{A}^{(2)}+\mathcal{K}_{\mathrm{df}, 3}^{(2, B)} \Delta_{B}^{(2)} \\
& \mathcal{K}^{\text {iso }}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}
\end{aligned}
$$

1. Isotropic: $\ell_{\max }=0$

- Parameters: $a_{0} \equiv a \& \mathscr{K}_{\text {dft } 3}^{\text {iso }}$
- Corresponds to approximations used in NREFT \& FVU approaches

2. "d wave": $\ell_{\max }=2$

- Parameters: $a_{0}, r_{0}, P_{0}, a_{2}, \mathscr{K}_{\mathrm{df}, 3}^{\mathrm{iso}}, \mathscr{K}_{\mathrm{df}, 3}^{\mathrm{iss}, 1}, \mathscr{K}_{\mathrm{df}, 3}^{\text {iso }, 2}, \mathscr{K}_{\mathrm{df}, 3}^{2, A}, \& \mathscr{K}_{\mathrm{df}, 3}^{2, B}$

Summary of approximations

$$
\begin{aligned}
& \frac{1}{\mathscr{K}_{2}^{(0)}}=-\frac{1}{16 \pi E_{2}}\left[\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}\right], \quad \frac{1}{\mathscr{K}_{2}^{(2)}}=-\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}} \\
& m^{2} \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{(2, A)} \Delta_{A}^{(2)}+\mathcal{K}_{\mathrm{df}, 3}^{(2, B)} \Delta_{B}^{(2)} \\
& \mathcal{K}^{\text {iso }}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}
\end{aligned}
$$

1. Isotropic: $\ell_{\max }=0$

- Parameters: $a_{0} \equiv a \& \mathscr{K}_{\text {dff, }}^{\text {iso }}$
- Corresponds to approximations used in NREFT \& FVU approaches

2. "d wave": $\ell_{\max }=2$

- Parameters: $a_{0}, r_{0}, P_{0}, a_{2}, \mathscr{K}_{\mathrm{df}, 3}^{\mathrm{iso}}, \mathscr{K}_{\mathrm{dff}, 3}^{\text {iso, }}, \mathscr{K}_{\mathrm{df}, 3}^{\mathrm{isso}, 2}, \mathscr{K}_{\mathrm{df}, 3}^{2, A}, \& \mathscr{K}_{\mathrm{df}, 3}^{2, B}$

Only implemented for $\mathbf{P}=0$, although straightforward to extend Also have implemented projections onto cubic-group irreps

1. Results from the isotropic approximation

[BHSI8]

1. Results frasus ithe isotropic an mpoximation
 [BHSI8]

Implementing the isotropic QC3

- Isotropic approx. reduces QC3 to I-dimensional condition, with intermediate matrices involve finite-volume momenta up to cutoff at $|\mathrm{k}| \sim \mathrm{m}$
- All solutions lie in the $A_{1}{ }^{+}$irrep

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]=0 \longrightarrow 1 / \mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}\left(E^{*}\right)=-F_{3}^{\mathrm{iso}}\left[E, \vec{P}, L, \mathcal{M}_{2}^{s}\right]
$$

$$
\begin{gathered}
F_{3}^{\mathrm{iso}}(E, L)=\langle\mathbf{1}| F_{3}^{s}|\mathbf{1}\rangle=\sum_{k, p}\left[F_{3}^{s}\right]_{k p} \quad\left[F_{3}^{s}\right]_{k p}=\frac{1}{L^{3}}\left[\frac{\tilde{F}^{s}}{3}-\tilde{F}^{s} \frac{1}{1 /\left(2 \omega \mathcal{K}_{2}^{s}\right)+\tilde{F}^{s}+\tilde{G}^{s}} \tilde{F}^{s}\right]_{k p} \\
\tilde{F}_{k p}^{s}=\frac{H(\vec{k})}{4 \omega_{k}}\left[\frac{1}{L^{3}} \sum_{\vec{a}}-\operatorname{PV} \int_{\vec{a}}\right] \frac{H(\vec{a}) H(\vec{P}-\vec{k}-\vec{a})}{4 \omega_{a} \omega_{P-k-a}\left(E-\omega_{k}-\omega_{a}-\omega_{P-k-a}\right)} \\
\tilde{G}_{k p}^{s}=\frac{H(\vec{k}) H(\vec{p})}{4 L^{3} \omega_{k} \omega_{p}\left((P-k-p)^{2}-m^{2}\right)}
\end{gathered}
$$

Implementing the isotropic QC3

- Isotropic approx. reduces QC3 to I-dimensional condition, with intermediate matrices involve finite-volume momenta up to cutoff at $|\mathrm{k}| \sim \mathrm{m}$
- All solutions lie in the $A_{1}{ }^{+}$irrep
$\operatorname{det}\left[F_{3}^{-1}+\mathscr{R}_{\mathrm{df}, 3}\right]=0 \longrightarrow 1 / \mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}\left(E^{*}\right)=-F_{3}^{\mathrm{iso}}\left[E, \vec{P}, L, \mathcal{M}_{2}^{s}\right]$

Does not diverge at noninteracting 3particle energies [BRSI9]

Finite-volume energies wherever these curves intersect $\quad-1 / \mathcal{K}_{\mathrm{df}, 3}^{\text {iso }}(E)$

Implementing the " K to $\mathrm{M}^{\prime \prime}$ relation

- Relation of $\mathcal{K}_{\text {df;3 }}$ to \mathcal{M}_{3} (matrix equation that becomes integral equation when $\mathrm{L} \rightarrow \infty$)
- Implement below or at threshold simply by taking $\mathrm{L} \rightarrow \infty$ limit of matrix relation for $\mathcal{M}_{\mathrm{L}, 3}$

$$
\mathcal{M}_{3}=\mathcal{S}\left[\begin{array}{cc}
\mathcal{D}+\mathcal{L} \frac{1}{1 / \mathcal{K}_{\mathrm{df}, 3}^{\text {iso }}+F_{3, \infty}^{\text {iso }}} \mathcal{R} \\
\uparrow & \\
\mathcal{D}, \mathcal{L} \& \mathcal{R} \text { depend } & \mathrm{L} \rightarrow \infty \text { limit of } \\
\text { on } \mathcal{M}_{2} \& & \mathrm{~F}_{3}^{\text {iso }} \text { depends on } \\
\text { kinematical factors } & \mathcal{M}_{2} \& \text { kinematical } \\
\text { factors }
\end{array}\right.
$$

Solutions with $\mathcal{K}_{\mathrm{df}, 3}=0$

- Useful benchmark: deviations measure impact of 3-particle interaction
- Caveat: scheme-dependent since $\mathcal{K}_{\mathrm{df}, 3}$ depends on cut-off function H
- Qualitative meaning of this limit for \mathcal{M}_{3} :

Solutions with $\mathcal{K}_{\mathrm{df}, 3}=0$

- Non-interacting states

Solutions with $\mathcal{K}_{\mathrm{df}, 3}=0$

- Weakly attractive two-particle interaction

Solutions with $\mathcal{K}_{\mathrm{df}, 3}=0$

- Strongly attractive two-particle interaction

Threshold expansion not useful since need $|\mathrm{a} / \mathrm{L}| \ll$ I

Impact of $\mathcal{K}_{\mathrm{df}, 3}$

$$
m a=-10 \text { (strongly attractive interaction) }
$$

Local 3-particle interaction has significant effect on energies, especially in region of simulations ($\mathrm{mL}<5$), and thus can be determined

Volume-dependence of unitary trimer

Two-parameter asymptotic form of [MRRI7] works for large mL

$$
a m=-10^{4} \& m^{2} \mathscr{K}_{\mathrm{df}, 3}=2500
$$

(unitary regime, with no dimer)

(c)

Asymptotic formula fails for "realistic" mL Need full QC3

Volume-dependence of unitary trimer

Two-parameter asymptotic form of [MRRI7] works for large mL

$$
a m=-10^{4} \& m^{2} \mathscr{K}_{\mathrm{df}, 3}=2500
$$

(unitary regime, with no dimer)

(c)

QC3 is correctly solving 3-body equations in NR limit!

Trimer "wavefunction"

- Solve integral equations numerically to determine $\mathcal{M}_{\mathrm{df}, 3}$ from $\mathcal{K}_{\mathrm{df}, 3}$
- Determine wavefunction from residue at bound-state pole

$$
\mathcal{M}_{\mathrm{df}, 3}^{(u, u)}(k, p) \sim-\frac{\Gamma^{(u)}(k) \Gamma^{(u)}(p)^{*}}{E^{2}-E_{B}^{2}}
$$

- Compare to analytic prediction from NRQM in unitary limit [HSI7BS]

Trimer wavefunction

Trimer wavefunction

2. Beyond isotropic: including d waves

[BRSI9]

d-wave approximation: $l_{\max }=2$

$$
\begin{aligned}
& \frac{1}{\mathscr{K}_{2}^{(0)}}=\frac{1}{16 \pi E_{2}}\left[\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}\right], \quad \frac{1}{\mathscr{K}_{2}^{(2)}}=\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}} \\
& m^{2} \mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{(2, A)} \Delta_{A}^{(2)}+\mathcal{K}_{\mathrm{df}, 3}^{(2, B)} \Delta_{B}^{(2)} \\
& \mathcal{K}^{\mathrm{iso}}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 2} \Delta^{2}
\end{aligned}
$$

- Parameters: $a_{0}, r_{0}, P_{0}, a_{2}, \mathscr{K}_{\mathrm{df}, 3}^{\text {iso }}, \mathscr{K}_{\mathrm{df}, 3}^{\text {iso }, 1}, \mathscr{K}_{\mathrm{df}, 3}^{\text {iso }, 2}, \mathscr{K}_{\mathrm{df}, 3}^{2, A}, \& \mathscr{K}_{\mathrm{df}, 3}^{2, B}$

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]=0
$$

- QC3 now involves the determinant of a (finite) matrix
- Project onto irreps, determine vanishing of eigenvalues of $\mathrm{I} / \mathrm{F}_{3}+\mathrm{K}_{\mathrm{df}, 3}$

First results including $l=2$

Results from Isotropic approximation with $\mathscr{K}_{d f, 3}=0$

Threshold expansion works well.
What happens to this level as a_{2} is turned on?

First results including $l=2$

Determine $\delta E^{d}=\left[E\left(a_{2}, L\right)-E\left(a_{2}=0, L\right)\right]$ using quantization condition Compare to prediction: $\delta E^{d}=294 \frac{\left(a_{0} m\right)^{2}\left(a_{2} m\right)^{5}}{(m L)^{6}}+\mathcal{O}\left(a_{0}^{3} / L^{6}, 1 / L^{7}\right)$

Works well (also for ao and a_{2} dependence) Tiny effect, but checks our numerical implementation

First results including $l=2$

Results from Isotropic approximation with $\mathscr{K}_{d f, 3}=0$

First results including $l=2$

$$
m L=8.1, m a_{0}=-0.1, r_{0}=P_{0}=\mathscr{K}_{d f, 3}=0
$$

First results including $l=2$

Projected onto

$$
m L=8.1, m a_{0}=-0.1, r_{0}=P_{0}=\mathscr{K}_{d f, 3}=0
$$

Evidence for trimer bound by a_{2}

Evidence for trimer bound by a_{2}

Evidence for trimer bound by a_{2}

Impact of quadratic terms in $\mathcal{K}_{\mathrm{df}}$

$\mathrm{a}_{0}, \mathrm{r}_{0}, \mathrm{P}_{0}, \& \mathrm{a}_{2}$ set to physical values for $3 \pi^{+}$

Energy shift relative to noninteracting energy for first excited state.
Projected into E^{+}irrep.

Energies of $3 \pi^{+}$states need to be determined very accurately to be sensitive to $\mathcal{K}_{\mathrm{df}, 3}{ }^{(2, \mathrm{~B})}$, but this is achievable in ongoing simulations

3. Numerical implementation: isotropic approximation including dimers

[Blanton, Briceño, Hansen, Romero-López \& SS, poster at Lat 19 \& in progress]

Isotropic approximation: vz

- Same set-up as in [BHSI8], except that by modifying the PV pole-prescription, the formalism works for a > |
- Allows us to study cases where, in infinite-volume, there is a two-particle bound state ("dimer"), which can have relativistic binding energy

$$
E_{B} / m=2 \sqrt{1-1 / a^{2}} \xrightarrow{a=2} \sqrt{3}
$$

- Interesting case: choose parameters so that there is both a dimer and a trimer
- This is the analog (without spin) of studying the $n+n+p$ system in which there are neutron + deuteron and tritium states
- Finite-volume states will have components of all three types

Isotropic approximation: $a=2, \mathcal{K}_{\mathrm{df}, 3}=0$

Isotropic approximation: $a=2, \mathcal{K}_{\mathrm{df}, 3}=0$

Looks similar to NREFT QC3 result

[Döring et al., 2018]

Contrast with a < O

- Strongly attractive two-particle interaction

Isotropic approximation: $\mathrm{a}=2, \mathcal{K}_{\mathrm{df}, 3}=0$

Isotropic approximation: $\mathrm{ma}=2, \mathcal{K}_{\mathrm{df}, 3}=0$

2+I EFT: solve QC2 for nondegenerate particles

Isotropic approximation: ma=2, $\mathcal{K}_{\mathrm{df}, 3}=0$

2+I EFT: solve QC2 for nondegenerate particles

Isotropic approximation: ma=2, $\mathcal{K}_{\mathrm{df}, 3}=0$

2+I EFT: solve QC2 for nondegenerate particles

Phillips curve in toy N+D / Tritium system
Choose parameters so that $\mathrm{m}_{\text {dimer }}: \mathrm{m}=\mathrm{MD}_{\mathrm{D}}: \mathrm{M}$ and vary $\mathscr{K}_{\mathrm{df}, 3}$

Phillips curve in toy N+D / Tritium system

Choose parameters so that $\mathrm{m}_{\text {dimer }}: \mathrm{m}=\mathrm{MD}_{\mathrm{D}}: \mathrm{M}$ and vary $\mathscr{K}_{\mathrm{df}, 3}$

Toy N+D / Tritium system

Choose parameters so that $m_{\text {trimer }}: m_{\text {dimer }}: m=M_{T}: M_{D}: M$

Toy N+D / Tritium system

Choose parameters so that $m_{\text {trimer }}: m_{\text {dimer }}: m=M_{T}: M_{D}: M$

Toy N+D / Tritium system

Choose parameters so that $m_{\text {trimer }}: m_{\text {dimer }}: m=M_{T}: M_{D}: M$

Summary, Open Problems \&Outlook

Summary of Lecture 4

- Substantial progress implementing the three-particle formalism for scalars
- Relationship between approaches reasonably well understood
- Given 2- and 3-particle scattering parameters, QC3 can be implemented straightforwardly, and spectrum predicted, including d waves
- Modified PV prescription allows [HSI4] formalism to study cases with 2-particle bound states and resonances, as already possible with other approaches
- QC3 also provides a tool to study infinite-volume dimer \& trimer properties
- Ready for simplest LQCD application- $3 \pi^{+}$-for which first results from simulations are now available; already used for φ^{4} theory [Roméro-Lopez et al.]

To-do list for 3 particles

- Generalize formalism to broaden applications
- Nondegenerate particles with spin for, e.g., N(I440) ("straighforward")
- Determination of Lellouch-Lüscher factors to allow application to $K \rightarrow 3 \pi$ etc
- Understand appearance of unphysical solutions (wrong residue) for some values of parameters-observed in [BHSI8; BRSI9]
- May be due to truncation, or due to exponentially suppressed effects, or both
- Can investigate the latter by varying the cutoff function [BBHRS, in progress]
- Develop physics-based parametrizations of $\mathcal{K}_{\mathrm{d}, \mathrm{3}}$ to describe resonances
- Use relation of $\mathcal{K}_{\mathrm{d} f, 3}$ to alternative K matrices derived in [Jackura, SS, et al., 19]?
- Need to learn how to relate $\mathcal{K}_{\mathrm{df}, 3}$ to \mathcal{M}_{3} above threshold

To-do list for 3 particles

- Generalize formalism to broaden applications
- Nondegenerate particles with spin for, e.g., N(I440) ("straighforward")
- Determination of Lellouch-Lüscher factors to allow applicationt follow!
- Understand appearance of unphysical solutionse.
parameters-observed in [BHSI8; BPC path to me values of
- May be dueta do, but a
exponentially suppressed effects, or both
There is a
Develop physics-based parametrizations of $\mathcal{K}_{\mathrm{d}, 3}$ to describe resonances
- Use relation of $\mathcal{K}_{\mathrm{df}, 3}$ to alternative K matrices derived in [Jackura, SS, et al., 19]?
- Need to learn how to relate $\mathcal{K}_{\mathrm{df}, 3}$ to \mathcal{M}_{3} above threshold

Long-term outlook

- Can we develop a lattice method to calculate CP violation in D decays?
- D $\rightarrow \pi \pi, K$ K-bar, $\eta \eta, 4 \pi, 6 \pi, \ldots$
- Similar issues arise in predicted D-D-bar mixing
- Requires generalization to 4+ particles
- A first step is to simplify derivation for 3-particle case
- No obvious new effects enter with more particles-just complications
- Inclusion of QED effects important for precision prediction of CP violation in $K \rightarrow \pi \pi$ decays
- Important first steps by [Christ \& Feng, I7II.09339] and [Cai \& Davoudi, 1812.11015]

Thank you! Questions?

