
Exercises for “Resonances from LQCD”

Stephen R. Sharpe

July 9, 2019

There are only exercises for Lectures 1-3, since the school ends after
Lecture 4.

1 Lecture 1

1.1 The K matrix. Show that

1

M(`)
2

=
1

K(`)
2

− iρ , (1)

with ρ = q/(16πE∗) and K(`)
2 real, solves the unitarity condition

ImM(`)
2 = ρ |M(`)

2 |2 . (2)

This was discussed on slide 34 of Lecture 1.

1.2 Scattering amplitudes in φ4 theory. Consider the theory of a real scalar
field φ(x) with Minkowski Lagrange density (and mostly-minus metric)

L =
1

2
∂µφ ∂µφ−

1

2
m2φ2 − 1

4!
λφ4 . (3)

We will assume that λ is small and use perturbation theory.

(i) Draw all Feynman diagrams contributing to the two-particle scat-
tering amplitude, M2, up to (and including) cubic order in λ.

(ii) Calculate M2(s, t) at leading (linear) order in λ. (This is almost
trivial.)
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(iii) Draw all Feynman diagrams contributing to the three-particle
scattering amplitude M3, up to (and including) cubic order in
λ.

(iv) You should find that the leading order contribution to M3 is
quadratic in λ. Calculate this contribution explicitly, and show
that (a) it diverges for certain choices of the external momenta
and (b) it diverges at threshold.

(Note that since we are only calculating tree-level diagrams we do not
have to worry about renormalization.)

These divergences are “physical” in the sense that they are not removed
by renormalization. One can show, however, that they do not lead to
divergences in the scattering of three wavepackets, due to smearing over
the delta-function-like divergences.

1.3 Finite volume correlation functions (preparation for lecture 2). Con-
sider the two-point function

CL(E, ~P ) =

∫
dt

∫
L

d3x , eiEt−i
~P ·~x〈0|T

{
σ†(t, ~x)σ(0)

}
|0〉 , (4)

where (Minkowski) time runs over the full range, −∞ < t <∞, while
~x is restricted to a cubic box of side L, and σ is a local operator. The
spatial boundary conditions are periodic, so that the total momentum
is restricted to ~P = (2π/L)~n, with ~n a vector of integers.

By inserting a complete set of states, show that, for fixed ~P , CL has
poles in E at the position of the energies of the finite-volume states with
the quantum numbers of σ and momentum ~P . What are the residues
of these poles?

2 Lecture 2

2.1 Filling in steps in the derivation of the Lüscher zeta function. In slide
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20 of Lecture 2, we find the result

1

2

∫ dk0

2π

1

L3

∑
~k

−
∫

d4k

(2π)4

 f(k)
1

k2 −m2 + iε

1

b2 −m2 + iε
g(k) =

1

2

 1

L3

∑
~k

−
∫

d3k

(2π)3

 f(~k∗)g(~k∗)h(~k)

2ωk2ωb(E − ωk − ωb + iε)
+O(e−mL) , (5)

where b = P − k, h(~k) is any UV regulator that equals unity when

E = ωk + ωb, and f(~k∗) ≡ f([ωk, ~k]) and similarly for g(~k∗). Demon-
strate this result, making sure to explain why there are exponentially
suppressed corrections on the second line. For what conditions on E
and ~P does it hold?

Comments: Recall that ~k∗ is the three-momentum obtained when boost-
ing [ωk, ~k] to the CM frame. We are simply choosing to express the

function f(k) when k is on shell, i.e. when k = [ωk, ~k], in terms of ~k∗

rather than ~k. This plays no role in the derivation. Note also that we
are abusing notation by using the same name f for both a function of
the four-vector k and the three-vector ~k∗.

If you want to get more into the details, show also the next line on slide
20. For discussion of these steps, see Hanson & Sharpe, 1408.5933.

2.2 Lüscher’s formula in 1+1 dimensions. (Adapted from Hansen & Sharpe,
1901.00483, with some typos corrected.) The limit of a single spatial
dimension is nice because there are then no angular momentum indices
and we can calculate the zeta function explicitly. We also simplify
matters by considering the overall rest frame with ~P = 0 (so E∗ = E).
Then we have

FPV(E,L) =
1

2

(
1

L

∑
k

−PV

∫
dk

2π

)
1

4ω2
k(E − 2ωk)

. (6)

Note that no UV regularization is needed, and that the quantization
condition (see slide 36 of Lecture 2) is automatically algebraic:

FPV(E,L) = − 1

K2(E)
. (7)
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Our aim is to manipulate this quantization condition into a more fa-
miliar and intuitive form.

(i) Show that, up to exponentially suppressed corrections, we can
rewrite FPV as

FPV(E,L) =
L

16Eπ2

(∑
n

−PV

∫
dn

)
1

x2 − n2
, (8)

where x = qL/(2π), with q =
√
E2/4−m2 being the relative

momentum were there two on shell particles having total CM en-
ergy E. Note that q is not a finite-volume momentum, i.e. is not
quantized. It is just a proxy for the energy, E.

(ii) Show by explicit evaluation that

FPV(E,L) =
L

16Eπ2

π cot(πx)

x
. (9)

(iii) The phase space factor appearing in the unitarity relation in one
spatial dimension is (being careful to note that there are two so-
lutions to the delta function constraint)

ρ1 =
1

2

∫
dk

2π

1

4ω2
k

πδ(E − 2ωk) =
1

8qE
. (10)

Thus the relation between K2 and the phase shift becomes

K2 =
tan δ(q)

ρ1

. (11)

Using these results, manipulate the quantization condition into
the form

cot δ(q) + cot(qL/2) = 0 . (12)

(iv) Why is the final result expected? (Hint: think about scattering
in QM.)
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3 Lecture 3

3.1 Comparing pole prescriptions. Reproduce the results shown in the plots
on slide 37 of Lecture 3. Note that, below threshold, the PV prescrip-
tion is defined by analytic continuation of the above threshold result.

3.2 Finite-volume shifts in φ4 theory. (Based on Hansen & Sharpe, 1509.07929.)
The idea of this exercise is to gain more intuition for finite-volume en-
ergy shifts by explicitly calculating the two-point correlator CL (see
exercise 1.3 above) in perturbation theory in φ4 theory. It turns out
that it is not too hard to go to 3-loop order in such calculations (as
I did in 1707.04279), and this allows one to provide a detailed test of
the three-particle quantization condition, as mentioned in Lecture 4.
But don’t worry, here we will stick to one-loop order. Also, in order to
keep this exercise within reasonable bounds, we will work out only the
two-particle energy shift. You can read about the three-particle case
in the above-noted references.

Specifically, we will consider the following modified Euclidean-space
two-point correlation function in a time-momentum basis:

C̃L(τ) =
(2m)2

2L6
e2mτ 〈σ(τ)σ(0)〉 , (13)

σ(τ) =

(∫
L

d3xφ(~x, τ)

)2

. (14)

Here φ is the same real scalar field we studied in Exercise 1.2, whose
Euclidean Lagrange density is

L =
1

2
(∂µφ)2 +

m2

2
φ2 +

λ

4!
φ4 . (15)

We have chosen the operator σ to consist of a product of zero-momentum
wall sources, so that σ itself has zero momentum. To do the calculation
we will need the scalar field propagator in time-momentum representa-
tion:

G~p(τ1, τ2) ≡
〈(∫

L

d3x e−i~p·~xφ(~x, τ1)

)
φ(τ2)

〉
=
e−ωp|τ1−τ2|

2ωp
. (16)

(If you are not familiar with this form for the free scalar propagator,
you should derive it.)

5



(i) First we consider λ = 0, i.e. the noninteracting theory. Show
that, in this case,

C̃L(τ) = 1 . (17)

In other words, the overall factors in Eq. (13) are chosen so that
the correlator is independent of τ , and is normalized to unity.

(ii) Now we turn on λ to a nonzero (small) value. Show that

C̃L(τ) =
∑
n

Z2,ne
−∆En|τ | , (18)

where the sum ranges over all states that couple to σ (and thus
contain an even number of particles) and have zero total (spatial)
momentum, and

∆En = En − 2m. (19)

Give an interpretation for the overlap factors Z2,n. (This problem
is very similar to Exercise 1.3.)

(iii) Equation (18) means that we can use the τ dependence of C̃L(τ)
to pick out the energies of the states in the interacting theory.
Here we use this only for the two-particle state that lies closest to
threshold, i.e. that goes over to two particles at rest as λ → 0.
We call this the threshold state. We will find for this state that,
when we take the large L limit, ∆E = O(λ/L3). There will also
be an infinite tower of excited states that become free-particle
states with back-to-back nonzero momentum ~p as λ → 0, and
have ∆E ≈ 2ωp − 2m ∼ O(1/L2). The different L dependence
allows us to separate these contributions by hand.

Our approach is thus to calculate C̃L(τ) order by order in pertur-
bation theory, and discard any terms that correspond to excited
states. The result we call Cthr(τ), which has the simple form

Cthr(τ) = Zthre
−∆Ethr|τ | . (20)

In fact, we need consider only τ > 0, so we can drop the absolute
value. Given this form, show that

∆Ethr = −∂τCthr(0)

Cthr(0)
. (21)

Thus, after subtraction of excited-state contributions, we only
need the derivative and value of the correlator at τ = 0.

6



(iv) Next we expand the various quantities of interest in powers of λ:1

Cthr(0) = 1 +
∞∑
n=1

λnC
(n)
thr (0) , (22)

∂τCthr(0) =
∞∑
n=1

λn∂τC
(n)
thr (0) , (23)

∆Ethr =
∞∑
n=1

λn∆E
(n)
thr . (24)

Show that
∆E

(1)
thr = −∂τC(1)

thr(0) , (25)

and derive the corresponding expression for ∆E
(2)
thr.

(v) Evaluate C
(1)
thr(0) and ∂τC

(1)
thr(0) from the leading order (tree-level)

diagram. (Hint: no subtraction of excited state contributions is
needed.) Using your result, show that

∆E
(1)
thr =

1

8m2L3
. (26)

We thus find the result quoted in the Lectures (due to Lüscher)
that the leading order threshold energy shift scales as 1/L3, which
is an overlap factor. The coefficient is linear in λ and thus in the
scattering amplitude.

(vi) If you have time and energy, consider the one-loop s-channel bub-
ble diagram (the second diagram on Slide 32 of Lecture 1). Show
that the contribution where the intermediate momentum is zero
scales as λ2/L6, and is thus subleading as L → ∞. More inter-
esting is the contribution from nonzero momentum in the loop.
Show that these contribute

∂τC
(2)
thr(0) ⊃ 1

64m2L3

1

L3

∑
~p 6=0

1

ωp~p2
, (27)

which leads to a nonzero contribution to ∆E
(2)
thr.

1Strictly speaking we should use a bare coupling and counterterms to take care of
renormalization. We will avoid this complication in this Exercise. See the references for
discussion of this issue.
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The sum is UV divergent, so we have to introduce a UV regu-
lator and renormalize to do things properly. However, for large
|~p| the sum can be replaced by an integral as the summand is
smooth. This then leads to a renormalization of the leading or-
der 1/L3 contribution, which is not interesting. Indeed, one can
choose a renormalization scheme in which it cancels exactly with
a counterterm.

(vii) What is more interesting for us is the IR behavior, which is sensi-
tive to the finiteness of the volume. We cannot replace the whole
sum in Eq. (27) with an integral, since the summand is singular
in the IR. Instead, we use the result 1

L3

Λ∑
~p=0

−
∫ Λ d3p

(2π)3

 f(p2)

p2
=
If(0)

4π2L
− f ′(0)

L3
+O(e−mL) , (28)

where f(p2) is a smooth, nonsingular function, and I = −8.914 . . .
is a known constant (a particular value of a zeta function). To see
a simple derivation of this result, see Appendix A of 1509.07929.
It is an example of a general expression derived by Lüscher. The
key point here is the appearance of the 1/L term, rather than the
naive 1/L3 dependence. Using this result, and your earlier work,

determine the corresponding 1/L4 contribution to ∆E
(2)
thr.

We will stop here. This has given an indication of how the power-
law corrections to the leading 1/L3 behavior arise.
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