Multi-channel/particle scattering

Steve Sharpe University of Washington

Resonances from lattice QCD

Steve Sharpe University of Washington

Outline

■Lecture 1

- Motivation/Background/Overview

DLecture 2

- Deriving the two-particle quantization condition (QC2)
- Examples of applications

DLecture 3

- Sketch of the derivation of the three-particle quantization condition (QC3)

DLecture 4

- Applications of QC3
- Summary of topics not discussed and open issues

Main references for these lectures

- Briceño, Dudek \& Young, "Scattering processes \& resonances from LQCD," 1706.06223, RMP 2018
- Hansen \& SS, "LQCD \& three-particle decays of resonances," 1901.00483, to appear in ARNPS
- Lectures by Dudek, Hansen \& Meyer at HMI Institute on "Scattering from the lattice: applications to phenomenology and beyond," May 2018, https://indico.cern.ch/event/690702/
- Lüscher, Commun.Math.Phys. 105 (1986) 153-188; Nucl.Phys. B354 (1991) 531-578 \& B364 (1991) 237-251 (foundational papers)
- Kim, Sachrajda \& SS [KSSO5], hep-lat/0507006, NPB 2015 (direct derivation in QFT of QC2)
- Hansen \& SS [HS14, HS15], 1408.5933, PRD14 \& 1504.04248, PRD15 (derivation of QC3 in QFT)
- Briceño, Hansen \& SS [BHS17], 1701.07465, PRD17 (including $2 \leftrightarrow 3$ processes in QC3)
- Briceño, Hansen \& SS [BHS18], 1803.04160, PRD18 (numerical study of QC3 in isotropic approximation)
- Briceño, Hansen \& SS [BHS19], 1810.01429, PRD19 (allowing resonant subprocesses in QC3)
- Blanton, Romero-López \& SS [BRS19], 1901.07095, JHEP19 (numerical study of QC3 including d waves)
- Blanton, Briceño, Hansen, Romero-López \& SS, in progress, poster at Lattice 2019

Outline for Lecture 1

- Background: hadronic resonances
- Further motivation for studying multiparticle states
- Some scattering basics

Background: hadronic resonances

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at \sim I\% level

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level
meson
- Mesons

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at \sim I\% level
meson
- Mesons
- Mesons composed of light quarks:

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level
meson
- Mesons
- Mesons composed of light quarks: $\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})$

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level
meson
- Mesons
- Mesons composed of light quarks: $\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})$
- Including heavy quarks: $D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b})$

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level
meson
- Mesons
- Mesons composed of light quarks: $\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})$
- Including heavy quarks: $D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b})$
- Baryons

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level meson
- Mesons
- Mesons composed of light quarks: $\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})$
- Including heavy quarks: $D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b})$
- Baryons

- Baryons composed of light quarks:

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level meson
- Mesons
- Mesons composed of light quarks: $\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})$
- Including heavy quarks: $D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b})$
- Baryons

- Baryons composed of light quarks: $\quad N(q q q), \Lambda(q q s), \Sigma(q q s), \Xi(q s s), \Omega(s s s)$

Stable hadrons in isosymmetric QCD

- QCD with $m_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$, and no EM (or weak) interactions
- Theory studied in most LQCD simulations
- Differs from real world at $\sim 1 \%$ level meson
- Mesons
- Mesons composed of light quarks: $\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})$
- Including heavy quarks: $D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b})$
- Baryons

- Baryons composed of light quarks: $\quad N(q q q), \Lambda(q q s), \Sigma(q q s), \Xi(q s s), \Omega(s s s)$
- Including heavy quarks: $\Lambda_{c}(q q c), \ldots, \Xi_{c c}(q c c), \ldots, \Lambda_{b}(q q b), \ldots$

Stable hadrons in isosymmetric QCD

- Relatively short list has been the focus of most LQCD calculations to date

Stable hadrons in isosymmetric QCD

- Relatively short list has been the focus of most LQCD calculations to date

[Kronfeld, 1203.1204]

Stable hadrons in isosymmetric QCD

- Relatively short list has been the focus of most LQCD calculations to date

$$
\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q})
$$

[Kronfeld, 1203.1204]

Stable hadrons in isosymmetric QCD

- Relatively short list has been the focus of most LQCD calculations to date

$$
\begin{gathered}
\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q}) \\
N(q q q), \Lambda(q q s), \Sigma(q q s), \Xi(q s s), \Omega(s s s)
\end{gathered}
$$

[Kronfeld, 1203.1204]

Stable hadrons in isosymmetric QCD

- Relatively short list has been the focus of most LQCD calculations to date

$$
\begin{gathered}
\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q}) \quad D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b}) \\
N(q q q), \Lambda(q q s), \Sigma(q q s), \Xi(q s s), \Omega(s s s) \quad \Lambda_{c}(q q c), \ldots, \Xi_{c c}(q c c), \ldots, \Lambda_{b}(q q b), \ldots
\end{gathered}
$$

Stable hadrons in isosymmetric QCD

- Relatively short list has been the focus of most LQCD calculations to date

$$
\begin{gathered}
\pi(q \bar{q}), K(q \bar{s}), \eta(q \bar{q}) \quad D(c \bar{q}), D_{s}(c \bar{s}), B(b \bar{q}), B^{*}(q \bar{b}), B_{s}(s \bar{b}), B_{s}^{*}(s \bar{b}), B_{c}(c \bar{b}) \\
N(q q q), \Lambda(q q s), \Sigma(q q s), \Xi(q s s), \Omega(s s s) \quad \Lambda_{c}(q q c), \ldots, \Xi_{c c}(q c c), \ldots, \Lambda_{b}(q q b), \ldots
\end{gathered}
$$

Plethora of resonances

- Most hadrons are resonances!

pdg meson listings

Examples of resonances

- Most hadrons are resonances!
- Very short lived, with decays into $2,3, \ldots$ stable hadrons

Examples of resonances

- Most hadrons are resonances!
- Very short lived, with decays into $2,3, \ldots$ stable hadrons
- Example I: single-channel decay of s-wave spin-triplet q q-bar state:

$$
I^{G} J^{P C}=1^{+} 1^{--}: \rho \rightarrow \pi \pi, M_{\rho} \approx 775 \mathrm{MeV}, \Gamma_{\rho} \approx 150 \mathrm{MeV}\left(\tau=4 \times 10^{-23} s\right)
$$

- Many production mechanisms, e.g. $\tau_{\text {3100990931 }}^{-} \pi^{-} \pi^{0} \nu_{\tau} \quad \rho$ is produced by the vector part [CLEO collab., hep-ex/9910046] $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}+X$
 of the weak current $\bar{u} \gamma^{\mu} d$

Examples of resonances

- Example 2: multi-channel decay of p-wave $q \bar{q}$ state:

```
pdg summary entry
```


a_{2} (1320)

$$
I G(J P C)=1^{-}\left(2^{++}\right)
$$

Mass $m=1318.3_{-0.6}^{+0.5} \mathrm{MeV}$
Full width $\Gamma=107 \pm 5 \mathrm{MeV}$

$\boldsymbol{a}_{\mathbf{2}} \mathbf{(1 3 2 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$
3π	$(70.1 \pm 2.7) \%$
$\eta \pi$	$(14.5 \pm 1.2) \%$
$\omega \pi \pi$	$(10.6 \pm 3.2) \%$
$K \bar{K}$	$(4.9 \pm 0.8) \%$
$\eta^{\prime}(958) \pi$	$(5.5 \pm 0.9) \times 10^{-3}$
$\pi^{ \pm} \gamma$	$(2.91 \pm 0.27) \times 10^{-3}$
$\gamma \gamma$	$(9.4 \pm 0.7) \times 10^{-6}$.

Examples of resonances

- Example 2: multi-channel decay of p-wave $q \bar{q}$ state:
pdg summary entry
$a_{2}(1320) \quad I_{(}\left(J^{P C}\right)=1^{-}\left(2^{++}\right)$

Mass $m=1318.3_{-0.6}^{+0.5} \mathrm{MeV}$
Full width $\Gamma=107 \pm 5 \mathrm{MeV}$

$\mathbf{a}_{\mathbf{2}} \mathbf{(1 3 2 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$
3π	$(70.1 \pm 2.7) \%$
$\eta \pi$	$(14.5 \pm 1.2) \%$
$\omega \pi \pi$	$(10.6 \pm 3.2) \%$
$K \bar{K}$	$(4.9 \pm 0.8) \%$
$\eta^{\prime}(958) \pi$	$(5.5 \pm 0.9) \times 10^{-3}$
$\pi^{ \pm} \gamma$	$(2.91 \pm 0.27) \times 10^{-3}$
$\gamma \gamma$	$(9.4 \pm 0.7) \times 10^{-6}$.

[Figures from HMI slides of Jo Dudek]

Examples of resonances

- Example 3: scalar, isoscalars—possible p-wave $q \bar{q}$ states
[PDG]

$f_{0}(500){ }^{[g]}$	$\left.{ }^{\prime}{ }^{(J} J^{P C}\right)=$		$f_{0}(980)^{[j]}$	$\left.{ }^{\prime} G^{(} J^{P C}\right)=0^{+}\left(0^{+}+\right)$	
Mass (T- Mass (Br Full width	$\begin{aligned} & =(400-550) \\ & (400-550) \mathrm{MeV} \\ & =(400-700) \end{aligned}$		Full width 「 = 10 to 100 MeV		
Full width (Breit-Wigner) $=(400-700) \mathrm{MeV}$			$f_{0}(980)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
$\mathrm{f}_{0}(500)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$	$\pi \pi$	seen	476
$\pi \pi$	seen	-	$K \bar{K}$	seen	36
$\gamma \gamma$	seen	-	$\gamma \gamma$	seen	495

■×วضnpiesofresonances

- Example 3: scalar, isoscalars—possible p-wave $q \bar{q}$ states
[PDG]

$\mathrm{f}_{0}(500){ }^{[g]}$	${ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$		$f_{0}(980)^{[j]}$	$I^{G}\left(J^{P C}\right)=$	
Mass (BreFull width$\mathbf{f}_{\mathbf{0}}^{\mathbf{(5 0 0)} \text { DECAY MODES }}$	$\begin{aligned} & =(400-550) \\ & (400-550) \mathrm{MeV} \\ & =(400-700) \end{aligned}$		Mass $m=990 \pm 20 \mathrm{MeV}$ Full width $\Gamma=10$ to 100 MeV		
		$p(\mathrm{MeV} / \mathrm{c})$	$\mathrm{f}_{0}(980)$ DECAY MODES	Fraction ($\Gamma_{i} / \Gamma^{\text {) }}$	$p(\mathrm{MeV} / \mathrm{c})$
	Fraction ($\Gamma_{i} / \overline{\text { r }}$)		$\pi \pi$	seen	476
$\pi \pi$	seen	-	$K \bar{K}$	seen	36
$\gamma \gamma$	seen	-	$\gamma \gamma$	seen	495

- Large uncertainties because analyses are difficult
extract from charged pion beams on nucleon targets

[Figure from HMI slides of Jo Dudek]

Examples of resonances

- Example 3: scalar, isoscalars—possible p-wave $q \bar{q}$ states
- Extract the phase shift from complicated amplitude analysis

$$
\begin{aligned}
& \mathrm{M}_{\pi \pi} \mathrm{MeV} / \mathrm{c}^{2} \\
& \text { Grayer } 1974
\end{aligned}
$$

Aside on inelasticity

- Phase shift in $I=J=1 \pi \pi$ channel

isospin=1

$$
\text { Hyams } 1973
$$

$$
1-|\eta|^{2}
$$

gives probability for scattering into any final state
other than $\pi \pi$,
e.g. KK-bar, $\eta \eta, 4 \pi$

Becomes nonzero above
1 GeV

Examples of resonances

- Example 4: Roper (excited nucleon)
[PDG]

$N(1440) 1 / 2^{+}$	$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)$	
$\begin{aligned} & \operatorname{Re}(\text { pole position })=1360 \text { to } 1380(\approx 1370) \mathrm{MeV} \\ & -2 \mathrm{~lm}(\text { pole position })=160 \text { to } 190(\approx 175) \mathrm{MeV} \\ & \text { Breit-Wigner mass }=1410 \text { to } 1470(\approx 1440) \mathrm{MeV} \end{aligned}$		
$<$ Breit-Wigner full width $=250$ to $450(\approx 350) \mathrm{MeV}$		
$N(1440)$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
π	55-75 \%	398
N	<1\%	\dagger
$N \pi \pi$	17-50 \%	347
$\Delta(1232) \pi, P$-wave	6-27 \%	147
$N \sigma$	11-23 \%	-
$p \gamma$, helicity $=1 / 2$	0.035-0.048 \%	414
$n \gamma$, helicity $=1 / 2$	0.02-0.04 \%	413

- Extracted from amplitude analysis of πN scattering
- Lighter than expected from quark model for a radial excitation

Examples of resonances

- Example 5: $Z_{c}(3900)$-a nonstandard meson

${ }^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)$		
Mass $m=3887.2 \pm 2.3 \mathrm{MeV} \quad(\mathrm{S}=1.6)$ Full width「 $=28.2 \pm 2.6 \mathrm{MeV}$		
$Z_{c}(3900)$ DECAY MODES	Fraction ($\Gamma_{i} / \overline{\text { r }}$)	$p(\mathrm{MeV} / \mathrm{c})$
$J / \psi \pi$	seen	699
$h_{c} \pi^{ \pm}$	not seen	318
$\eta_{c} \pi^{+} \pi^{-}$	not seen	759
$\left(D \bar{D}^{*}\right)^{ \pm}$	seen	-
$D^{0} D^{*-}+$ c.c.	seen	153
$D^{-} D^{* 0}+$ с.с.	seen	144
$\omega \pi^{ \pm}$	not seen	1862
$J / \psi \eta$	not seen	510
$D^{+} D^{*-}+$ c.c	seen	-
$D^{0} \bar{D}^{* 0}+$ c.c	seen	-

$\rho \eta_{c}$ now seen at 4.2σ significance, $[\mathrm{BESIII}]$)

Examples of resonances

- Example 5: $Z_{c}(3900)$-a nonstandard meson

$$
{ }^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)
$$

Mass $m=3887.2 \pm 2.3 \mathrm{MeV} \quad(\mathrm{S}=1.6)$
Full width 「 $=28.2 \pm 2.6 \mathrm{MeV}$

$\boldsymbol{Z}_{\boldsymbol{c}} \mathbf{(3 9 0 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$J / \psi \pi$	seen	699
$h_{c} \pi^{ \pm}$	not seen	318
$\eta_{c} \pi^{+} \pi^{-}$	not seen	759
$\left(D \bar{D}^{*}\right)^{ \pm}$	seen	-
$D^{0} D^{*-}+$ c.c.	seen	153
$D^{-} D^{* 0}+$ c.c.	seen	144
$\omega \pi^{ \pm}$	not seen	1862
$J / \psi \eta$	not seen	510
$D^{+} D^{*-}+$ c.c	seen	-
$D^{0} \bar{D}^{* 0}+$ c.c	seen	-

$\rho \eta_{c}$ now seen at 4.2σ significance, [BESIII])

Observed by BESIII, Belle, CLEO-c in 2013

$$
e^{+} e^{-} \rightarrow \pi^{ \pm} Z_{c}^{\mp}
$$

[BESIII, talk at Lattice 2019 by C.Yuan]

Examples of resonances

- Example 5: $Z_{c}(3900)$-a nonstandard meson

$$
{ }^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)
$$

Mass $m=3887.2 \pm 2.3 \mathrm{MeV} \quad(\mathrm{S}=1.6)$ Full width $\Gamma=28.2 \pm 2.6 \mathrm{MeV}$

$\boldsymbol{Z}_{\boldsymbol{c}} \mathbf{(3 9 0 0)}$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$J / \psi \pi$	seen	699
$h_{c} \pi^{ \pm}$	not seen	318
$\eta_{\boldsymbol{c}} \pi^{+} \pi^{-}$	not seen	759
$\left(D \bar{D}^{*}\right)^{ \pm}$	seen	-
$D^{0} D^{*-}+$ c.c.	seen	153
$D^{-} D^{* 0}+$ c.c.	seen	144
$\omega \pi^{ \pm}$	not seen	1862
$J / \psi \eta$	not seen	510
$D^{+} D^{*-}+$ c.c	seen	-
$D^{0} \bar{D}^{* 0}+$ c.c	seen	-

$\rho \eta_{c}$ (now seen at 4.2σ significance, [BESIII])

Observed by BESIII, Belle, CLEO-c in 2013

$$
e^{+} e^{-} \rightarrow \pi^{ \pm} Z_{c}^{\mp}
$$

[BESIII, talk at Lattice 2019 by C.Yuan]

- $\mathrm{Z}_{\mathrm{c}}{ }^{+}$quark composition: $c \bar{c} u \bar{d}$

Examples of resonances

- Example 5: $Z_{c}(3900)$-a nonstandard meson

- $\mathrm{Z}_{\mathrm{c}}{ }^{+}$quark composition: $c \bar{c} u \bar{d}$
- Possible interpretations:
- Tetraquark
- Molecule
- Threshold enhancementsupported by HALQCD study [I602.03465]
[Ikeda et al., I602.03465]

Lessons

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Typical resonances have multiple decay channels, each involving 2 or 3 (or more) particles
- Quark model (or other models) fails to explain presence or properties of an increasing number of resonances
- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ resonances, glueballs, hybrids, tetraquarks, pentaquark, ...
- Resonances are a largely unexplored frontier in our attempts to understand hadronic physics (i.e. the properties of a strongly-coupled QFT) from first principles

Lessons

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Typical resonances have multiple decay channels, en CD! g 2 or 3 (or more) particles
- Quark model (or other mad challenge for presence or properties of an increasing number
- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ resor A . glueballs, hybrids, tetraquarks, pentaquark, ...
- Resonances are a largely unexplored frontier in our attempts to understand hadronic physics (i.e. the properties of a strongly-coupled QFT) from first principles

How can LQCD help?

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible

How can LQCD help?

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Methods for indirectly accessing scattering amplitudes must be developed (the main topic of these lectures)
- LQCD has advantage of being able to turn off electroweak interactions

How can LQCD help?

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Methods for indirectly accessing scattering amplitudes must be developed (the main topic of these lectures)
- LQCD has advantage of being able to turn off electroweak interactions
- Typical resonances have multiple decay channels, each involving 2 or 3 (or more) particles

How can LQCD help?

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Methods for indirectly accessing scattering amplitudes must be developed (the main topic of these lectures)
- LQCD has advantage of being able to turn off electroweak interactions
- Typical resonances have multiple decay channels, each involving 2 or 3 (or more) particles
- LQCD calculations must deal with multiple channels of multiparticle states

How can LQCD help?

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Methods for indirectly accessing scattering amplitudes must be developed (the main topic of these lectures)
- LQCD has advantage of being able to turn off electroweak interactions
- Typical resonances have multiple decay channels, each involving 2 or 3 (or more) particles
- LQCD calculations must deal with multiple channels of multiparticle states
- Quark model fails to explain presence or properties of an increasing number of resonances
- X,Y, Z resonances, glueballs, hybrids, tetraquarks, pentaquark, ...

How can LQCD help?

- Extracting resonance parameters from experiment is indirect \& challenging
- Resonance is defined as a pole in a scattering amplitude-not directly accessible
- Methods for indirectly accessing scattering amplitudes must be developed (the main topic of these lectures)
- LQCD has advantage of being able to turn off electroweak interactions
- Typical resonances have multiple decay channels, each involving 2 or 3 (or more) particles
- LQCD calculations must deal with multiple channels of multiparticle states
- Quark model fails to explain presence or properties of an increasing number of resonances
- X,Y,Z resonances, glueballs, hybrids, tetraquarks, pentaquark, ...
- LQCD calculations must use large bases of operators to allow understanding of structure of hadrons-any input is useful!
- Varying the quark masses can provide additional useful information

Personal note

- As a grad student I used the MIT bag model to predict the masses of "hybrid" mesons-resonances of the form: quark + antiquark + "constituent gluon"

Personal note

- As a grad student I used the MIT bag model to predict the masses of "hybrid" mesons-resonances of the form: quark + antiquark + "constituent gluon"

HYBRIDS: MIXED STATES OF QUARKS AND GLUONS*

Nuclear Physics B222 (1983) 211-244
© North-Holland Publishing Company

Michael CHANOWITZ and Stephen SHARPE
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

Personal note

- As a grad student I used the MIT bag model to predict the masses of "hybrid" mesons-resonances of the form: quark + antiquark + "constituent gluon"

Submitted for publication

```
MEIKTONS: MIXED STATES OF QUARKS AND GLUONS
Michael Chanowitz and Stephen Sharpe
August 1982
    RECEIVED
LAVIRENCE
```

BERKELEY I.APRDATORY

Personal note

- As a grad student I used the MIT bag model to predict the masses of "hybrid" mesons-resonances of the form: quark + antiquark + "constituent gluon"

Submitted for publication

MEIKTONS: MIXED STATES OF QUARKS AND GLUONS

Michael Chanowitz and Stephen Sharpe

August 1982 RECEIVED
LAVRENCE
BERKELEY I.APRDATORY

- I was dissatisfied with the bag model-uncontrolled errors of many sorts-and began working on LQCD in 1984 in order to do a first principles calculation
- [Rajan Gupta, Greg Kilcup \& I] did a quenched calculation on 7^{3} x 14 lattices, with heavy unimproved Wilson fermions, naive methods, and found...

Personal note

- As a grad student I used the MIT bag model to predict the masses of "hybrid" mesons-resonances of the form: quark + antiquark + "constituent gluon"

Submitted for publication

MEIKTONS: MIXED STATES OF QUARKS AND GLUONS

Michael Chanowitz and Stephen Sharpe

August 1982 RECEIVED
LAVRENCE
BERKELEY I.APRDATORY

- I was dissatisfied with the bag model-uncontrolled errors of many sorts-and began working on LQCD in 1984 in order to do a first principles calculation
- [Rajan Gupta, Greg Kilcup \& I] did a quenched calculation on 7^{3} x 14 lattices, with heavy unimproved Wilson fermions, naive methods, and found...

Noise!

Personal note

- As a grad student I used the MIT bag model to predict the masses of "hybrid" mesons-resonances of the form: quark + antiquark + "constituent gluon"

Submitted for publication

MEIKTONS: MIXED STATES OF QUARKS AND GLUONS

Michael Chanowitz and Stephen Sharpe

August 1982

RECEIVED
LAWRENCE
BERKELEY I_ARODATORY

- I was dissatisfied with the bag model-uncontrolled errors of many sorts-and began working on LQCD in 1984 in order to do a first principles calculation
- [Rajan Gupta, Greg Kilcup \& I] did a quenched calculation on 7^{3} x 14 lattices, with heavy unimproved Wilson fermions, naive methods, and found...

Noise!

- There are now increasingly sophisticated calculations of hybrid meson properties, and these will eventually be based on the formalism I will describe in these lectures

Preview

- Fundamental issue:
- LQCD simulations are done in finite volumes, with imaginary time
- Experiments are done in infinite volume in real time

Fundamental Issue

- Lattice QCD can calculate energy levels of multiparticle systems in a box
- How are these related to infinite-volume scattering amplitudes (which determine resonance properties)?

$$
\begin{aligned}
& \uparrow \begin{array}{ll}
\square & \left.\begin{array}{c}
\\
= \\
\\
\\
\\
E_{1}(L) \\
\\
\\
\\
\\
\\
E_{0}(L)
\end{array}\right)
\end{array} \\
& \text { Discrete energy } \\
& \text { spectrum } \\
& \text { Scattering } \\
& \text { amplitudes }
\end{aligned}
$$

Fundamental Issue

- Lattice QCD can calculate energy levels of multiparticle systems in a box
- How are these related to infinite-volume scattering amplitudes (which determine resonance properties)?

Further motivations for studying multiparticle states

Motivations

- Calculating electroweak decay and transition amplitudes for processes involving multiple particles
- Determining NN and NNN interactions as input for predicting properties of nuclei and nuclear matter

Motivations

- Calculating electroweak decay and transition amplitudes for processes involving multiple particles
- Determining NN and NNN interactions as input for predicting properties of nuclei and nuclear matter

Will not have time to discuss the required formalism in these lectures, except in passing

Electroweak decays [sachrajda lectures]

e.g. $K \rightarrow \pi T$ decay amplitudes

- Does the SM reproduce the $\Delta \mathrm{I}=\mathrm{I} / 2$ rule?

$$
\Gamma\left(K_{S}^{0} \rightarrow \pi \pi\right) / \Gamma\left(K^{+} \rightarrow \pi \pi\right) \approx 330
$$

- Does the SM reproduce direct CP-violation in $\mathrm{K} \rightarrow \pi \pi$?

$$
\begin{aligned}
& \frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \frac{\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)} \approx 1-6 \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \\
& \epsilon^{\prime} / \epsilon=1.63 \pm 0.26 \times 10^{-3} \quad[\mathrm{KTeV} \& \mathrm{NA} 48, \text { I999] }
\end{aligned}
$$

Electroweak decays [sachridda lectures]

e.g. $K \rightarrow \pi \Pi$ decay amplitudes

$$
\begin{aligned}
& \frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \frac{\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)} \approx 1-6 \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \\
& \epsilon^{\prime} / \epsilon=1.63 \pm 0.26 \times 10^{-3} \quad[K T e V ~ \& ~ N A 48, ~ 1999]
\end{aligned}
$$

Electroweak decays

e.g. $K \rightarrow \pi \pi T$ decay amplitudes

- Does the SM reproduce the observed CP violation in $\mathrm{K} \rightarrow \pi \pi \pi$ decays?

Electroweak decays

e.g. $K \rightarrow \pi \Pi \pi$ decay amplitudes

- Does the SM reproduce the observed CP violation in $\mathrm{K} \rightarrow \pi \pi \pi$ decays?

Electroweak transitions

 e.g. $B \rightarrow K^{*} I \vee \rightarrow K \pi I V$ decay amplitude

- Allows determination of elements of CKM matrix
- LQCD calculation is (much) harder than for $B \rightarrow K I \vee \& B \rightarrow \pi I V$, but there is lots of experimental data

Electroweak transitions

 e.g. $B \rightarrow K^{*} I v \rightarrow K \pi I v$ decay amplitude

LQCD calculation is (much) harder than for $B \rightarrow K I v \& B \rightarrow \pi I v$, but there is lots of experimental data

A more distant motivation

Observation of $C P$ violation in charm decays

13 March 2019
LHCb collaboration ${ }^{\dagger}$

Abstract

A search for charge-parity $(C P)$ violation in $D^{0} \rightarrow K^{-} K^{+}$and $D^{0} \rightarrow \pi^{-} \pi^{+}$decays is reported, using $p p$ collision data corresponding to an integrated luminosity of $6 \mathrm{fb}^{-1}$ collected at a center-of-mass energy of 13 TeV with the LHCb detector. The flavor of the charm meson is inferred from the charge of the pion in $D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$decays or from the charge of the muon in $\bar{B} \rightarrow D^{0} \mu^{-} \bar{\nu}_{\mu} X$ decays. The difference between the $C P$ asymmetries in $D^{0} \rightarrow K^{-} K^{+}$and $D^{0} \rightarrow \pi^{-} \pi^{+}$decays is measured to be $\Delta A_{C P}=[-18.2 \pm 3.2$ (stat.) ± 0.9 (syst.) $] \times 10^{-4}$ for π-tagged and $\Delta A_{C P}=[-9 \pm 8$ (stat.) ± 5 (syst.) $] \times 10^{-4}$ for μ-tagged D^{0} mesons. Combining these with previous LHCb results leads to $$
\Delta A_{C P}=(-15.4 \pm 2.9) \times 10^{-4},
$$ 5.3σ effect

where the uncertainty includes both statistical and systematic contributions. The measured value differs from zero by more than five standard deviations. This is the first observation of $C P$ violation in the decay of charm hadrons.

A more distant motivation

- Calculating CP-violation in $D \rightarrow \pi \pi, K \bar{K}$ in the Standard Model
- Finite-volume state is a mix of $2 \pi, K \bar{K}, \eta \eta, 4 \pi, 6 \pi, \ldots$
- Need 4 (or more) particles in the box!

ΔM_{k}
 [Sachrajda lectures]

- Measured in I96I by [Fitch et al.], but we still do not know whether it is consistent with the standard model
- Dominated by long-distance $\pi \pi$ contribution
- LQCD method, accounting for finite-volume effects, developed by [Christ, Feng, Martinelli \& Sachrajda, I 504.0 I I70]
- Numerical calculations underway [RBC-UKQCD]

3-body interactions

3-body interactions

- Determining NN \& NNN interactions
- Input for effective field theory treatments of larger nuclei \& nuclear matter
- NNN interaction important for determining properties of neutron stars
- Similarly, $\pi \pi \pi, \pi K \bar{K}, \ldots$ interactions needed for study of pion/kaon condensation

3-body interactions

- Determining NN \& NNN interactions
- Input for effective field theory treatment on] has made of pior signin pote acton

Scattering basics (infinite-volume)

\mathcal{M}_{2}

- Recall some details of the simplest scattering process: $2 \rightarrow 2$
- We will only discuss scalar (spinless) particles in these lectures, e.g. pions
- We will also consider only identical particles, e.g. $\pi^{+} \pi^{+} \rightarrow \pi^{+} \pi^{+}$
- Scattering amplitude related to the S matrix

$$
S=1+i T \quad\langle f| T|i\rangle=(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right) \mathscr{M}_{f i}
$$

- In a given theory, can calculate in perturbation theory (PT), e.g. in φ^{4} theory

\mathcal{M}_{2}

- Recall some details of the simplest scattering process: $2 \rightarrow 2$
- We will only discuss scalar (spinless) particles in these lectures, e.g. pions
- We will also consider only identical particles, e.g. $\pi^{+} \pi^{+} \rightarrow \pi^{+} \pi^{+}$
- Scattering amplitude related to the S matrix

$$
S=1+i T \quad\langle f| T|i\rangle=(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right) \mathscr{M}_{f i}
$$

- In a given theory, can calculate in perturbation theory (PT), e.g. in φ^{4} theory

- We will not assume a particular theory, e.g. ChPT or φ^{4}; instead we use a generic relativistic QFT, with all possible vertices, and work to all orders in PT

Properties of \mathcal{M}_{2}

- Poincaré invariance $\Rightarrow \mathcal{M}_{2}$ depends on the two independent Mandelstam variables

$$
\mathscr{M}_{2}=\mathscr{M}_{2}(s, t), \quad s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{1}^{\prime}\right)^{2}, u=\left(p_{1}-p_{2}^{\prime}\right)^{2}=4 m^{2}-s-t
$$

Properties of \mathcal{M}_{2}

- Poincaré invariance $\Rightarrow \mathcal{M}_{2}$ depends on the two independent Mandelstam variables

- Partial wave decomposition in CM frame

$$
\begin{gathered}
s=E^{* 2}=4\left(q^{2}+m^{2}\right), t=-2 q^{2}(1-\cos \theta) \\
\mathscr{M}_{2}(s, t)=\sum_{\ell}(2 \ell+1) \mathscr{M}_{2}^{(\ell)}(s) P_{\ell}(\cos \theta)
\end{gathered}
$$

Only even values of l contribute for identical particles

Properties of \mathcal{M}_{2}

- Unitarity (holds in each partial wave)

$$
S^{\dagger} S=1 \Rightarrow \operatorname{Im}\left(\mathscr{M}_{2}^{(\ell)}\right)=\mathscr{M}_{2}^{(\ell)^{*}} \rho \mathscr{M}_{2}^{(\ell)}=\rho\left|\mathscr{M}_{2}^{(\ell)}\right|^{2}, \quad \rho=\frac{q}{16 \pi E^{*}} \text { (phase space) }
$$

Properties of \mathcal{M}_{2}

- Unitarity (holds in each partial wave)

$$
S^{\dagger} S=1 \Rightarrow \operatorname{Im}\left(\mathscr{M}_{2}^{(\ell)}\right)=\mathscr{M}_{2}^{(\ell)^{*}} \rho \mathscr{M}_{2}^{(\ell)}=\rho\left|\mathscr{M}_{2}^{(\ell)}\right|^{2}, \quad \rho=\frac{q}{16 \pi E^{*}} \text { (phase space) }
$$

- Solve unitarity constraint in terms of an arbitrary, real K matrix

$$
\operatorname{Im}\left[1 / \mathscr{M}_{2}^{(\ell)}\right]=-\rho \Rightarrow 1 / \mathscr{M}_{2}^{(\ell)} \equiv 1 / \mathscr{K}_{2}^{(\ell)}-i \rho \Rightarrow \mathscr{M}_{2}^{(\ell)}=\mathscr{K}_{2}^{(\ell)} \frac{1}{1-i \rho \mathscr{K}_{2}^{(\ell)}}
$$

Properties of \mathcal{M}_{2}

- Unitarity (holds in each partial wave)

$$
S^{\dagger} S=1 \Rightarrow \operatorname{Im}\left(\mathscr{M}_{2}^{(\ell)}\right)=\mathscr{M}_{2}^{(\ell)^{*}} \rho \mathscr{M}_{2}^{(\ell)}=\rho\left|\mathscr{M}_{2}^{(\ell)}\right|^{2}, \quad \rho=\frac{q}{16 \pi E^{*}} \text { (phase space) }
$$

- Solve unitarity constraint in terms of an arbitrary, real K matrix

$$
\operatorname{Im}\left[1 / \mathscr{M}_{2}^{(\ell)}\right]=-\rho \Rightarrow 1 / \mathscr{M}_{2}^{(\ell)} \equiv 1 / \mathscr{K}_{2}^{(\ell)}-i \rho \Rightarrow \mathscr{M}_{2}^{(\ell)}=\mathscr{K}_{2}^{(\ell)} \frac{1}{1-i \rho \mathscr{K}_{2}^{(\ell)}}
$$

- Parametrize K_{2} using (real) phase shifts

$$
\mathscr{K}_{2}^{(\ell)} \equiv \frac{1}{\rho} \tan \delta_{\ell}=\frac{16 \pi E^{*}}{q \cot \delta_{\ell}} \Rightarrow \mathscr{M}_{2}=\frac{1}{\rho} e^{i \delta} \sin \delta_{\ell}
$$

Properties of \mathcal{M}_{2}

- Threshold behavior (QM)

$$
\delta_{\ell} \sim q^{1+2 \ell}\left[1+\mathcal{O}\left(q^{2}\right)\right] \Rightarrow \mathscr{K}_{2}^{(\ell)} \sim q^{2 \ell}\left[1+\mathcal{O}\left(q^{2}\right)\right]
$$

- Effective range expansion (ERE)

$$
\frac{1}{\mathscr{K}_{2}^{(0)}}=\frac{1}{16 \pi E_{2}}\left[-\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}+\ldots\right], \frac{1}{\mathscr{K}_{2}^{(2)}}=-\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}}+\ldots
$$

- a_{0} is s-wave scattering length, related to threshold scattering amplitude

$$
\mathscr{M}_{2}(q=0)=\mathscr{K}_{2}(q=0)=32 \pi m a_{0}
$$

- a_{0} is the intercept of the s-wave radial $Q M$ wavefunction at $q=0$ on the r axis, and can have any value: $\quad-\infty<a_{0}<+\infty$
- r_{0} is the effective range (typically of order the range of the interaction), P_{0} is the "shape parameter" (typically of order unity), and a_{2} is the d-wave scattering length

Properties of \mathcal{M}_{2}

- Analytic structure: branch cut along real s axis above threshold, arising from unitarity

$$
\mathscr{M}_{2}^{(\ell)}=\mathscr{K}_{2}^{(\ell)}+\mathscr{K}_{2}^{(\ell)} i \rho \mathscr{K}_{2}^{(\ell)}+\ldots, \quad \rho=\frac{\sqrt{s-4 m^{2}}}{32 \pi \sqrt{s}}
$$

- \mathcal{M}_{2} has two Riemann sheets, the top one being called the "physical sheet"
- \mathcal{K}_{2} does not have the right-hand cut; it is analytic at threshold

Properties of \mathcal{M}_{2}

- t- and u-channel exchanges lead to the "left-hand cut"

$$
\mathscr{M}_{2}^{(\ell)}=\mathscr{K}_{2}^{(\ell)}+\mathscr{K}_{2}^{(\ell)} i \rho \mathscr{K}_{2}^{(\ell)}+\ldots, \quad \rho=\frac{\sqrt{s-4 m^{2}}}{32 \pi \sqrt{s}}
$$

- Left-hand cut is far below threshold, and I will ignore it henceforth
- One does have to worry about it in the 3-particle analysis, but I will not have time to discuss this relatively minor point-see [HSI4, HSI9]

Bound states

- Bound states lead to poles in \mathcal{M}_{2} on physical sheet

- \mathcal{K}_{2} does not have a corresponding pole since ρ is nonzero below threshold

$$
1 / \mathscr{M}_{2}^{(\ell)} \equiv 1 / \mathscr{K}_{2}^{(\ell)}-i \rho \text { where }-i \rho=\frac{|q|}{16 \pi E^{*}} \text { with } E_{\mathrm{BS}}^{* 2}=4\left(m^{2}-|q|^{2}\right)
$$

- Bound state condition is thus

$$
1 / \mathscr{M}_{2}^{(\ell)}=\frac{1}{16 \pi E^{*}}\left(q \cot \delta_{\ell}+|q|\right)=0
$$

- If keep only the scattering length in the ERE, find bound state for $\mathrm{a}_{0}>0$

$$
q \cot \delta_{0}=-1 / a_{0} \Rightarrow|q|=1 / a_{0} \Rightarrow E_{B S}^{*}=2 \sqrt{m^{2}-1 / a_{0}^{2}}
$$

- Bound state at threshold in unitary limit $a_{0} \rightarrow \infty$

Resonances

- Resonances lead to poles in M_{2} below the real axis on the second (unphysical) sheet
- Cannot have poles on physical sheet aside from bound states due to causality
- To display sheets it is better to use single-sheeted variable q

- Resonance with width $\Gamma=1 / T$ and mass M has pole at

$$
E^{*}=M-i \Gamma / 2 \Rightarrow s=M^{2}+(\Gamma / 2)^{2}-i M \Gamma
$$

- Leads to a bump in scattering cross-section $\sim\left|\mathcal{M}_{2}\right|^{2}$ as we saw earlier

Resonances

- Narrow s-wave resonances well described by Breit-Wigner form

$$
\tan \delta_{\mathrm{BW}}=\frac{E^{*} \Gamma}{M^{2}-E^{* 2}} \Rightarrow \mathscr{M}_{2} \propto \frac{1}{M^{2}-E^{* 2}-i E^{*} \Gamma}
$$

- As E^{*} passes through M from below:
- Phase shift rises rapidly through 90°
- $\mathcal{K}_{2} \sim \tan \delta$ has a pole at M (i.e. on the real axis)
- Pole in \mathcal{K}_{2} does not have any direct physical significance, but does play a role in the finitevolume analysis to follow

Resonances: unavoidable complication

- Neither experiment, nor LQCD calculations, can directly access complex energies
- Thus, in order to study resonances, both methods have to parametrize the K matrices with an analytic form that can be continued into the complex plane
- Thus some parametrization dependence is unavoidable
- One should put as much physical knowledge as possible into the parametrization, while minimizing model dependence
- Input from the experimental analysis community can be helpful

G parity

- G parity will come up occasionally in the remaining lectures, so here is a reminder
- $G=C e^{i \pi I_{y}}$ is an exact symmetry of isosymmetric QCD, and an approximate symmetry of real QCD
- Eigenstates of G: $\pi(-1), \eta(+1), \rho(+1), \omega(-1), \ldots$
- Relevance for what follows:
- Restricts decay channels, e.g. $\rho \rightarrow \pi \pi, \omega \rightarrow \pi \pi \pi$ ($\eta \rightarrow \pi \pi$ forbidden by parity)
- No interactions involving an odd number of pions, e.g.

$$
\pi \pi \leftrightarrow 4 \pi, \quad \pi \pi \leftrightarrow 3 \pi
$$

3-particle scattering

- In a theory with a G-parity-like Z_{2} symmetry only have $3 \rightarrow 3$ scattering

- Difficult to measure experimentally, but well defined in QFT
- 3 particle finite-volume states are accessible to LQCD

3-particle scattering

- In a theory with a G-parity-like Z_{2} symmetry only have $3 \rightarrow 3$ scattering

- Difficult to measure experimentally, but well defined in QFT
- 3 particle finite-volume states are accessible to LQCD
- Without the Z_{2} symmetry have $2 \rightarrow 3,3 \rightarrow 2 \& 3 \rightarrow 3$ scattering, e.g.

3-particle scattering

- In a theory with a G-parity-like Z_{2} symmetry only have $3 \rightarrow 3$ scattering

- Difficult to measure experimentally, but well defined in QFT
- 3 particle finite-volume states are accessible to LQCD
- Without the Z_{2} symmetry have $2 \rightarrow 3,3 \rightarrow 2 \& 3 \rightarrow 3$ scattering, e.g.

- Parametrizing these amplitudes in terms of real K matrices is a nontrivial problem to which the methods I will describe provide, as a spinoff, one solution

Thank you! Questions?

