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I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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FIG. 1 a) The color makeup of baryons, antibaryons and a meson.
b) Single gluon exchange between two quarks. Gluons have two
color indices that can be viewed as two color charges that propagate
in opposite directions.

Measurements of the total cross section for
e
+
e
�

! hadrons were consistent with the exis-
tence of the three color degrees of freedom (5). The

• Mesons
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�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.

q	

q	 q	

q	

baryon	 an(baryon	

meson	

red	 an(-	
red	

gluon	exchange	

a)	 b)	

an(-	
blue	

an(-	
green	

red	 blue	

an(-	
red	

green	

FIG. 1 a) The color makeup of baryons, antibaryons and a meson.
b) Single gluon exchange between two quarks. Gluons have two
color indices that can be viewed as two color charges that propagate
in opposite directions.

Measurements of the total cross section for
e
+
e
�

! hadrons were consistent with the exis-
tence of the three color degrees of freedom (5). The

• Mesons



/43S. Sharpe, “Resonances from LQCD”, Lecture 1, 7/8/2019,  Peking U. Summer School

Stable hadrons in isosymmetric QCD
• QCD with mu=md, and no EM (or weak) interactions 

• Theory studied in most LQCD simulations

• Differs from real world at ~1% level 

�6

• Mesons composed of light quarks: π(qq̄), K(qs̄), η(qq̄)

2

3. X(4160) ! D
⇤
D̄

⇤ 40
4. Discussion 40

VI. Charged non-standard hadron candidates 41
A. Z(4430)+ and similar structures in B decays 41

1. The Z(4430)+ !  
0
⇡
+ in B !  

0
⇡
+
K decays 41

2. The Z(4200)+ ! J/ ⇡
+ in B̄

0 ! J/ ⇡
+
K

�

decays 43
3. Charged �c1⇡

+ resonances in B̄
0 ! �c1⇡

+
K

�

decays 44
4. Discussion 44

B. Charged Z
+
b and Z

+
c states produced in e

+
e
�

processes 44
1. The Zb charged bottomonium-like mesons 44
2. The Zc charged charmonium-like mesons 46

VII. Pentaquark candidates 50

VIII. Summary and Future Prospects 53
A. Theory 53

1. Molecules 53
2. Diquarks 57
3. QCD hybrids 58
4. Hadrocharmonium 59
5. Kinematically induced resonance-like peaks 59
6. Comments 59

B. Experiment 60
C. Final remark 61

References 61

I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū
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The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �
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qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.

q	

q	 q	

q	

baryon	 an(baryon	

meson	

red	 an(-	
red	

gluon	exchange	

a)	 b)	

an(-	
blue	

an(-	
green	

red	 blue	

an(-	
red	

green	

FIG. 1 a) The color makeup of baryons, antibaryons and a meson.
b) Single gluon exchange between two quarks. Gluons have two
color indices that can be viewed as two color charges that propagate
in opposite directions.

Measurements of the total cross section for
e
+
e
�

! hadrons were consistent with the exis-
tence of the three color degrees of freedom (5). The

• Mesons



/43S. Sharpe, “Resonances from LQCD”, Lecture 1, 7/8/2019,  Peking U. Summer School

Stable hadrons in isosymmetric QCD
• QCD with mu=md, and no EM (or weak) interactions 

• Theory studied in most LQCD simulations

• Differs from real world at ~1% level 

�6

• Including heavy quarks: D(cq̄), Ds(cs̄), B(bq̄), B*(qb̄), Bs(sb̄), B*s (sb̄), Bc(cb̄)

• Mesons composed of light quarks: π(qq̄), K(qs̄), η(qq̄)

2

3. X(4160) ! D
⇤
D̄

⇤ 40
4. Discussion 40

VI. Charged non-standard hadron candidates 41
A. Z(4430)+ and similar structures in B decays 41

1. The Z(4430)+ !  
0
⇡
+ in B !  

0
⇡
+
K decays 41

2. The Z(4200)+ ! J/ ⇡
+ in B̄

0 ! J/ ⇡
+
K

�

decays 43
3. Charged �c1⇡

+ resonances in B̄
0 ! �c1⇡

+
K

�

decays 44
4. Discussion 44

B. Charged Z
+
b and Z

+
c states produced in e

+
e
�

processes 44
1. The Zb charged bottomonium-like mesons 44
2. The Zc charged charmonium-like mesons 46

VII. Pentaquark candidates 50

VIII. Summary and Future Prospects 53
A. Theory 53

1. Molecules 53
2. Diquarks 57
3. QCD hybrids 58
4. Hadrocharmonium 59
5. Kinematically induced resonance-like peaks 59
6. Comments 59

B. Experiment 60
C. Final remark 61

References 61

I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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FIG. 1 a) The color makeup of baryons, antibaryons and a meson.
b) Single gluon exchange between two quarks. Gluons have two
color indices that can be viewed as two color charges that propagate
in opposite directions.
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I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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FIG. 1 a) The color makeup of baryons, antibaryons and a meson.
b) Single gluon exchange between two quarks. Gluons have two
color indices that can be viewed as two color charges that propagate
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! hadrons were consistent with the exis-
tence of the three color degrees of freedom (5). The
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I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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I. INTRODUCTION

The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u

+2/3
, d

�1/3
, s

�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū

�2/3
, d̄

+1/3
, s̄

+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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b) Single gluon exchange between two quarks. Gluons have two
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Measurements of the total cross section for
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! hadrons were consistent with the exis-
tence of the three color degrees of freedom (5). The
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The major breakthrough in our understanding of the
spectrum of subatomic hadrons was the nearly simultane-
ous realization in 1964 by Gell-Mann (1) and Zweig (2)
that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
ber B = 1/3, called “quarks” by Gell-Mann and “aces”
by Zweig. The original quark model had three di↵er-
ent flavored quarks: q = u
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, d
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�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
q̄ = ū
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+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �
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qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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that hadrons could be succinctly described as compos-
ites of fractionally charged fermions with baryon num-
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�1/3 (now called
the light flavors)1 and their B = �1/3 antiparticles
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+1/3. The most economical quark
combinations for producing B = 0 mesons and B = 1
baryons, are qq̄ and qqq,2 respectively, and these com-
binations reproduce the pseudoscalar and vector meson
octets and the spin-1/2 and spin-3/2 baryon octet and de-
cuplet that were known at that time. Nevertheless, both
authors noted in their original papers that more com-
plex structures with integer charges and B = 0 or B = 1
could exist, such as qqq̄q̄ “tetraquark” mesons and qqqq̄q

“pentaquark” baryons. However, no candidates for these
more complicated configurations were known at the time.

1 The u and d quark form an isospin doublet: u with I3 = 1/2 and
d with I3 = �1/2. The s-quark has a non-zero additive flavor
quantum number called strangeness; for historical reasons the
s quark has negative strangeness S = �1 and the s̄ quark has
positive strangeness S = +1.

2 For simplicity of notation, flavor indices are suppressed. In com-
binations, such as qqq and qq̄, it is implicitly assumed that each
q can have any one of the three light quark flavors.

A. Color charges, gluons and QCD

The original quark model implied pretty grievous vi-
olations of the Pauli Exclusion Principle. For example,
the quark model identifies the J = 3/2 ⌦� baryon as a
state that contains three s quarks that are all in a relative
S-wave and with parallel spins; i.e., the three s quarks oc-
cupy the same quantum state, in violation of Pauli’s prin-
ciple. This inspired a suggestion by Greenberg (3) that
quarks were not fermions but, instead, “parafermions”
of order three, with an additional, hidden quantum num-
ber that made them distinct. In this picture, the three
s quarks in the ⌦� have di↵erent values of this hidden
quantum number and are, therefore, non-identical parti-
cles.
In the following year, Han and Nambu (4) proposed

a model in which each of the quarks are SU(3) triplets
in flavor-space (and with integer electric charges) with
strong-interaction “charges” that are a triplet in an-
other SU(3) space. They identified Greenberg’s hid-
den quantum numbers with three di↵erent varieties of
strong charges, q ! qi, i = 1, 2, 3, and associated the
observable hadrons as singlets in the space of this addi-
tional SU(3) symmetry group. This can be done with
three-quark combinations in which each quark has a dif-
ferent strong charge (baryons = ✏ijkqiqjqk) or quark-
antiquark combinations, where the quark’s strong charge
and the antiquark’s strong anticharge are the same type
(mesons = �

i

j
qiq̄

j). Because of the uncanny correspon-
dence between these prescriptions with the rules for hu-
man color perception, where white can be produced
either by triplets of three primary colors or by color
plus complementary-color pairs, the strong-interaction
charges were soon dubbed “color” charges: red, green and
blue, with anticharges that are the corresponding com-
plementary colors: cyan, magenta and yellow. The color
neutral combinations that form baryons, antibaryons and
mesons are illustrated in Fig. 1a.
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b) Single gluon exchange between two quarks. Gluons have two
color indices that can be viewed as two color charges that propagate
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LQCD algorithms (see ref. (161) for a recent review), has
resulted in a number important recent results related to
hadron masses.

For example, the QCDSF Collaboration (162) reported
a lattice calculation of the masses of hadrons composed
of u, d, and s quarks, ranging from the ⌘ meson to the
⌦� baryon using only the charged pion and kaon masses
and a combination of the p, ⌃, and ⌅ masses as inputs;
the only tuneable parameters are the quark masses and
the coupling constant ↵s. Recent Results for mesons and
baryons are shown in Fig. 9, where there is a good agree-
ment with the established values.
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FIG. 9 The LQCD hadron spectrum from MILC (163;
164), PACS-CS (165), BMW (166), QCDSF (162), RBC &
UKQCD (167), Hadron Spectrum (168), UKQCD (169), Fermilab-
MILC (170), HPQCD (171), and Mohler & Woloshyn (172). The
b-flavored meson masses are o↵set by �4000 MeV. Horizontal bars
(gray boxes) denote experimentally measured masses (widths).
(Figure from ref. (173).)

To date, because of computing-power constraints, most
LQCD computations ignore isospin violations and set the
u- and d�quark masses equal. However, precision lattice
results on QCD-generated isospin violations are now be-
ing realized. Borsanyi et al. (174) have reported a lattice-
based, ab-initio computation of the (1.293 MeV) neutron-
proton mass di↵erence that results from the competi-
tion between electromagnetic and QCD-induced isospin-
breaking e↵ects12 with an accuracy of 300 keV. They
also determined mass splittings in the ⌃, ⌅, D and ⌅cc

13

erations performed in a year by a computer that sustains one
trillion operations per second.

12 The calculation reported in ref. (174) finds a QCD contribution
to mn �mp that is 2.52 ± 0.49 times larger than that from the
(opposite-sign) electromagnetic e↵ect. The magnitude of this
QCD contribution has huge existential significance; an increase
or decrease by as little as ⇠ 20% would have dire consequences
on Nature’s ability to support life (see ref. (175)).

13 The ⌅cc is a candidate for a doubly charmed ccq baryon with
mass M = 3820 ± 1.0 MeV that was reported by the SELEX
experiment (176; 177) but was not confirmed by other experi-

isospin multiplets with precision that is better, in some
cases, than that of the currently available experimental
measurements, as shown in Fig. 10.

FIG. 10 Results of the lattice computations of �N = mn � mp,
�⌃ = m⌃� �m⌃+ , �⌅ = m⌅� �m⌅0 , �D = mD+ �mD0 and
�⌅cc = m

⌅++
cc

� m
⌅+
cc

isospin mass splittings, and a test of the

Coleman-Glashow relation (182) �CG ⌘ �MN��M⌃��M⌅ = 0
from ref. (174). The horizontal lines are the experimental values
and the grey shaded regions represent the experimental error. The
computed precision for the quantities with labels in blue shaded
boxes is better than that of current measurements.

The spectrum of mesons carrying one charmed quark,
or a charmed-anticharmed pair, has been recently com-
puted on the lattice by Cichy et al. (183). To tune the
valence quark masses the authors used experimental val-
ues of the masses of electrically neutral and charged ⇡,
K, and D mesons. Using a variety of quark-antiquark
meson creation operators the authors were able to deter-
mine the masses of the lowest-lying 1S and 1P charmo-
nium states with levels of precision that are in the range
0.2 ⇠ 0.8 percent. Cichy et al. (183) also successfuly
verified the masses of several charm mesons with the ex-
ception of the D

⇤
s0
(2317) and Ds1(2460) (see sec. IV.A

below), which have masses close to two-meson thresh-
olds and, thus, require more advanced techniques (184),
as discussed in sec. IV.A.
Determining the highly-excited resonance spectra has

recently become possible thanks to a technique pro-
posed by Luscher (185). The Hadron Spectrum Col-
laboration (186) did a comprehensive study of the spec-
trum of excited charmonium mesons with masses up to
4.5 GeV that included possible cc̄-gluon hybrid states.
They find the lightest cc̄-gluon hybrids are a 0�+ pseu-
doscalar with M ' 4195 GeV; a 1�+ “exotic” with
M ' 4215 MeV and a 1�� vector with M ' 4285 MeV.
One of the non-standard mesons discussed in this report

ments (178; 179; 180). The LHCb group recently reported a 12�
signal for a ⌅cc candidate at a lower mass of 3621.4 ± 0.8 MeV
(181).
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puted on the lattice by Cichy et al. (183). To tune the
valence quark masses the authors used experimental val-
ues of the masses of electrically neutral and charged ⇡,
K, and D mesons. Using a variety of quark-antiquark
meson creation operators the authors were able to deter-
mine the masses of the lowest-lying 1S and 1P charmo-
nium states with levels of precision that are in the range
0.2 ⇠ 0.8 percent. Cichy et al. (183) also successfuly
verified the masses of several charm mesons with the ex-
ception of the D

⇤
s0
(2317) and Ds1(2460) (see sec. IV.A

below), which have masses close to two-meson thresh-
olds and, thus, require more advanced techniques (184),
as discussed in sec. IV.A.
Determining the highly-excited resonance spectra has

recently become possible thanks to a technique pro-
posed by Luscher (185). The Hadron Spectrum Col-
laboration (186) did a comprehensive study of the spec-
trum of excited charmonium mesons with masses up to
4.5 GeV that included possible cc̄-gluon hybrid states.
They find the lightest cc̄-gluon hybrids are a 0�+ pseu-
doscalar with M ' 4195 GeV; a 1�+ “exotic” with
M ' 4215 MeV and a 1�� vector with M ' 4285 MeV.
One of the non-standard mesons discussed in this report

ments (178; 179; 180). The LHCb group recently reported a 12�
signal for a ⌅cc candidate at a lower mass of 3621.4 ± 0.8 MeV
(181).
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• Relatively short list has been the focus of most LQCD calculations to date
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LQCD algorithms (see ref. (161) for a recent review), has
resulted in a number important recent results related to
hadron masses.

For example, the QCDSF Collaboration (162) reported
a lattice calculation of the masses of hadrons composed
of u, d, and s quarks, ranging from the ⌘ meson to the
⌦� baryon using only the charged pion and kaon masses
and a combination of the p, ⌃, and ⌅ masses as inputs;
the only tuneable parameters are the quark masses and
the coupling constant ↵s. Recent Results for mesons and
baryons are shown in Fig. 9, where there is a good agree-
ment with the established values.
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FIG. 9 The LQCD hadron spectrum from MILC (163;
164), PACS-CS (165), BMW (166), QCDSF (162), RBC &
UKQCD (167), Hadron Spectrum (168), UKQCD (169), Fermilab-
MILC (170), HPQCD (171), and Mohler & Woloshyn (172). The
b-flavored meson masses are o↵set by �4000 MeV. Horizontal bars
(gray boxes) denote experimentally measured masses (widths).
(Figure from ref. (173).)

To date, because of computing-power constraints, most
LQCD computations ignore isospin violations and set the
u- and d�quark masses equal. However, precision lattice
results on QCD-generated isospin violations are now be-
ing realized. Borsanyi et al. (174) have reported a lattice-
based, ab-initio computation of the (1.293 MeV) neutron-
proton mass di↵erence that results from the competi-
tion between electromagnetic and QCD-induced isospin-
breaking e↵ects12 with an accuracy of 300 keV. They
also determined mass splittings in the ⌃, ⌅, D and ⌅cc

13

erations performed in a year by a computer that sustains one
trillion operations per second.

12 The calculation reported in ref. (174) finds a QCD contribution
to mn �mp that is 2.52 ± 0.49 times larger than that from the
(opposite-sign) electromagnetic e↵ect. The magnitude of this
QCD contribution has huge existential significance; an increase
or decrease by as little as ⇠ 20% would have dire consequences
on Nature’s ability to support life (see ref. (175)).

13 The ⌅cc is a candidate for a doubly charmed ccq baryon with
mass M = 3820 ± 1.0 MeV that was reported by the SELEX
experiment (176; 177) but was not confirmed by other experi-

isospin multiplets with precision that is better, in some
cases, than that of the currently available experimental
measurements, as shown in Fig. 10.

FIG. 10 Results of the lattice computations of �N = mn � mp,
�⌃ = m⌃� �m⌃+ , �⌅ = m⌅� �m⌅0 , �D = mD+ �mD0 and
�⌅cc = m

⌅++
cc

� m
⌅+
cc

isospin mass splittings, and a test of the

Coleman-Glashow relation (182) �CG ⌘ �MN��M⌃��M⌅ = 0
from ref. (174). The horizontal lines are the experimental values
and the grey shaded regions represent the experimental error. The
computed precision for the quantities with labels in blue shaded
boxes is better than that of current measurements.

The spectrum of mesons carrying one charmed quark,
or a charmed-anticharmed pair, has been recently com-
puted on the lattice by Cichy et al. (183). To tune the
valence quark masses the authors used experimental val-
ues of the masses of electrically neutral and charged ⇡,
K, and D mesons. Using a variety of quark-antiquark
meson creation operators the authors were able to deter-
mine the masses of the lowest-lying 1S and 1P charmo-
nium states with levels of precision that are in the range
0.2 ⇠ 0.8 percent. Cichy et al. (183) also successfuly
verified the masses of several charm mesons with the ex-
ception of the D

⇤
s0
(2317) and Ds1(2460) (see sec. IV.A

below), which have masses close to two-meson thresh-
olds and, thus, require more advanced techniques (184),
as discussed in sec. IV.A.
Determining the highly-excited resonance spectra has

recently become possible thanks to a technique pro-
posed by Luscher (185). The Hadron Spectrum Col-
laboration (186) did a comprehensive study of the spec-
trum of excited charmonium mesons with masses up to
4.5 GeV that included possible cc̄-gluon hybrid states.
They find the lightest cc̄-gluon hybrids are a 0�+ pseu-
doscalar with M ' 4195 GeV; a 1�+ “exotic” with
M ' 4215 MeV and a 1�� vector with M ' 4285 MeV.
One of the non-standard mesons discussed in this report

ments (178; 179; 180). The LHCb group recently reported a 12�
signal for a ⌅cc candidate at a lower mass of 3621.4 ± 0.8 MeV
(181).

D
Ds

B B* Bs
Bs*

Stable hadrons in isosymmetric QCD
• Relatively short list has been the focus of most LQCD calculations to date

�7

π(qq̄), K(qs̄), η(qq̄)

N(qqq), Λ(qqs), Σ(qqs), Ξ(qss), Ω(sss)



/43S. Sharpe, “Resonances from LQCD”, Lecture 1, 7/8/2019,  Peking U. Summer School

[Kronfeld,
1203.1204]

MH
MB-4000

13

LQCD algorithms (see ref. (161) for a recent review), has
resulted in a number important recent results related to
hadron masses.

For example, the QCDSF Collaboration (162) reported
a lattice calculation of the masses of hadrons composed
of u, d, and s quarks, ranging from the ⌘ meson to the
⌦� baryon using only the charged pion and kaon masses
and a combination of the p, ⌃, and ⌅ masses as inputs;
the only tuneable parameters are the quark masses and
the coupling constant ↵s. Recent Results for mesons and
baryons are shown in Fig. 9, where there is a good agree-
ment with the established values.
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FIG. 9 The LQCD hadron spectrum from MILC (163;
164), PACS-CS (165), BMW (166), QCDSF (162), RBC &
UKQCD (167), Hadron Spectrum (168), UKQCD (169), Fermilab-
MILC (170), HPQCD (171), and Mohler & Woloshyn (172). The
b-flavored meson masses are o↵set by �4000 MeV. Horizontal bars
(gray boxes) denote experimentally measured masses (widths).
(Figure from ref. (173).)

To date, because of computing-power constraints, most
LQCD computations ignore isospin violations and set the
u- and d�quark masses equal. However, precision lattice
results on QCD-generated isospin violations are now be-
ing realized. Borsanyi et al. (174) have reported a lattice-
based, ab-initio computation of the (1.293 MeV) neutron-
proton mass di↵erence that results from the competi-
tion between electromagnetic and QCD-induced isospin-
breaking e↵ects12 with an accuracy of 300 keV. They
also determined mass splittings in the ⌃, ⌅, D and ⌅cc

13

erations performed in a year by a computer that sustains one
trillion operations per second.

12 The calculation reported in ref. (174) finds a QCD contribution
to mn �mp that is 2.52 ± 0.49 times larger than that from the
(opposite-sign) electromagnetic e↵ect. The magnitude of this
QCD contribution has huge existential significance; an increase
or decrease by as little as ⇠ 20% would have dire consequences
on Nature’s ability to support life (see ref. (175)).

13 The ⌅cc is a candidate for a doubly charmed ccq baryon with
mass M = 3820 ± 1.0 MeV that was reported by the SELEX
experiment (176; 177) but was not confirmed by other experi-

isospin multiplets with precision that is better, in some
cases, than that of the currently available experimental
measurements, as shown in Fig. 10.

FIG. 10 Results of the lattice computations of �N = mn � mp,
�⌃ = m⌃� �m⌃+ , �⌅ = m⌅� �m⌅0 , �D = mD+ �mD0 and
�⌅cc = m

⌅++
cc

� m
⌅+
cc

isospin mass splittings, and a test of the

Coleman-Glashow relation (182) �CG ⌘ �MN��M⌃��M⌅ = 0
from ref. (174). The horizontal lines are the experimental values
and the grey shaded regions represent the experimental error. The
computed precision for the quantities with labels in blue shaded
boxes is better than that of current measurements.

The spectrum of mesons carrying one charmed quark,
or a charmed-anticharmed pair, has been recently com-
puted on the lattice by Cichy et al. (183). To tune the
valence quark masses the authors used experimental val-
ues of the masses of electrically neutral and charged ⇡,
K, and D mesons. Using a variety of quark-antiquark
meson creation operators the authors were able to deter-
mine the masses of the lowest-lying 1S and 1P charmo-
nium states with levels of precision that are in the range
0.2 ⇠ 0.8 percent. Cichy et al. (183) also successfuly
verified the masses of several charm mesons with the ex-
ception of the D

⇤
s0
(2317) and Ds1(2460) (see sec. IV.A

below), which have masses close to two-meson thresh-
olds and, thus, require more advanced techniques (184),
as discussed in sec. IV.A.
Determining the highly-excited resonance spectra has

recently become possible thanks to a technique pro-
posed by Luscher (185). The Hadron Spectrum Col-
laboration (186) did a comprehensive study of the spec-
trum of excited charmonium mesons with masses up to
4.5 GeV that included possible cc̄-gluon hybrid states.
They find the lightest cc̄-gluon hybrids are a 0�+ pseu-
doscalar with M ' 4195 GeV; a 1�+ “exotic” with
M ' 4215 MeV and a 1�� vector with M ' 4285 MeV.
One of the non-standard mesons discussed in this report

ments (178; 179; 180). The LHCb group recently reported a 12�
signal for a ⌅cc candidate at a lower mass of 3621.4 ± 0.8 MeV
(181).
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LQCD algorithms (see ref. (161) for a recent review), has
resulted in a number important recent results related to
hadron masses.

For example, the QCDSF Collaboration (162) reported
a lattice calculation of the masses of hadrons composed
of u, d, and s quarks, ranging from the ⌘ meson to the
⌦� baryon using only the charged pion and kaon masses
and a combination of the p, ⌃, and ⌅ masses as inputs;
the only tuneable parameters are the quark masses and
the coupling constant ↵s. Recent Results for mesons and
baryons are shown in Fig. 9, where there is a good agree-
ment with the established values.
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FIG. 9 The LQCD hadron spectrum from MILC (163;
164), PACS-CS (165), BMW (166), QCDSF (162), RBC &
UKQCD (167), Hadron Spectrum (168), UKQCD (169), Fermilab-
MILC (170), HPQCD (171), and Mohler & Woloshyn (172). The
b-flavored meson masses are o↵set by �4000 MeV. Horizontal bars
(gray boxes) denote experimentally measured masses (widths).
(Figure from ref. (173).)

To date, because of computing-power constraints, most
LQCD computations ignore isospin violations and set the
u- and d�quark masses equal. However, precision lattice
results on QCD-generated isospin violations are now be-
ing realized. Borsanyi et al. (174) have reported a lattice-
based, ab-initio computation of the (1.293 MeV) neutron-
proton mass di↵erence that results from the competi-
tion between electromagnetic and QCD-induced isospin-
breaking e↵ects12 with an accuracy of 300 keV. They
also determined mass splittings in the ⌃, ⌅, D and ⌅cc

13

erations performed in a year by a computer that sustains one
trillion operations per second.

12 The calculation reported in ref. (174) finds a QCD contribution
to mn �mp that is 2.52 ± 0.49 times larger than that from the
(opposite-sign) electromagnetic e↵ect. The magnitude of this
QCD contribution has huge existential significance; an increase
or decrease by as little as ⇠ 20% would have dire consequences
on Nature’s ability to support life (see ref. (175)).

13 The ⌅cc is a candidate for a doubly charmed ccq baryon with
mass M = 3820 ± 1.0 MeV that was reported by the SELEX
experiment (176; 177) but was not confirmed by other experi-

isospin multiplets with precision that is better, in some
cases, than that of the currently available experimental
measurements, as shown in Fig. 10.

FIG. 10 Results of the lattice computations of �N = mn � mp,
�⌃ = m⌃� �m⌃+ , �⌅ = m⌅� �m⌅0 , �D = mD+ �mD0 and
�⌅cc = m

⌅++
cc

� m
⌅+
cc

isospin mass splittings, and a test of the

Coleman-Glashow relation (182) �CG ⌘ �MN��M⌃��M⌅ = 0
from ref. (174). The horizontal lines are the experimental values
and the grey shaded regions represent the experimental error. The
computed precision for the quantities with labels in blue shaded
boxes is better than that of current measurements.

The spectrum of mesons carrying one charmed quark,
or a charmed-anticharmed pair, has been recently com-
puted on the lattice by Cichy et al. (183). To tune the
valence quark masses the authors used experimental val-
ues of the masses of electrically neutral and charged ⇡,
K, and D mesons. Using a variety of quark-antiquark
meson creation operators the authors were able to deter-
mine the masses of the lowest-lying 1S and 1P charmo-
nium states with levels of precision that are in the range
0.2 ⇠ 0.8 percent. Cichy et al. (183) also successfuly
verified the masses of several charm mesons with the ex-
ception of the D

⇤
s0
(2317) and Ds1(2460) (see sec. IV.A

below), which have masses close to two-meson thresh-
olds and, thus, require more advanced techniques (184),
as discussed in sec. IV.A.
Determining the highly-excited resonance spectra has

recently become possible thanks to a technique pro-
posed by Luscher (185). The Hadron Spectrum Col-
laboration (186) did a comprehensive study of the spec-
trum of excited charmonium mesons with masses up to
4.5 GeV that included possible cc̄-gluon hybrid states.
They find the lightest cc̄-gluon hybrids are a 0�+ pseu-
doscalar with M ' 4195 GeV; a 1�+ “exotic” with
M ' 4215 MeV and a 1�� vector with M ' 4285 MeV.
One of the non-standard mesons discussed in this report

ments (178; 179; 180). The LHCb group recently reported a 12�
signal for a ⌅cc candidate at a lower mass of 3621.4 ± 0.8 MeV
(181).
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All other states are resonances!
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• Most hadrons are resonances!
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• Very short lived, with decays into 2, 3, … stable hadrons
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Examples of resonances
• Most hadrons are resonances!

• Very short lived, with decays into 2, 3, … stable hadrons
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• Example 1: single-channel decay of s-wave spin-triplet q q-bar state:

IGJPC = 1+1−− : ρ → ππ , Mρ ≈ 775MeV , Γρ ≈ 150MeV (τ = 4 × 10−23s)

• Many production mechanisms, e.g. τ− → π−π0ντ
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FIG. 8. Fully corrected Mπ−π0 distribution in τ− → π−π0ντ events (points). The solid curve

overlaid represents the results of the fit to the K&S model. The dashed curve is obtained using
the ρ(770) parameters obtained from this fit, but with the ρ′ contribution turned off (i.e., β set to

zero).

18

[CLEO collab., 
hep-ex/9910046]

ρ

ρ′�

ρ is produced by the vector part
of the weak current

Fitting the spectrum involves
models & uncertainties

ūγμd

e+e− → τ+τ− + X
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Examples of resonances
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• Example 2: multi-channel decay of p-wave     state:qq̄

meson resonances in lattice QCD | May 2018 | HMI TCD

‘straightforward’ coupled-channel resonances  5
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π

Pb Pb

π
π
π

π

η

π

p

K
K

p

pdg  s ummary  en t r y

… due to same a2 resonance

 0

 20

 40

 60

 80

 1.1  1.2  1.3  1.4  1.5  1.6

a 2( 1 320 )

COMPASS
Belle
CERN SPS

E / GeV

_



/43S. Sharpe, “Resonances from LQCD”, Lecture 1, 7/8/2019,  Peking U. Summer School

Examples of resonances

�10

• Example 2: multi-channel decay of p-wave     state:qq̄
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• Example 3: scalar, isoscalars—possible p-wave     statesqq̄

Examples of resonances
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Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

f0(500)f0(500)f0(500)f0(500) [g ] IG (JPC ) = 0+(0 + +)

Mass (T-Matrix Pole
√

s) = (400–550)−i(200–350) MeV
Mass (Breit-Wigner) = (400–550) MeV
Full width (Breit-Wigner) = (400–700) MeV

f0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ππ seen –
γγ seen –

ρ(770)ρ(770)ρ(770)ρ(770) [h] IG (JPC ) = 1+(1 −−)

Mass m = 775.26 ± 0.25 MeV
Full width Γ = 149.1 ± 0.8 MeV
Γee = 7.04 ± 0.06 keV

Scale factor/ p

ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

ππ ∼ 100 % 363

ρ(770)± decaysρ(770)± decaysρ(770)± decaysρ(770)± decays

π±γ ( 4.5 ±0.5 ) × 10−4 S=2.2 375

π±η < 6 × 10−3 CL=84% 152

π±π+π−π0 < 2.0 × 10−3 CL=84% 254

ρ(770)0 decaysρ(770)0 decaysρ(770)0 decaysρ(770)0 decays

π+π−γ ( 9.9 ±1.6 ) × 10−3 362

π0γ ( 4.7 ±0.6 ) × 10−4 S=1.4 376

ηγ ( 3.00±0.21 ) × 10−4 194

π0π0γ ( 4.5 ±0.8 ) × 10−5 363

µ+µ− [i ] ( 4.55±0.28 ) × 10−5 373

e+ e− [i ] ( 4.72±0.05 ) × 10−5 388

π+π−π0 ( 1.01+0.54
−0.36±0.34) × 10−4 323

π+π−π+π− ( 1.8 ±0.9 ) × 10−5 251

π+π−π0π0 ( 1.6 ±0.8 ) × 10−5 257

π0 e+ e− < 1.2 × 10−5 CL=90% 376

ω(782)ω(782)ω(782)ω(782) IG (JPC ) = 0−(1 −−)

Mass m = 782.65 ± 0.12 MeV (S = 1.9)
Full width Γ = 8.49 ± 0.08 MeV
Γee = 0.60 ± 0.02 keV

HTTP://PDG.LBL.GOV Page 4 Created: 5/22/2019 10:04

[PDG]

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

π∓ρ± ( 7.4 ±2.3 ) × 10−4 106

π0ρ0 < 4 % 90% 111

2(π+π−) ( 8.4 ±0.9 ) × 10−5 372

π+π−2π0 ( 1.8 ±0.4 ) × 10−4 376

2(π+π−) neutrals < 1 % 95% –
2(π+π−)π0 < 1.8 × 10−3 90% 298

2(π+π−)2π0 < 1 % 95% 197

3(π+π−) < 3.1 × 10−5 90% 189

K±π∓ < 4 × 10−5 90% 334

π+π− e+ e− ( 2.4 +1.3
−1.0 ) × 10−3 458

π+ e− νe + c.c. < 2.1 × 10−4 90% 469

γ e+ e− ( 4.73±0.30) × 10−4 479

π0γγ ( 3.20±0.24) × 10−3 469

π0γγ (non resonant) ( 6.2 ±0.9 ) × 10−4 –
4π0 < 3.2 × 10−4 90% 380

e+ e− < 5.6 × 10−9 90% 479

invisible < 5 × 10−4 90% –

Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),
Lepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modes

π+π− P,CP < 1.8 × 10−5 90% 458

π0π0 P,CP < 4 × 10−4 90% 459

π0 e+ e− C [f ] < 1.4 × 10−3 90% 469

η e+ e− C [f ] < 2.4 × 10−3 90% 322

3γ C < 1.1 × 10−4 90% 479

µ+µ−π0 C [f ] < 6.0 × 10−5 90% 445

µ+µ− η C [f ] < 1.5 × 10−5 90% 273

e µ LF < 4.7 × 10−4 90% 473

f0(980)f0(980)f0(980)f0(980) [j ] IG (JPC ) = 0+(0 + +)

Mass m = 990 ± 20 MeV
Full width Γ = 10 to 100 MeV

f0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ππ seen 476

K K seen 36

γγ seen 495

a0(980)a0(980)a0(980)a0(980) [j ] IG (JPC ) = 1−(0 + +)

Mass m = 980 ± 20 MeV
Full width Γ = 50 to 100 MeV
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Examples of resonances
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f0(500)f0(500)f0(500)f0(500) [g ] IG (JPC ) = 0+(0 + +)

Mass (T-Matrix Pole
√

s) = (400–550)−i(200–350) MeV
Mass (Breit-Wigner) = (400–550) MeV
Full width (Breit-Wigner) = (400–700) MeV

f0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ππ seen –
γγ seen –

ρ(770)ρ(770)ρ(770)ρ(770) [h] IG (JPC ) = 1+(1 −−)

Mass m = 775.26 ± 0.25 MeV
Full width Γ = 149.1 ± 0.8 MeV
Γee = 7.04 ± 0.06 keV

Scale factor/ p

ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

ππ ∼ 100 % 363

ρ(770)± decaysρ(770)± decaysρ(770)± decaysρ(770)± decays

π±γ ( 4.5 ±0.5 ) × 10−4 S=2.2 375

π±η < 6 × 10−3 CL=84% 152

π±π+π−π0 < 2.0 × 10−3 CL=84% 254

ρ(770)0 decaysρ(770)0 decaysρ(770)0 decaysρ(770)0 decays

π+π−γ ( 9.9 ±1.6 ) × 10−3 362

π0γ ( 4.7 ±0.6 ) × 10−4 S=1.4 376

ηγ ( 3.00±0.21 ) × 10−4 194

π0π0γ ( 4.5 ±0.8 ) × 10−5 363

µ+µ− [i ] ( 4.55±0.28 ) × 10−5 373

e+ e− [i ] ( 4.72±0.05 ) × 10−5 388

π+π−π0 ( 1.01+0.54
−0.36±0.34) × 10−4 323

π+π−π+π− ( 1.8 ±0.9 ) × 10−5 251

π+π−π0π0 ( 1.6 ±0.8 ) × 10−5 257

π0 e+ e− < 1.2 × 10−5 CL=90% 376

ω(782)ω(782)ω(782)ω(782) IG (JPC ) = 0−(1 −−)

Mass m = 782.65 ± 0.12 MeV (S = 1.9)
Full width Γ = 8.49 ± 0.08 MeV
Γee = 0.60 ± 0.02 keV
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π∓ρ± ( 7.4 ±2.3 ) × 10−4 106

π0ρ0 < 4 % 90% 111

2(π+π−) ( 8.4 ±0.9 ) × 10−5 372

π+π−2π0 ( 1.8 ±0.4 ) × 10−4 376

2(π+π−) neutrals < 1 % 95% –
2(π+π−)π0 < 1.8 × 10−3 90% 298

2(π+π−)2π0 < 1 % 95% 197

3(π+π−) < 3.1 × 10−5 90% 189

K±π∓ < 4 × 10−5 90% 334

π+π− e+ e− ( 2.4 +1.3
−1.0 ) × 10−3 458

π+ e− νe + c.c. < 2.1 × 10−4 90% 469

γ e+ e− ( 4.73±0.30) × 10−4 479

π0γγ ( 3.20±0.24) × 10−3 469

π0γγ (non resonant) ( 6.2 ±0.9 ) × 10−4 –
4π0 < 3.2 × 10−4 90% 380

e+ e− < 5.6 × 10−9 90% 479

invisible < 5 × 10−4 90% –

Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),
Lepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modesLepton family number (LF ) violating modes

π+π− P,CP < 1.8 × 10−5 90% 458

π0π0 P,CP < 4 × 10−4 90% 459

π0 e+ e− C [f ] < 1.4 × 10−3 90% 469

η e+ e− C [f ] < 2.4 × 10−3 90% 322

3γ C < 1.1 × 10−4 90% 479

µ+µ−π0 C [f ] < 6.0 × 10−5 90% 445

µ+µ− η C [f ] < 1.5 × 10−5 90% 273

e µ LF < 4.7 × 10−4 90% 473

f0(980)f0(980)f0(980)f0(980) [j ] IG (JPC ) = 0+(0 + +)

Mass m = 990 ± 20 MeV
Full width Γ = 10 to 100 MeV

f0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODESf0(980) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ππ seen 476

K K seen 36

γγ seen 495

a0(980)a0(980)a0(980)a0(980) [j ] IG (JPC ) = 1−(0 + +)

Mass m = 980 ± 20 MeV
Full width Γ = 50 to 100 MeV
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• Large uncertainties because analyses are difficult

meson resonances in lattice QCD | May 2018 | HMI TCD

the simplest case: ππ elastic scattering  11

π π

π

p N

π

p N
π
π

s

t

ππ partial-waves 
— project Pℓ(cos θ)

on-shell π exchange 
— extrapolate to t = −mπ2

extract from charged pion beams on nucleon targets

i s o s p i n =0

Graye r  1 974

i s o s p i n =2

Cohen  1 972

i s o s p i n =1

Hyams  1 973

[Figure from HMI slides of Jo Dudek]
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meson resonances in lattice QCD | May 2018 | HMI TCD

the simplest case: ππ elastic scattering  11

π π

π

p N

π

p N
π
π

s

t

ππ partial-waves 
— project Pℓ(cos θ)

on-shell π exchange 
— extrapolate to t = −mπ2

extract from charged pion beams on nucleon targets

i s o s p i n =0

Graye r  1 974

i s o s p i n =2

Cohen  1 972

i s o s p i n =1

Hyams  1 973

• Extract the phase shift from complicated amplitude analysis

f0(500)

f0(980)
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the simplest case: ππ elastic scattering  11

π π

π

p N

π

p N
π
π

s

t

ππ partial-waves 
— project Pℓ(cos θ)

on-shell π exchange 
— extrapolate to t = −mπ2

extract from charged pion beams on nucleon targets

i s o s p i n =0

Graye r  1 974

i s o s p i n =2

Cohen  1 972

i s o s p i n =1

Hyams  1 973

• Phase shift in I=J=1 ππ channel

ρ

Aside on inelasticity

�13

gives probability for 
scattering into any final state 

other than ππ, 
e.g. KK-bar, ηη, 4π

Becomes nonzero above 
1 GeV 

1 − |η |2
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• Example 4: Roper (excited nucleon)

Examples of resonances

�14

• Extracted from amplitude analysis of πN scattering

• Lighter than expected from quark model for a radial excitation

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

p

n DECAY MODESn DECAY MODESn DECAY MODESn DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

pe− νe 100 % 1

pe− νe γ [l] ( 9.2±0.7) × 10−3 1

hydrogen-atom νe < 2.7 × 10−3 95% 1.19

Charge conservation (Q) violating modeCharge conservation (Q) violating modeCharge conservation (Q) violating modeCharge conservation (Q) violating mode

pνe νe Q < 8 × 10−27 68% 1

N(1440) 1/2+N(1440) 1/2+N(1440) 1/2+N(1440) 1/2+ I (JP ) = 1
2 (1

2
+)

Re(pole position) = 1360 to 1380 (≈ 1370) MeV
−2Im(pole position) = 160 to 190 (≈ 175) MeV
Breit-Wigner mass = 1410 to 1470 (≈ 1440) MeV
Breit-Wigner full width = 250 to 450 (≈ 350) MeV

N(1440) DECAY MODESN(1440) DECAY MODESN(1440) DECAY MODESN(1440) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

N π 55–75 % 398

N η <1 % †

N ππ 17–50 % 347

∆(1232)π , P-wave 6–27 % 147

N σ 11–23 % –
pγ , helicity=1/2 0.035–0.048 % 414

nγ , helicity=1/2 0.02–0.04 % 413

N(1520) 3/2−N(1520) 3/2−N(1520) 3/2−N(1520) 3/2− I (JP ) = 1
2 (3

2
−)

Re(pole position) = 1505 to 1515 (≈ 1510) MeV
−2Im(pole position) = 105 to 120 (≈ 110) MeV
Breit-Wigner mass = 1510 to 1520 (≈ 1515) MeV
Breit-Wigner full width = 100 to 120 (≈ 110) MeV

N(1520) DECAY MODESN(1520) DECAY MODESN(1520) DECAY MODESN(1520) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

N π 55–65 % 453

N η 0.07–0.09 % 142

N ππ 25–35 % 410

∆(1232)π 22–34 % 225

∆(1232)π , S-wave 15–23 % 225

∆(1232)π , D-wave 7–11 % 225

N σ < 2 % –
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• Example 5: Zc(3900)—a nonstandard meson

Examples of resonances
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[PDG]
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π+π−χc1 not seen 218

pp not seen 1693

Zc(3900)Zc(3900)Zc(3900)Zc(3900) IG (JPC ) = 1+(1 + −)

Mass m = 3887.2 ± 2.3 MeV (S = 1.6)
Full width Γ = 28.2 ± 2.6 MeV

Zc (3900) DECAY MODESZc (3900) DECAY MODESZc (3900) DECAY MODESZc (3900) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

J/ψπ seen 699

hc π± not seen 318

ηc π+π− not seen 759

(D D∗)± seen –
D0D∗−+ c.c. seen 153

D−D∗0+ c.c. seen 144

ωπ± not seen 1862

J/ψη not seen 510

D+D∗−+ c.c seen –
D0D∗0+ c.c seen –

X (3915)X (3915)X (3915)X (3915) IG (JPC ) = 0+(0 or 2 + +)

Mass m = 3918.4 ± 1.9 MeV
Full width Γ = 20 ± 5 MeV (S = 1.1)

X (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ωJ/ψ seen 222

π+π−ηc (1S) not seen 785

ηc η not seen 665

ηc π0 not seen 814

K K not seen 1896

γγ seen 1959

χc2(3930)χc2(3930)χc2(3930)χc2(3930) IG (JPC ) = 0+(2 + +)

Mass m = 3927.2 ± 2.6 MeV
Full width Γ = 24 ± 6 MeV

χc2(3930) DECAY MODESχc2(3930) DECAY MODESχc2(3930) DECAY MODESχc2(3930) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

γγ seen 1964

D D seen 615
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ρηc (now seen at 4.2σ significance, [BESIII])
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π+π−χc1 not seen 218

pp not seen 1693

Zc(3900)Zc(3900)Zc(3900)Zc(3900) IG (JPC ) = 1+(1 + −)

Mass m = 3887.2 ± 2.3 MeV (S = 1.6)
Full width Γ = 28.2 ± 2.6 MeV

Zc (3900) DECAY MODESZc (3900) DECAY MODESZc (3900) DECAY MODESZc (3900) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

J/ψπ seen 699

hc π± not seen 318

ηc π+π− not seen 759

(D D∗)± seen –
D0D∗−+ c.c. seen 153

D−D∗0+ c.c. seen 144

ωπ± not seen 1862

J/ψη not seen 510

D+D∗−+ c.c seen –
D0D∗0+ c.c seen –

X (3915)X (3915)X (3915)X (3915) IG (JPC ) = 0+(0 or 2 + +)

Mass m = 3918.4 ± 1.9 MeV
Full width Γ = 20 ± 5 MeV (S = 1.1)

X (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ωJ/ψ seen 222

π+π−ηc (1S) not seen 785

ηc η not seen 665

ηc π0 not seen 814

K K not seen 1896

γγ seen 1959

χc2(3930)χc2(3930)χc2(3930)χc2(3930) IG (JPC ) = 0+(2 + +)

Mass m = 3927.2 ± 2.6 MeV
Full width Γ = 24 ± 6 MeV

χc2(3930) DECAY MODESχc2(3930) DECAY MODESχc2(3930) DECAY MODESχc2(3930) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

γγ seen 1964

D D seen 615
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ρηc (now seen at 4.2σ significance, [BESIII])

Discovery of the Zc(3900)

7

¾ Mass  =  (3899.0±3.6±4.9) MeV
¾ Width =  (46±10±20) MeV
¾ Fraction = (21.5±3.3±7.5)%

In e+e-oS+S-J/\ events at 4.26 
GeV, a particle decays into SrJ/\
is observed!

• Couples toCcc
• Has electric charge
• At least 4 quarks
• A tetraquark state?

ACDD* molecule?

PRL110, 252001 (2013)

Significance 
>8V

[BESIII, talk at Lattice 2019 by C. Yuan]

Observed by BESIII, Belle, CLEO-c
in 2013

e+e− → π±Z∓
c
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π+π−χc1 not seen 218

pp not seen 1693

Zc(3900)Zc(3900)Zc(3900)Zc(3900) IG (JPC ) = 1+(1 + −)

Mass m = 3887.2 ± 2.3 MeV (S = 1.6)
Full width Γ = 28.2 ± 2.6 MeV

Zc (3900) DECAY MODESZc (3900) DECAY MODESZc (3900) DECAY MODESZc (3900) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

J/ψπ seen 699

hc π± not seen 318

ηc π+π− not seen 759

(D D∗)± seen –
D0D∗−+ c.c. seen 153

D−D∗0+ c.c. seen 144

ωπ± not seen 1862

J/ψη not seen 510

D+D∗−+ c.c seen –
D0D∗0+ c.c seen –

X (3915)X (3915)X (3915)X (3915) IG (JPC ) = 0+(0 or 2 + +)

Mass m = 3918.4 ± 1.9 MeV
Full width Γ = 20 ± 5 MeV (S = 1.1)

X (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODESX (3915) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ωJ/ψ seen 222

π+π−ηc (1S) not seen 785

ηc η not seen 665

ηc π0 not seen 814

K K not seen 1896

γγ seen 1959

χc2(3930)χc2(3930)χc2(3930)χc2(3930) IG (JPC ) = 0+(2 + +)

Mass m = 3927.2 ± 2.6 MeV
Full width Γ = 24 ± 6 MeV

χc2(3930) DECAY MODESχc2(3930) DECAY MODESχc2(3930) DECAY MODESχc2(3930) DECAY MODES Fraction (Γi /Γ) p (MeV/c)
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ρηc (now seen at 4.2σ significance, [BESIII])

Discovery of the Zc(3900)

7

¾ Mass  =  (3899.0±3.6±4.9) MeV
¾ Width =  (46±10±20) MeV
¾ Fraction = (21.5±3.3±7.5)%

In e+e-oS+S-J/\ events at 4.26 
GeV, a particle decays into SrJ/\
is observed!

• Couples toCcc
• Has electric charge
• At least 4 quarks
• A tetraquark state?

ACDD* molecule?

PRL110, 252001 (2013)

Significance 
>8V

[BESIII, talk at Lattice 2019 by C. Yuan]

Observed by BESIII, Belle, CLEO-c
in 2013

e+e− → π±Z∓
c

• Zc+ quark composition: cc̄ud̄
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• Example 5: Zc(3900)—a nonstandard meson

Examples of resonances
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• Zc+ quark composition: cc̄ud̄
2

FIG. 1. A possible decay scheme of the Y (4260) through
Zc(3900), together with the relevant two-meson thresholds of
the Zc(3900) decay at mπ ≃ 140 (Expt.), 410 (case I), 570
(case II) and 700 (case III) MeV. The arrows represent the
observed decay modes in the experiments [2–4].

state specified by n on the lattice is related to Eq.(1) as
Cαβ(r⃗, t) =

∑

n ψ
α
n(r⃗)A

β
ne

−Wnt with Wn being the eigen-

value of the n th QCD eigenstate. Aβn ≡ ⟨Wn|J
β
|0⟩ is

an overlap between the eigenstate and QCD vacuum by

the insertion of J
β
. It can be shown that Rαβ(r⃗, t) ≡

Cαβ(r⃗, t)e(m
α

1
+mα

2
)t satisfies the Schrödinger-type equa-

tion [13, 16],
(

−
∂

∂t
−Hα

0

)

Rαβ(r⃗, t) =

∑

γ

∆αγ

∫

dr⃗′Uαγ(r⃗, r⃗′)Rγβ(r⃗′, t) , (2)

where Hα
0 = −∇2/2µα with the reduced mass µα =

mα
1m

α
2 /(m

α
1 +mα

2 ) and ∆αγ = e(m
α

1
+mα

2
)t/e(m

γ

1
+mγ

2
)t. In

the above equation, we neglect terms associated with rel-
ativistic corrections, O

(

(∂2t /m
α
1,2)(∂t/m

α
1,2)

n
)

with n ≥
0. We have checked that the relativistic corrections are
negligible in the present lattice setup with relatively large
pion masses. Here we consider t sufficiently large so
that the inelastic states (The lowest one is D̄∗D∗ in the
present lattice QCD setup) becomes negligible in Uαβ,
otherwise these channels should be taken into account
explicitly. The energy-independent coupled-channel po-
tential Uαβ(r⃗, r⃗′) guarantees that the S matrix is unitary
below the D̄∗D∗ threshold [15, 16] and gives the correct
scattering amplitude. In the following, we take the s-
wave projection (A+

1 projection of the cubic group on the
lattice) and also employ the lowest order of the velocity
expansion, Uαβ(r⃗, r⃗′) = V αβ(r⃗)δ(r⃗ − r⃗′) + O(∇2) to ex-
tract the spherical and local potential V αβ(r). The sys-
tematic errors originating from higher derivative terms
are estimated by the t dependence of the observables [13].
We note here that the HAL QCD method and the con-

ventional Lüscher’s method are both based on Eq. (1).
In the coupled-channel Lüscher’s method proposed in
Refs. [23–25], some phenomenological parametrization of
the K matrix is employed that approximates the energy
dependence of the coupled-channel S matrix, while in
the present method, the velocity expansion is employed
that approximates the nonlocality of the coupled-channel
potentials.

In order to extract V αβ(r) from lattice QCD simu-
lation, we employ (2+1)-flavor QCD gauge configura-
tions generated by the PACS-CS Collaboration [26, 27]
on a 323 × 64 lattice with the renormalization group
improved gauge action at βlat = 1.90 and the non-
perturbatively O(a)-improved Wilson quark action at
CSW = 1.715. These parameters correspond to the lattice
spacing a = 0.0907(13) fm and the spatial lattice volume
L3 ≃ (2.9 fm)3. The hopping parameters are taken to
be κud = 0.13 700, 0.13 727, 0.13 754 for u and d quarks
and κs = 0.13 640 for the s quark. We employ the rel-
ativistic heavy quark action for the charm quark [28] to
remove the leading order and next-to-leading order cut-
off errors, O((mca)n) and O((mca)n(aΛQCD)), respec-
tively [29, 30]. To improve the statistics, measurements
are repeated twice for each configuration by shifting the
source in time direction. The statistical errors are eval-
uated by the jackknife method. The calculated meson
masses and the number of configurations Ncfg used in
our simulations are listed in Table I together with the
physical meson masses. The two-meson thresholds rele-
vant to our analysis are shown in Fig. 1: Because of the
heavy pion mass in our simulation, the πψ′(3826) thresh-
old is above the D̄D∗ threshold. Also, ρ → ππ decay is
not allowed with L ≃ 3fm, so that ρηc is a well-defined
two-body channel. Pair annihilations of charm quarks
are not considered in the present simulations.

mπ mρ mηc mJ/ψ mD̄ mD∗ Ncfg

Expt. 140 775 2984 3097 1870 2007

Case I 411(1) 896(8) 2988(1) 3097(1) 1903(1) 2056(3) 450

Case II 570(1) 1000(5) 3005(1) 3118(1) 1947(1) 2101(2) 400

Case III 701(1) 1097(4) 3024(1) 3143(1) 2000(1) 2159(2) 399

TABLE I. Meson masses in MeV units and the number of
configurations used in our simulations.

In Fig. 2, we show the results of the s-wave πJ/ψ-
ρηc-D̄D∗ coupled-channel potentials at time slice t = 13,
where the time-slice dependence in t = 11–15 on the po-
tentials V αβ is found to be weak: This implies that con-
tributions from the inelastic D̄∗D∗ scattering states to
V αβ are negligible, and the convergence of the derivative
expansion is reliable. We find that all diagonal poten-
tials, (a) V D̄D∗,D̄D∗

, (c) V ρηc,ρηc , and (f) V πJ/ψ,πJ/ψ are
very weak. This observation indicates that the Zc(3900)
is neither a simple πJ/ψ nor D̄D∗ molecule. Among the

[Ikeda et al., 1602.03465]
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• Possible interpretations:

• Tetraquark

• Molecule

• Threshold enhancement—
supported by HALQCD 
study [1602.03465]
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Lessons
• Extracting resonance parameters from experiment is indirect & challenging

• Resonance is defined as a pole in a scattering amplitude—not directly accessible

• Typical resonances have multiple decay channels, each involving 2 or 3 (or more) 
particles

• Quark model (or other models) fails to explain presence or properties of an 
increasing number of resonances

• X, Y, Z resonances, glueballs, hybrids, tetraquarks, pentaquark, …

• Resonances are a largely unexplored frontier in our attempts to understand hadronic 
physics (i.e. the properties of a strongly-coupled QFT) from first principles
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• LQCD has advantage of being able to turn off electroweak interactions
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• Quark model fails to explain presence or properties of an increasing number of 
resonances

• X, Y, Z resonances, glueballs, hybrids, tetraquarks, pentaquark, …

How can LQCD help?
• Extracting resonance parameters from experiment is indirect & challenging

• Resonance is defined as a pole in a scattering amplitude—not directly accessible
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• Methods for indirectly accessing scattering amplitudes must be developed 
(the main topic of these lectures)

• LQCD has advantage of being able to turn off electroweak interactions

• Typical resonances have multiple decay channels, each involving 2 or 3 (or more) 
particles

• LQCD calculations must deal with multiple channels of multiparticle states

• LQCD calculations must use large bases of operators to allow 
understanding of structure of hadrons—any input is useful!

• Varying the quark masses can provide additional useful information
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Personal note
• As a grad student I used the MIT bag model to predict the masses of  “hybrid” 

mesons—resonances of the form:  quark + antiquark + “constituent gluon”
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We calculate the spectrum of the four ground state hybrid (~tqg) nonets, j e c  = (0, I, 2) - +, 1 - -, 
using the MIT bag model to first order in cavity perturbation theory. Quark and gluon self- 
energies are included by a fit to the s-wave mesons and baryons and to the glueball candidate 
i(14,10). We find a large gluon self-energy which substantially increases our predictions of the 
glueball and hybrid masses. We discuss the phenomenology of hybrids, including a suggestion that 
the A3(1670) and a second peak at 1850 MeV in the f,r channel may be mixtures of the isovector 
~q d-wave state with the ~qg s-wave. 

1. Introduction 

Though often taken for granted, the existence of  valence quarks is a remarkable 
and poorly  unders tood feature of  the meson and baryon spectrum. It is natural to 
speculate that hadrons  also exist which contain valence gluons, and this speculation 
lies at the heart of  bag [1-4]  and potential [5, 6] model descriptions of  the glueball 
spectrum. In this paper  we use the bag model to study another  kind of  hadron which 
must  exist if valence gluons exist. These are mixed states with valence structure V:lqg, 
which we call hybrids. 

Hybrids  have previously been discussed qualitatively [7] and their s-wave spec- 
t rum has been studied in the bag model  through order  a s [8-10]. Our  calculation of 
the spectrum is also to O(as)  in the bag model  but  differs from refs. [9] and [10] in 
that we incorporate  O(as)  self-energy effects not  included by the other  authors. As a 
result our  predictions for the hybrid  (and glueball) masses tend to be substantially 
larger. The s-wave hybrid ground state forms four SU(3)~vo r nonets, j e c =  1 - - ,  
(0, 1,2) -+  which we expect to lie between 1.2 and 2.5 GeV. We agree with ref. [10] 
but  not with [9], that  the nonets are in order  of  increasing mass 0 -+,  l -+ ,  l - - , 2  -+. 
The 1-+ nonet  is especially interesting since it is exotic, in the sense that in the 
non-relativistic quark  model no qq pair has j e c  = 1 - ÷  * 

• This work was supported by ~e Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under contract 
DE-AC03-76SF00098. 

• There could however be I - ÷ clq states in the bag model, due to a C-parity doubling that occurs for 
radial and orbital [! I, 12] excitations. These are the so-called "spurious" states discussed in sect. 2. 
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• I was dissatisfied with the bag model—uncontrolled errors of many sorts—and began 
working on LQCD in 1984 in order to do a first principles calculation

• [Rajan Gupta, Greg Kilcup & I] did a quenched calculation on 73x14 lattices, with 
heavy unimproved Wilson fermions, naive methods, and found…
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Noise!

• I was dissatisfied with the bag model—uncontrolled errors of many sorts—and began 
working on LQCD in 1984 in order to do a first principles calculation

• [Rajan Gupta, Greg Kilcup & I] did a quenched calculation on 73x14 lattices, with 
heavy unimproved Wilson fermions, naive methods, and found…
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We calculate the spectrum of the four ground state hybrid (~tqg) nonets, j e c  = (0, I, 2) - +, 1 - -, 
using the MIT bag model to first order in cavity perturbation theory. Quark and gluon self- 
energies are included by a fit to the s-wave mesons and baryons and to the glueball candidate 
i(14,10). We find a large gluon self-energy which substantially increases our predictions of the 
glueball and hybrid masses. We discuss the phenomenology of hybrids, including a suggestion that 
the A3(1670) and a second peak at 1850 MeV in the f,r channel may be mixtures of the isovector 
~q d-wave state with the ~qg s-wave. 

1. Introduction 
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and poorly  unders tood feature of  the meson and baryon spectrum. It is natural to 
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spectrum. In this paper  we use the bag model to study another  kind of  hadron which 
must  exist if valence gluons exist. These are mixed states with valence structure V:lqg, 
which we call hybrids. 

Hybrids  have previously been discussed qualitatively [7] and their s-wave spec- 
t rum has been studied in the bag model  through order  a s [8-10]. Our  calculation of 
the spectrum is also to O(as)  in the bag model  but  differs from refs. [9] and [10] in 
that we incorporate  O(as)  self-energy effects not  included by the other  authors. As a 
result our  predictions for the hybrid  (and glueball) masses tend to be substantially 
larger. The s-wave hybrid ground state forms four SU(3)~vo r nonets, j e c =  1 - - ,  
(0, 1,2) -+  which we expect to lie between 1.2 and 2.5 GeV. We agree with ref. [10] 
but  not with [9], that  the nonets are in order  of  increasing mass 0 -+,  l -+ ,  l - - , 2  -+. 
The 1-+ nonet  is especially interesting since it is exotic, in the sense that in the 
non-relativistic quark  model no qq pair has j e c  = 1 - ÷  * 

• This work was supported by ~e Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under contract 
DE-AC03-76SF00098. 

• There could however be I - ÷ clq states in the bag model, due to a C-parity doubling that occurs for 
radial and orbital [! I, 12] excitations. These are the so-called "spurious" states discussed in sect. 2. 
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• There are now increasingly sophisticated calculations of hybrid meson properties, and 
these will eventually be based on the formalism I will describe in these lectures
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Preview

�20

• Fundamental issue: 

• LQCD simulations are done in finite volumes, with imaginary time

• Experiments are done in infinite volume in real time

How do we connect? 

?
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Fundamental Issue

�21

• Lattice QCD can calculate energy levels of multiparticle systems in a box

• How are these related to infinite-volume scattering amplitudes (which 
determine resonance properties)?

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)
?
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Fundamental Issue

�21

• Lattice QCD can calculate energy levels of multiparticle systems in a box

• How are these related to infinite-volume scattering amplitudes (which 
determine resonance properties)?

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)
?

N.B.This is a finite volume

QFT problem (can ignore

lattice spacing)
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Further 
motivations for 

studying multiparticle 
states

�22
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Motivations

�23

• Calculating electroweak decay and transition amplitudes for processes 
involving multiple particles

• Determining NN and NNN interactions as input for predicting properties of 
nuclei and nuclear matter
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Motivations

�23

• Calculating electroweak decay and transition amplitudes for processes 
involving multiple particles

• Determining NN and NNN interactions as input for predicting properties of 
nuclei and nuclear matter

Will not have time to discuss the 
required formalism in these lectures, 

except in passing
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e.g. K→ππ decay amplitudes

weak

Electroweak decays

• Does the SM reproduce the ΔI=1/2 rule?

• Does the SM reproduce direct CP-violation in K→ππ?

Γ(K0
S → ππ)/Γ(K+ → ππ) ≈ 330

�(KL ! ⇡0⇡0)

�(KS ! ⇡0⇡0)

�(KS ! ⇡+⇡�)

�(KL ! ⇡+⇡�)
⇡ 1� 6Re(✏0/✏)

ϵ′�/ϵ = 1.63 ± 0.26 × 10−3 [KTeV & NA48, 1999]

[Sachrajda lectures]
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e.g. K→ππ decay amplitudes

weak

Electroweak decays

• Does the SM reproduce the ΔI=1/2 rule?

• Does the SM reproduce direct CP-violation in K→ππ?

Γ(K0
S → ππ)/Γ(K+ → ππ) ≈ 330

�(KL ! ⇡0⇡0)

�(KS ! ⇡0⇡0)

�(KS ! ⇡+⇡�)

�(KL ! ⇡+⇡�)
⇡ 1� 6Re(✏0/✏)

ϵ′�/ϵ = 1.63 ± 0.26 × 10−3 [KTeV & NA48, 1999]

Substantial progress to answering these

questions has been made by the

 [RBC-UKQCD collaboration]

[Sachrajda lectures]
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e.g. K→πππ decay amplitudes

weak

Electroweak decays

• Does the SM reproduce the observed CP violation in K→πππ decays?
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e.g. K→πππ decay amplitudes

weak

Electroweak decays

• Does the SM reproduce the observed CP violation in K→πππ decays?

Formalism not complete
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e.g. B→K* l ν → K π l ν decay amplitude

Electroweak transitions

• Allows determination of elements of CKM matrix

• LQCD calculation is (much) harder than for B→K l ν & B→π l ν, but 
there is lots of experimental data

weak
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e.g. B→K* l ν → K π l ν decay amplitude

Electroweak transitions

• Allows determination of elements of CKM matrix

• LQCD calculation is (much) harder than for B→K l ν & B→π l ν, but 
there is lots of experimental data

weak

Work underway by [Leskovec, Meinel et al.]
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A more distant motivation

�27

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2019-042
LHCb-PAPER-2019-006

March 21, 2019

Observation of CP violation in
charm decays

LHCb collaboration†

Abstract

A search for charge-parity (CP ) violation in D0
! K�K+ and D0

! ⇡�⇡+ de-
cays is reported, using pp collision data corresponding to an integrated luminosity
of 6 fb�1 collected at a center-of-mass energy of 13TeV with the LHCb detec-
tor. The flavor of the charm meson is inferred from the charge of the pion in
D⇤(2010)+! D0⇡+ decays or from the charge of the muon in B! D0µ�⌫̄µX decays.
The di↵erence between the CP asymmetries in D0

! K�K+ and D0
! ⇡�⇡+ decays

is measured to be �ACP = [�18.2± 3.2 (stat.)± 0.9 (syst.)]⇥ 10�4 for ⇡-tagged
and �ACP = [�9± 8 (stat.)± 5 (syst.)]⇥ 10�4 for µ-tagged D0 mesons. Combining
these with previous LHCb results leads to

�ACP = (�15.4± 2.9)⇥ 10�4,

where the uncertainty includes both statistical and systematic contributions. The
measured value di↵ers from zero by more than five standard deviations. This is the
first observation of CP violation in the decay of charm hadrons.

Submitted to Phys. Rev. Lett.

c� 2019 CERN for the benefit of the LHCb collaboration. CC-BY-4.0 licence.

†Authors are listed at the end of this paper.
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A more distant motivation

�28

• Calculating CP-violation in D→ππ, KK̅ in the Standard Model

• Finite-volume state is a mix of 2π, KK̅, ηη, 4π, 6π, …

• Need 4 (or more) particles in the box!

weak strong

D 2π 4π
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ΔMK

�29

weak weak

KK ππ

• Measured in 1961 by [Fitch et al.], but we still do not know whether it is consistent 
with the standard model

• Dominated by long-distance ππ contribution

• LQCD method, accounting for finite-volume effects, developed by [Christ, Feng, 
Martinelli & Sachrajda, 1504.01170]

• Numerical calculations underway [RBC-UKQCD]

[Sachrajda lectures]
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3-body interactions

�30
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3-body interactions

�30

• Determining NN & NNN interactions

• Input for effective field theory treatments of larger nuclei & nuclear matter

• NNN interaction important for determining properties of neutron stars

• Similarly, πππ, πKK̅, … interactions needed for study 
of pion/kaon condensation
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3-body interactions

�30

• Determining NN & NNN interactions

• Input for effective field theory treatments of larger nuclei & nuclear matter

• NNN interaction important for determining properties of neutron stars

• Similarly, πππ, πKK̅, … interactions needed for study 
of pion/kaon condensation

[HALQCD collaboration] has made 

significant progress on determining

NN potentials from LQCD



/43S. Sharpe, “Resonances from LQCD”, Lecture 1, 7/8/2019,  Peking U. Summer School

Scattering basics 
(infinite-volume)

�31
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M2
• Recall some details of the simplest scattering process:  2 → 2

• We will only discuss scalar (spinless) particles in these lectures, e.g. pions

• We will also consider only identical particles, e.g. π+ π+ → π+ π+

�32

• Scattering amplitude related to the S matrix

• In a given theory, can calculate in perturbation theory (PT), e.g. in φ4 theory

⟨ f |T | i⟩ = (2π)4δ4(Pf − Pi)ℳfiS = 1 + iT

iℳ2 =from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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M2
• Recall some details of the simplest scattering process:  2 → 2

• We will only discuss scalar (spinless) particles in these lectures, e.g. pions

• We will also consider only identical particles, e.g. π+ π+ → π+ π+

�32

• Scattering amplitude related to the S matrix

• In a given theory, can calculate in perturbation theory (PT), e.g. in φ4 theory

• We will not assume a particular theory, e.g. ChPT or φ4;  instead we use a generic 
relativistic QFT, with all possible vertices, and work to all orders in PT

⟨ f |T | i⟩ = (2π)4δ4(Pf − Pi)ℳfiS = 1 + iT

iℳ2 =from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
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with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
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The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
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integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
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verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,
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then the threshold energy shift is given by

ΔEj;thr ¼ −
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The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
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where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2
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is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,
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then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
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The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2
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is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.
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with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
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near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
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identify the excited state contributions. We stress that it is
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1=L, so that the contributions do not become confused with
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C3), have ΔEj;n≈ −2m, and the exponentials can also be
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as follows. We calculate C2 and C3 order by order in PT,
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in Eq. (8), with its associated renormalization factor Zj;thr.
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diagrams. We have used this alternate method as a check on
our results, though we present no details here.
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there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
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Properties of M2

�33

• Poincaré invariance ⇒M2 depends on the two independent Mandelstam variables

ℳ2 = ℳ2(s, t), s = (p1 + p2)2, t = (p1 − p′�1)2, u = (p1 − p′�2)2 = 4m2 − s − t
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• Partial wave decomposition in CM frame

p1

p′�1

p2

p′�2

θ

s = E*2 = 4(q2 + m2), t = − 2q2(1 − cos θ)

ℳ2(s, t) = ∑
ℓ

(2ℓ + 1) ℳ(ℓ)
2 (s) Pℓ(cos θ)

Only even values of 
l contribute for 

identical particles
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�34

• Unitarity (holds in each partial wave)

S†S = 1 ⇒ Im(ℳ(ℓ)
2 ) = ℳ(ℓ)*

2 ρℳ(ℓ)
2 = ρ |ℳ(ℓ)

2 |2 , ρ =
q

16πE*
(phase space)
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• Parametrize K2 using (real) phase shifts

𝒦(ℓ)
2 ≡

1
ρ

tan δℓ =
16πE*
q cot δℓ
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Properties of M2

�35

• Threshold behavior (QM)

• a0 is s-wave scattering length, related to threshold scattering amplitude

δℓ ∼ q1+2ℓ [1 + 𝒪(q2)] ⇒ 𝒦(ℓ)
2 ∼ q2ℓ [1 + 𝒪(q2)]

• Effective range expansion (ERE)

1
𝒦(0)

2
=

1
16πE2 [−

1
a0

+ r0
q2

2
+ P0r3

0q4 + …],
1

𝒦(2)
2

= −
1

16πE2

1
q4

1
a5

2
+ …

ℳ2(q = 0) = 𝒦2(q = 0) = 32πma0

• a0 is the intercept of the s-wave radial QM wavefunction at q=0 on the r axis, and can 
have any value: −∞ < a0 < + ∞

• r0 is the effective range (typically of order the range of the interaction), P0 is the 
“shape parameter” (typically of order unity), and a2 is the d-wave scattering length
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• Analytic structure: branch cut along real s axis above threshold, arising from unitarity

• M2 has two Riemann sheets, the top one being called the “physical sheet”

• K2 does not have the right-hand cut; it is analytic at threshold

ℳ(ℓ)
2 = 𝒦(ℓ)

2 + 𝒦(ℓ)
2 iρ𝒦(ℓ)

2 + …, ρ =
s − 4m2

32π s

s

4m2

from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

p
q

p

FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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• t- and u-channel exchanges lead to the “left-hand cut”

• Left-hand cut is far below threshold, and I will ignore it henceforth

• One does have to worry about it in the 3-particle analysis, but I will not have time to 
discuss this relatively minor point—see [HS14, HS19]

ℳ(ℓ)
2 = 𝒦(ℓ)

2 + 𝒦(ℓ)
2 iρ𝒦(ℓ)

2 + …, ρ =
s − 4m2

32π s

s

4m2

from the near-threshold state. Consider first the behavior of
ΔEj;n from excited states. The lightest such state adds a
minimal unit of relative momentum between two of the
particles, so that ΔE2;n¼ 2ωp − 2mþOðλ0Þ, where ωp ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

with j~pj¼ 2π=L. For L ≫ 1=m, the energy
shift can be expanded asΔE2;n∝~p2 ∝1=L2, and so we see
that the excited states are parametrically separated from the
near-threshold state, whose energy shift scales as 1=L3 as
noted above. Thus there can be no avoided level crossings,
and, in an analytic calculation, we can unambiguously
identify the excited state contributions. We stress that it is
crucial to discard these exponentials before expanding in
1=L, so that the contributions do not become confused with
the ground-state energy shift. Excited states involving more
particles (e.g. five-particle states in C3) are even more
obviously separated, since then ΔEj;n≈ 2m, which does
not vanish as L → ∞. Similarly, far-subthreshold states,
which contain less particles (e.g single particle states in
C3), have ΔEj;n≈ −2m, and the exponentials can also be
easily separated.
In light of the previous discussion, the method we use is

as follows. We calculate C2 and C3 order by order in PT,
and remove by hand the contributions from exponentially
growing far-subthreshold states and from exponentially
falling excited states. The resulting subtracted correlators
we call Cj;thr. We know that these have the form

Cj;thr ¼ Zj;thre−ΔEj;thrτ: ð8Þ

Thus, if we expand in powers of τ, and keep only the
constant and linear terms,

Cj;thrðτÞ ¼ Cj;thrð0Þ þ τ½∂τCj;thrð0Þ& þOðτ2Þ; ð9Þ

then the threshold energy shift is given by

ΔEj;thr ¼ −
∂τCj;thrð0Þ
Cj;thrð0Þ

: ð10Þ

The advantage of this method is that it allows us to keep
track of powers of λ0 in a straightforward manner. An
alternative approach would be to identify the infinite set of
perturbative diagrams leading to the exponential behavior
in Eq. (8), with its associated renormalization factor Zj;thr.
This requires working to all orders in λ0 in a subset of
diagrams. We have used this alternate method as a check on
our results, though we present no details here.
The diagrams that we need to calculate to obtain ΔEj;thr

up to third order in λ0 are shown in Figs. 1 and 2 for C2 and
C3, respectively. The free propagators are

h ~ϕ~pðτ1Þϕð~0; τ2Þiλ0¼0 ¼
1

2ωp
e−ωpjτ1−τ2j; ð11Þ

where, again, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
is the energy of a free

particle with a finite-volume momentum ~p. For each loop
there will be a sum over spatial momentum restricted to the
allowed finite-volume values. In addition there will be an
integral over the Euclidean time of each intermediate vertex.
For given values of each of the spatial momenta, this is
simply an integral over exponentials, with the integrand
depending on the time ordering due to the absolute values in
the propagators, Eq. (11). Thus the integrals are trivial, but
keeping track of all the time orderings is less so. We have
used two independent Mathematica codes to ensure that all
terms are included. After the vertex integrals, one can read
off which terms are exponentially falling or growing, drop
these by hand, and thus obtain Cj;thrðτÞ. Expanding in
powers of τ leads to the results for Cj;thrð0Þ and
∂τCj;thrð0Þ [see Eq. (9)] and thus to ΔEj;thr [using Eq. (10)].
The final stage of the calculation is, for each loop, to sum

over the finite-volume momenta. This is done by con-
verting sums to integrals, which can be absorbed into
infinite-volume loop contributions, plus a finite-volume
residue leading to the desired power-law terms. The
methods for converting sums to integrals are variants
and extensions of those used in deriving the general
finite-volume quantization conditions [1,12,13] and their
threshold expansions [5]. The results we need are collected
in Appendix A.
As a simple illustration of these methods, consider the

diagrams of Figs. 1(a) and 2(a). By construction, both
diagrams lead to CðaÞ

j ðτÞ ¼ 1. In particular, the contraction
factors cancel the 1=2 and 1=6 in Eqs. (2) and (3),
respectively. There are thus no exponentially growing or
falling terms to remove by hand, and Cj;thrðτÞ ¼ CjðτÞ ¼ 1
at this order.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

p
q

p

FIG. 1. Feynman diagrams contributing to the even particle-
number correlation function. External particles have zero three-
momentum. Diagram (i) also has a horizontally flipped partner,
not shown. Examples of labels used in the text for loop momenta
are shown.
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Bound states

�38

• Bound states lead to poles in M2 on physical sheet

• K2 does not have a corresponding pole since ρ is nonzero below threshold

s

4m2E*2
BS

1/ℳ(ℓ)
2 ≡ 1/𝒦(ℓ)

2 − iρ where − iρ =
|q |

16πE*
with E*2

BS = 4(m2 − |q |2 )

1/ℳ(ℓ)
2 =

1
16πE*

(q cot δℓ + |q | ) = 0

• Bound state condition is thus

• If keep only the scattering length in the ERE, find bound state for a0 > 0

q cot δ0 = − 1/a0 ⇒ |q | = 1/a0 ⇒ E*BS = 2 m2 − 1/a2
0

• Bound state at threshold in unitary limit a0 → ∞
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q

resonance

BS
physical sheet of s

unphysical sheet of s

resonance
(on unphysical

sheet)

Resonances

�39

• Resonances lead to poles in M2 below the real axis on the second (unphysical) sheet

• Cannot have poles on physical sheet aside from bound states due to causality

• To display sheets it is better to use single-sheeted variable q 

• Resonance with width Γ=1/τ and mass M has pole at

E* = M − iΓ/2 ⇒ s = M2 + (Γ/2)2 − iMΓ

s

4m2E*2
BS

⇔
physical 

amplitude

• Leads to a bump in scattering cross-section ~|M2|2 as we saw earlier
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Resonances

�40

• Narrow s-wave resonances well described by Breit-Wigner form

tan δBW =
E*Γ

M2 − E*2
⇒ ℳ2 ∝

1
M2 − E*2 − iE*Γ

• As E* passes through M from below:

• Phase shift rises rapidly through 900

• K2 ~ tanδ has a pole at M (i.e. on the real axis)

meson resonances in lattice QCD | May 2018 | HMI TCD

the simplest case: ππ elastic scattering  11

π π

π

p N

π

p N
π
π

s

t

ππ partial-waves 
— project Pℓ(cos θ)

on-shell π exchange 
— extrapolate to t = −mπ2

extract from charged pion beams on nucleon targets

i s o s p i n =0

Graye r  1 974

i s o s p i n =2

Cohen  1 972

i s o s p i n =1

Hyams  1 973

p-wave phase shift

• Pole in K2 does not have any direct physical 
significance, but does play a role in the finite-
volume analysis to follow
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Resonances: unavoidable complication

�41

• Neither experiment, nor LQCD calculations, can directly access complex energies

• Thus, in order to study resonances, both methods have to parametrize the K 
matrices with an analytic form that can be continued into the complex plane

• Thus some parametrization dependence is unavoidable

• One should put as much physical knowledge as possible into the parametrization, 
while minimizing model dependence

• Input from the experimental analysis community can be helpful

resonance
(on unphysical

sheet)

s

4m2E*2
BS
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G parity

• G parity will come up occasionally in the remaining lectures, so here is a reminder

•                    is an exact symmetry of isosymmetric QCD, and an approximate 
symmetry of real QCD

• Eigenstates of G:

• Relevance for what follows:

• Restricts decay channels, e.g.

• No interactions involving an odd number of pions, e.g.

�42

G = C eiπIy

π(−1), η(+1), ρ(+1), ω(−1), …

ρ → ππ, ω → πππ (η → ππ forbidden by parity)

ππ ↔ 4π, ππ ↮ 3π
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3-particle scattering

�43

• In a theory with a G-parity-like Z2 symmetry only have 3→3 scattering

ℳ3 ∼ +

Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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• Difficult to measure experimentally, but well defined in QFT

• 3 particle finite-volume states are accessible to LQCD
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3-particle scattering

�43

• In a theory with a G-parity-like Z2 symmetry only have 3→3 scattering

ℳ3 ∼ +

Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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• Without the Z2 symmetry have 2→3, 3→2 & 3→3 scattering, e.g. 

ℳ23 ∼ +

Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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• Difficult to measure experimentally, but well defined in QFT

• 3 particle finite-volume states are accessible to LQCD
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3-particle scattering
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• In a theory with a G-parity-like Z2 symmetry only have 3→3 scattering

ℳ3 ∼ +

Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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• Without the Z2 symmetry have 2→3, 3→2 & 3→3 scattering, e.g. 

ℳ23 ∼ +

Since only the constant term in Cj;thr is nonvanishing at
leading order, the perturbative expansions of the quantities
of interest can be written as follows:

Cj;thrð0Þ ¼ 1þ
X∞

n¼1

λn0C
ðnÞ
j;thrð0Þ; ð12Þ

∂τCj;thrð0Þ ¼
X∞

n¼1

λn0½∂τC
ðnÞ
j;thrð0Þ&; ð13Þ

ΔEj;thr ¼
X∞

n¼1

λn0ΔE
ðnÞ
j;thr: ð14Þ

Inserting these expansions into Eq. (10), we find

ΔEð1Þ
j;thr ¼ −∂τC

ð1Þ
j;thrð0Þ; ð15Þ

ΔEð2Þ
j;thr ¼ −∂τC

ð2Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð1Þ
j;thrð0Þ&; ð16Þ

ΔEð3Þ
j;thr ¼ −∂τC

ð3Þ
j;thrð0Þ þ Cð1Þ

j;thrð0Þ½∂τC
ð2Þ
j;thrð0Þ&

þ ðCð2Þ
j;thrð0Þ − Cð1Þ

j;thrð0Þ
2Þ½∂τC

ð1Þ
j;thrð0Þ&: ð17Þ

Thus a third-order calculation of ΔEj;thr requires a third-
order result for ∂τCj;thrð0Þ but only a second-order result
for Cj;thrð0Þ.
Another simple example of our methods is provided by

the disconnected diagram of Fig. 1(b). This diagram clearly
has no dependence on τ, so when we use Eq. (2) we find
that C2ðτÞ ∝e2mτ. Dropping this exponentially growing
term leads to C2;thr ¼ 0, so this diagram makes no con-
tribution to the threshold energy.
The final example we consider here is the connected

diagram Fig. 1(c), which involves a single vertex. All four

propagators have vanishing spatial momenta, so we only
need to do the integral over the vertex position, τ1. The
resulting contribution to the correlator is

CðcÞ
2 ðτÞ ¼ −

1

2

λ0
ð2mÞ2

1

L3

!Z
τ

0
dτ11

þ
Z

0

−∞
dτ1e4mτ1 þ

Z
∞

τ
dτ1e−4mðτ1−τÞ

"
ð18Þ

¼ −
λ0

8m2L3

#
1

2m
þ τ

$
: ð19Þ

Here there are no exponentially growing or falling terms to
remove, and we find the first nontrivial result for the
threshold energy shift

∂τC
ð1Þ
2;thrð0Þ ¼ −

1

8m2L3
¼ −ΔEð1Þ

2;thr; ð20Þ

as well as an Oðλ0Þ contribution to the constant term

Cð1Þ
2;thrð0Þ ¼ −

1

16m3L3
: ð21Þ

We now describe three classes of diagram that we do not
need to calculate explicitly, although they contribute to the
CjðτÞ at the order we work. This is because they either do
not contribute to Cj;thrðτÞ, or they lead only to changes in
the overall normalization of the correlators, Zj;thr, but not to
the energy shifts ΔEj;thr. Examples of these diagrams are
shown in Fig. 3 for C2 and Fig. 4 for C3.
The first class involves self-energy and counterterm

insertions on the diagrams described above (i.e., those in
Figs. 1 and 2). All diagrams in Fig. 3 and those of Fig. 4(a)–
4(c) are examples of this class. We first note that

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

p

(m) (n) (o)

FIG. 2. Feynman diagrams contributing to the odd particle-number correlation function C3. External particles have vanishing spatial
momentum. Not shown are diagrams obtained from (h), (j), (k) and (o) by applying the loop correction to the other vertex. An example
of loop-momentum labeling is shown. Figures (i)–(o) are also diagrams for the connected part of the three-particle scattering amplitude.
We reference these diagrams, reinterpreted as infinite-volume scattering contributions, in our calculation of Sec. IV. For that calculation
the external particles are not assumed to be at rest.
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• Parametrizing these amplitudes in terms of real K matrices is a nontrivial problem to 
which the methods I will describe provide, as a spinoff, one solution 

• Difficult to measure experimentally, but well defined in QFT

• 3 particle finite-volume states are accessible to LQCD
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Thank you! 
Questions?
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