

Nuclear Lattice EFT: An introduction

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > >

- Lecture 1: Nuclear physics factbook
- Lecture 2: Chiral EFT in the continuum and on a lattice
- Lecture 3: Scattering on a lattice
- Lecture 4: Assorted results
- Lecture 5: Open ends / on-going developments

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

Nuclear physics factbook

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

WHY NUCLEAR PHYSICS?

• The matter we are made off **Universe content** visible matter 5% dark matter 27% The last frontier of the SM 134 Quarks dark energy 68% Forces S b a Proton Higgs M e V - 4 e τ Access to the Multiverse 50 Ve Leptons 8.2 2 B **B** = 0 2.050 3.D

Neutron Number N

 ∇

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < \land

4

FACETS of STRUCTURE FORMATION in QCD

- quarks and gluons form hadrons
 - \Rightarrow lattice QCD
 - \Rightarrow exploring the strong color force

- nucleons and mesons form nuclei
 - \Rightarrow nuclear physics
 - \Rightarrow exploring the residual color force

BMW collaboration and others

 $< \land \nabla$

 \triangleleft

RESIDUAL CHROMODYNAMIC FORCES

- Quarks and gluons are confined within hadrons
- Nuclear forces are the residual forces between colorless objects
- Hadronic energies correspond to a low resolution microscope
- $ullet np o d\gamma$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright

BASIC FACTS

- At nuclear lengths scales, hadrons are the relevant degrees of freedom (dofs) Ex: Deuteron break-up with 2 MeV photons: $\gamma + d \rightarrow n + p$
- Nuclei are made of protons and neutrons & virtual mesons

Ex: Pion-exchange currents required to get the proper $\sigma_{
m tot}(\gamma+d o n+p)$ Brown, Riska, Gari, ...

Nuclear binding energies ≪ nuclear masses

 → non-relativistic problem
 Exercise: average momentum in a nucleus
 with R = 1.3A^{1/3} fm [hint: Heisenberg]

 \rightarrow can solve the nuclear A-body problem w/ the Schrödinger equation

BASIC FACTS cont'd

• Nuclear A-body problem w/ the Schrödinger equation

$$egin{array}{rll} H\Psi_A &=& E_A\Psi_A \ H &=& T+V = \sum_A rac{p_A^2}{2m_N} + V \ V &=& V_{NN} + V_{3N} + V_{4N} + \dots \end{array}$$

- Input: V_{NN} from pp and np phase shift analysis
- high precision nucleon-nucleon potentials (CD-Bonn, Nijm I,II, AV18, ...)
- Further input: V_{3N} small, from phenomenological fits/models
- Ab initio calculations based on this are astonishingly precise

Glöckle, Nogga, Witala, Carlson, Phandaripande, Pieper, Wiringa, ...

THE TWO-NUCLEON FORCE: FUNDAMENTALS

 One-pion exchange as the longest range interaction (Yukawa 1935)

$$V_{1\pi}(\vec{q}\,) \propto ec{ au_1} \cdot ec{ au_2} rac{ec{\sigma}_1 \cdot ec{q}\,ec{\sigma}_2 \cdot ec{q}}{ec{q}\,^2 + M_\pi^2}\,, \ \ ec{q} = ec{p}\,' - ec{p}\,$$

- Parameterize the shorter-range terms in the most general way available vectors $\vec{\sigma}_1, \vec{\sigma}_2, \vec{q}, \vec{k} = (\vec{p} + \vec{p'})/2$ and isovectors $\vec{\tau}_1, \vec{\tau}_2$
- \rightarrow hermiticity, isospin conservation, invariance under rotations, space reflection and time reversal yields 10 structures

$$\{1, \ ec{\sigma}_1 \cdot ec{\sigma}_2, \ i(ec{\sigma}_1 + ec{\sigma}_2) \cdot ec{q} imes ec{k}, \ ec{\sigma}_1 \cdot ec{q} \, ec{\sigma}_2 \cdot ec{q}, \ ec{\sigma}_1 \cdot ec{k} \, ec{\sigma}_2 \cdot ec{k} \, \} \, \otimes \, \{1, ec{ au}_1 \cdot ec{ au}_2 \}$$

times scalar functions, to be obtained from a fit to data

- so-called "high-precision" potentials (AV18, CD Bonn, Nijml/II, Reid93)
 - nearly perfect description of pp and np data below $\sim 350\,\text{MeV}$
 - need typically about 40 -50 parameters

р'

þ

THE TWO-NUCLEON FORCE: PARTIAL WAVES

- Partial wave basis: $\ket{ec{p}} o \ket{p\ell m_\ell}$
- Two-nucleon state: $|p(\ell s)jm_{j}
 angle$
- Spectroscopic notation:

$$^{2S+1}L_J$$

- S = total spin (0,1) (singlet, triplet) L = angular momentum (0,1,2,...) L = 0 S-wave, L = 1 P-wave, L = 2 D-wave, ... J = L + S = total ang. momentum (0,1,2,...)
- Partial-wave decomposition of the potential:

$$\begin{split} \langle p'(l's')j'm'_{j}|V|p(ls)jm_{j}\rangle &\equiv \delta_{j'j}\delta_{m'_{j}m_{j}}\delta_{s's} V_{l'l}^{sj}(p',p) \\ V_{l'l}^{sj}(p',p) &= \sum_{m'_{l},m_{l}} \int d\hat{p}'d\hat{p} \langle l',m'_{l};s,m_{j}-m'_{l}|j,m_{j}\rangle \langle l,m_{l};s,m_{j}-m_{l}|j,m_{j}\rangle \\ &\times Y_{l',m'_{l}}^{*}(\hat{p}')Y_{l,m_{l}}(\hat{p}) \langle s(m_{j}-m'_{l})|V(\vec{p}',\vec{p})|s(m_{j}-m_{l})\rangle \end{split}$$

Exercise: derive the partial-wave S-matrix for uncoupled and coupled channels
hint: spin-singlet waves are uncoupled, spin-triplet waves are coupled

THE CENTRAL NN POTENTIAL

• consider the central potential $(1 \otimes 1)$ in the spin-singlet, S-wave 1S_0

- universal features:
 long-range one-pion exchange
 intermediate-range attraction
 short-range repulsion
- note, however:

potential is not an observable

short-range physics is representation dependent

INDICATIONS of 3-NUCLEON FORCES

- Use high-precision NN potentials \rightarrow explore three-particle systems
- Perform numerically exact calculations (here: Faddeev-Yakubowsky)
- Total XS for np and nd scattering
 Tensor analying power in Nd scattering

Abfalterer et al., Phys. Rev. Lett. **81** (1998) 57 E. Epelbaum, priv. comm.

 $< \land$ Nuclear lattice EFT: An introduction - Ulf-G. Meißner - PKU lattice school, Beijing, July 2019 · 0 ∇ <

QUANTUM MC CALCULATIONS OF NUCLEI

J. Carlson et al., Rev. Mod. Phys. 87 (2015) 1067

• large numerical effort

• a small three-nucleon force is needed!

• but the 2NF and 3NF are not consistent

13

OPEN ENDS

- Why is there this hierarchy $igvee V_{2N} \gg V_{3N} \gg V_{4N}$?
- Gauge and chiral symmetries difficult to include (meson-exchange currents)

Brown, Riska, Gari, . . .

Connection to QCD ?

most models have one-pion-exchange, but not necessarily respect chiral symmetry some models have two-pion exchange reconstructed via dispersion relations from $\pi N \to \pi N$

\Rightarrow We want an approach that

- is linked to QCD via its symmetries
- allows for systematic calc's with a controlled theoretical error
- explains the observed hierarchy of the nuclear forces
- matches nucleon structure to nuclear dynamics
- allows for a lattice formulation / chiral extrapolations
- puts nuclear physics on a sound basis

THE NUCLEAR LANDSCAPE: AIMS & METHODS

- Theoretical methods:
- Lattice QCD: $A = 0, 1, 2, \ldots$ > Detmold, Aoki
- NCSM, Faddeev-Yakubowsky, GFMC, ... : A = 3 16
- coupled cluster, . . .: A = 16 100
- density functional theory, . . .: $A \ge 100$
- Chiral EFT:
- provides accurate 2N, 3N and 4N forces
- successfully applied in light nuclei with A = 2, 3, 4
 - combine with simulations to get to larger A

\Rightarrow Nuclear Lattice Effective Field Theory

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright

AB INITIO NUCLEAR STRUCTURE and SCATTERING

- Nuclear structure:
 - ★ 3-nucleon forces
 - ★ limits of stability
 - ★ alpha-clustering

- Nuclear scattering: processes relevant for nuclear astrophysics
 - \star alpha-particle scattering: ⁴He + ⁴He \rightarrow ⁴He + ⁴He
 - * triple-alpha reaction:
 - ★ alpha-capture on carbon:

 ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$

 4 He + 12 C ightarrow 16 O + γ

MANY-BODY APPROACHES

- nuclear physics = notoriously difficult problem: strongly interacting fermions
- define *ab initio*: combine the precise and well-founded forces from *chiral EFT* with a many-body approach
- two different approaches followed in the literature:

* combine chiral NN(N) forces with standard many-body techniques

Dean, Hagen, Navratil, Nogga, Papenbrock, Schwenk, ...

 \rightarrow successful, but problems with cluster states (SM, NCSM,...)

- \star combine chiral forces and lattice simulations methods
- \rightarrow this new method is called *nuclear lattice EFT* (NLEFT)

Borasoy, Epelbaum, Krebs, Lee, Lähde, UGM, Rupak, ...

 \rightarrow rest of the lectures

COMPARISON to LATTICE QCD

LQCD	NLEFT
relativistic fermions	non-relativistic fermions
renormalizable th'y	EFT
continuum limit	no continuum limit
(un)physical masses	physical masses
Coulomb - difficult	Coulomb - easy
high T/small $ ho$	small T/nuclear densities
sign problem severe	sign problem moderate

• similar methods:

hybrid MC, parallel computing, ...

 \hookrightarrow not treated here

- what I want to discuss within the time limitations:
 - \hookrightarrow how to put the chiral EFT on a lattice
 - \hookrightarrow scattering on a lattice (**not** the Lüscher approach)
 - \hookrightarrow show some assorted results & give some outlook

 $< \land \lor \lor$

• 0

 \triangleleft

Chiral EFT in the continuum: A crash-course

for an intro, see: Epelbaum, Prog. Part. Nucl. Phys. **57** (2006) 654 for a review, see: Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

A TOY MODEL

Consider a toy model with light & heavy boson exchanges

• Effective theory

- at low energy $q \sim M_l \ll M_h$, structure of short-distance potential irrelevant
- represent short-range potential by a series of contact interactions

2

r [fm]

TOY MODEL cont'd

• Expectations:

• should work for momenta $|k| \leq \frac{M_h}{2} = 375 \text{ MeV}$ (or $E_{\text{lab}} \leq \frac{M_h^2}{2m} \sim 300 \text{ MeV}$) • should go beyond the ERE, converges for $|k| \leq \frac{M_l}{2} = 100 \text{ MeV}$ (or $E_{\text{lab}} \leq \frac{M_l^2}{2m} \sim 20 \text{ MeV}$) [ERE = effective range expansion]

TOY MODEL cont'd

• T-matrix of the effective theory:

 $\begin{array}{ll} \text{weak interaction} & |\alpha_{l,h}| \ll 1: \ \langle f|T|i\rangle \simeq \langle f|V_{\text{eff}}|i\rangle \\ \text{strong interaction} & |\alpha_{l,h}| \geq 1: \ \langle f|T|i\rangle = \langle f|V_{\text{eff}}|i\rangle + \sum_{n} \frac{\langle f|V_{\text{eff}}|n\rangle \langle n|V_{\text{eff}}|i\rangle}{E_{i} - E_{n} + i\epsilon} + \dots \end{array}$

sum diverges, high-momentum physics ightarrow introduce UV cutoff Λ : $M_l \ll \Lambda \sim M_h$

• Fix the $C_i(\Lambda)$ from some low-energy data \rightarrow make predictions

• use e.g. the ERE:
$$k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + \dots$$

LO: $V_{\text{eff}} = V_{\text{long}} + C_0 f_{\Lambda}(p, p') \longrightarrow C_0 \text{ from } a \ [f_{\Lambda}(p, p') = \exp(-(p^2 + p'^2)/\Lambda^2)]$

NLO: $V_{\text{eff}} = V_{\text{long}} + \left[C_0 + C_2(p^2 + p'^2)\right] f_{\Lambda}(p, p') \longrightarrow C_0, C_2 \text{ from } a, r$

NNLO:
$$V_{\rm eff} = V_{\rm long} + \left[C_0 + C_2(p^2 + p'^2) + C_4 p^2 p'^2\right] f_{\Lambda}(p,p')$$

 $\longrightarrow C_0, C_2, C_4 \ {
m from} \ {a,r,}$

 v_2

TOY MODEL: RESULTS

• Phase shift

• error at order n: $\Delta \delta(k) \sim (k/\tilde{\Lambda})^{2n}$, $\tilde{\Lambda} \sim 400 \,\text{MeV}$ agrees with $\tilde{\Lambda} \sim M_h/2$ [breakdown scale]

• results for the bound state: $E_B = \underbrace{2.1594}_{\text{LO}} + \underbrace{0.0638}_{\text{NLO}} - \underbrace{0.0003}_{\text{NNLO}} = 2.2229 \text{ MeV}$

• relative error

TOY MODEL: LESSONS

- Incorporate the correct long-range force
- Represent short-range physics by local contact interactions in $V_{\rm eff}$, respect symmetries
- Introduce an UV cut-off Λ (large enough but not neccessarily ∞)
- Fix LECs from some (low-energy) data and make predictions

 \Rightarrow At low energies model-independent and systematically improvable!

• for more details see:

G.P. Lepage, "How to renormalize the Schrödinger equation", nucl-th/9706029

• Let's tackle this from an EFT point of view

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

EFFECTIVE FIELD THEORY in a NUTSHELL

Weinberg, Gasser, Leutwyler, ...

• Rules to construct an EFT:

- *scale separation* what is low, what is high?
- *active degrees of freedom* what are the building blocks?
- *symmetries* how are the interactions constrained by symmetries?
- *power counting* how to organize the expansion in low over high?

• QCD with light quarks (up, down):

- ightarrow low scale $\sim M_\pi \ll$ high scale $\sim M_
 ho$
- \rightarrow DOFs: pions = Goldstone bosons, nucleons, ... \rightarrow validates Yukawa
- \rightarrow broken chiral symmetry, PCT, Lorentz, ...
- ightarrow Amp $\sim q^{
 u}$, $u = 4 N + 2(L-C) + \sum_i V_i \Delta_i$

SCALES IN NUCLEAR PHYSICS

• Natural scales (Yukawa, 1935; QCD)

Long-range one-pion-exchange interaction: $\left| \lambda_{\pi} = 1/M_{\pi} \simeq 1.5 \, {
m fm}
ight|$

Intermediate range attraction (mostly 2π exchange)

Nucleons don't like to touch, short-distance repulsion ($R \simeq 0.8$ fm)

• But: nuclei exhibit UNNATURAL scales

Large S-wave scattering lengths:

$$a_{np}({}^1S_0) = -23.8\,{
m fm}$$
 , $a_{np}({}^3S_1) = 5.4\,{
m fm} \gg 1/M_\pi$

NB: effective ranges are of natural size

Shallow nuclear binding:

$$\gamma = \sqrt{E_D m_N} = 45 \, {
m MeV} \ll M_\pi$$
 $(E_D = 2.22 \, {
m MeV})$

 \Rightarrow the corresponding EFT requires a non-perturbative resummation

CALCULATIONAL SCHEME

S. Weinberg, Nucl. Phys. **B 363** (1991) 3

• No perturbative description for bound states

 \Rightarrow NN cuts violate perturbative power counting

• Effective potential can be constructed **perturbatively** from chiral EFT

• Solve non-perturbative Lippmann-Schwinger/Schrödinger equation

(requires regularization)

$$\mathbf{T} = \mathbf{V} + \mathbf{V} \mathbf{T}$$

• check convergence for observables a posteriori

compact operator form

$$T = V + VG_0T$$
 G_0 = free two-nucleon propagator

• partial wave representation = projection onto states with orbital angular momentum l, total spin s and total angular momentum j

$$iggl\{T^{sj}_{l',l}(p',p) = V^{sj}_{l',l}(p',p) + \sum_{l''} \int\limits_{0}^{\infty} rac{dp''(p'')^2}{(2\pi)^3} V^{sj}_{l',l''}(p',p'') rac{2\mu}{p^2 - p''^2 + i\eta} T^{sj}_{l'',l}(p'',p) iggr\}$$

- sometimes also relativistic kinematics used (for comparison w/ PWA)
- potential also projected on the partial waves
- potential requires UV regularization

$$V(p,p') \to f_R(p)V(p,p')f_R(p')$$

– best regulator function: $f_R({ec p\,}^2) = \exp(-({ec p\,}^2 + M_\pi^2)/\Lambda^2)$

Rijken (1991), Reinert, Epelbaum, Krebs (2017)

– cut-off Λ to be determined later in the fit

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright

FAILURE of PERTURBATION THEORY

- Enhancement caused by reducible diagrams (IR divergent in the static limit)
- consider time-ordered perturbation theory (let Q be a small parameter)

$$Amp = \langle NN | H_I | NN \rangle + \sum_{\psi} \frac{\langle NN | H_I | \psi \rangle \langle \psi | H_I | NN \rangle}{E_{NN} - E_{\psi}} + \dots$$

$$| \dots | = | \psi \rangle + \dots | \psi | + \dots | \psi |$$

POWER COUNTING for the EFECTIVE POTENTIAL

30

Weinberg, Rho, van Kolck, Epelbaum, ...,

• N-nucleon interactions receives contributions $\sim (Q/\Lambda)^{
u}$:

(with $oldsymbol{Q}$ the small momentum/mass)

$u = -2 + 2N + 2(L-C) + \sum_i V_i \Delta_i$

- -N = number of nucleon fields (in- & out-states)
- -L = number of pion loops
- -C = number of connected pieces
- $-V_i$ = number of vertices with the vertex dimension $\Delta_i = d_i + \frac{1}{2}n_i 2$

- $-d_i$ = number of derivatives or pion mass insertions at the vertex i
- $-n_i$ = number of nucleon fields at the vertex i
- external sources & virtual photons can easily be included
- central observation: $\Delta_i(\nu)$ is bounded from below because of chiral symmetry
- LO vertices have $\Delta_i = 0 \Rightarrow
 u_{\min} = 0$

POWER COUNTING: EXAMPLES

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

NUCLEAR FORCES in CHIRAL NUCLEAR EFT

- expansion of the potential in powers of Q [small parameter]: $\{p/\Lambda_b, M_\pi/\Lambda_b\}$
- explains observed hierarchy of the nuclear forces
- extremely successful in few-nucleon systems

Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

STRUCTURE of the NN POTENTIAL

• LO: one-pion-exchange (OPE) plus contact interactions w/o derivatives 2 LECs

$$V^{(0)} = -\left(rac{g_A}{2F_\pi}
ight)^2 ec{ au_1} \cdot ec{ au_2} \, rac{ec{\sigma}_1 \cdot ec{q} \, ec{\sigma}_2 \cdot ec{q}}{q^2 + M_\pi^2} + C_S + C_T \, ec{\sigma}_1 \cdot ec{\sigma}_2$$

 NLO: renormalization of the one-pion-exchange (OPE) plus leading two-pion exchange (TPE) plus renormalization of the leading contact interactions plus contact interactions w/ 2 derivatives 7 LECs

• N²LO: further renormalization of the one-pion-exchange (OPE) plus subleading two-pion exchange (TPE) (~ LECs c_i of the πN sector)

 N³LO: further renormalization of the one-pion-exchange (OPE) plus sub-subleading two-pion exchange (TPE) plus leading three-pion exchange (TPE) (very small) plus renormalization of dim. two contact interactions plus contact interactions w/ 4 derivatives 13 LECs

TYPICAL DIAGRAMS

TPEP

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < < < > > > > • •

TYPICAL DIAGRAMS continued

Kaiser, Phys. Rev. C 61 (2000) 014003; C 62 (2000) 024001; C 63 (2001) 044010

• three-pion exchange (starts at N³LO)

 \Rightarrow insignificant for $r \geq 1$ fm

SHORT-DISTANCE STRUCTURE of the POTENTIAL

ullet consider chiral 2π potential $\propto g_A^4$

$$V_{2\pi}^{(2)} = \frac{g_A^4}{32F_\pi^4} \int \frac{d^3l \ \omega_+^2 + \omega_+\omega_- + \omega_-^2}{(2\pi)^3 \omega_+^3 \omega_-^3 (\omega_+ + \omega_-)} \left\{ \tau_1^a \tau_2^a \left(\vec{l}^2 - \vec{q}^2\right)^2 + 6\sigma_1^i (\vec{q} \times \vec{l})^i \sigma_2^j (\vec{q} \times \vec{l})^j \right\}$$

with $\omega_{\pm} = \sqrt{(\vec{q} \pm \vec{l})^2 + 4M_\pi^2}$

• log and quadratic divergences, absorb in short-range counterterms

$$V_{
m cont} = (lpha_1 + lpha_2 \, q^2) ec{ au_1} \cdot ec{ au_2} + lpha_3 \, ec{ au_1} \cdot ec{ au} \, ec{ au_1} \cdot ec{ au_1} + lpha_4 \, q^2 \, ec{ au_1} \cdot ec{ au_2}$$

co-ordinate space representation

 $V^{(2)}_{2\pi}(q) o V^{(2)}_{2\pi}(r)$

the large-r (long-range) behaviour is uniquely defined and does not depend on the regularization

36
LOW-ENERGY CONSTANTS

• Pion-nucleon system:

- $-g_A$ and F_{π} precisely known (chiral symmetry)
- dimension 2 & 3 couplings c_i & d_i known
 - from Roy-Steiner analysis of $\pi N o \pi N$

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rept. 625 (2016) 1

- physics understood: resonance saturation

Bernard, Kaiser, UGM, Nucl. Phys. A615 (1997) 483

• Nucleon-nucleon system:

 $-C_S$ and C_T : LO 4N couplings

 $-C_{1,..,7}$: NLO 4N couplings

Weinberg

Ordonez et al., Epelbaum et al.

 $- D_{1,..,13}$: N³LO 4N couplings

Epelbaum, Glöckle, Krebs, UGM, Reinert, Entem, Machleidt

- \Rightarrow these must be fixed from NN data
- \Rightarrow fit to the low phases (S,P, ...)
- ... and try to understand the physics behind their values

NN FORCES to FIFTH ORDER

Epelbaum, Krebs, UGM, Reinert, Entem, Nosyk, Kaier, Machleidt

- Many new contributions
- No contact interactions at this order odd in Q

• New contributions fixed from πN scattering, LECs c_i, d_i, e_i :

Büttiker, Fettes, UGM, Steininger (1998-2000); Krebs, Gasparian, Epelbaum (2012), Hoferichter et al. (2015-2018)

$$\mathcal{L}_{\pi N} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)}(c_i) + \mathcal{L}_{\pi N}^{(3)}(d_i) + \mathcal{L}_{\pi N}^{(4)}(e_i)$$

- Three-pion exchange can be neglected
 - \rightarrow explicit calculation of the dominant NLO contribution

Kaiser (2001)

 \rightarrow no influence on phase shifts or deuteron properties

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

RESULTS at N3LO

• np scattering

• pol. transfer in pd scattering

• nd scattering

 uncertainties only from cut-off variations!

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

PHASE SHIFTS at N4LO

• N4LO analysis, better error estimates

Epelbaum, Krebs, UGM, Phys. Rev. Lett. **115** (2015) 122301 Entem, Kaiser, Machleidt, Nosyk, Phys. Rev. **C 91** (2015) 014002 Reinert, Krebs, Epelbaum, EPJ **A 54** (2018) 86

• Precision phase shifts with small uncertainties up to $E_{
m lab}=300\,{
m MeV}$

NLO N2LO N3LO N4LO

IMPROVED ERROR ESTIMATES

• Various sources of uncertainties, dominated by the orders neglected

• small parameter Q, must deal with the double expansion (momenta/masses):

$$Q=\max\,\left(rac{p}{\Lambda_{
m hard}},rac{M_{\pi}}{\Lambda_{
m hard}}
ight)$$
 , $\Lambda_{
m hard}$ = breakdown scale

- at low momenta ($p < M_{\pi}$) the error is dominated by the pion mass corrections
- conservative way of estimating the uncertainty: take the maximum of all the differences of the lower orders one has considered for a given observable X(p) at order Q^N [note particular pattern for NN]

$$\Delta X^{N}(p) = \max \left(Q^{N+1} \cdot |X^{\text{LO}}(p)|, Q^{N-1} \cdot |X^{\text{NLO}}(p) - X^{\text{LO}}(p)|, \\ Q^{N-2} \cdot |X^{N^{2}\text{LO}}(p) - X^{\text{NLO}}(p)|, \dots, Q \cdot |X^{N^{N}\text{LO}}(p) - X^{N^{N-1}\text{LO}}(p)| \right)$$

NUCLEI at N2LO

• N2LO analysis, 2NFs + 3NFs consistently included, NCSM

Epelbaum et al. [LENPIC], Phys. Rev. C99 (2019) 024313

• Ground state energies

• excitation energies

 \rightarrow quite reasonable, radii somewhat underpredicted

 \rightarrow similar to results other groups (TUD, ORNL, Saclay, Sussex, ...)

Chiral EFT on a lattice

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction

Springer Lecture Notes in Physics 957 (2019) 1 - 396

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < \land \bigtriangledown \checkmark

NUCLEAR LATTICE EFFECTIVE FIELD THEORY

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 314\,{
m MeV}\,[{
m UV}\,{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

• physics independent of the lattice spacing for $a = 1 \dots 2$ fm [@N3LO] N. Li et al., Phys. Rev. **C98** (2018) 044002

DISCUSSION of the LATTICE SPACING

- ullet Standard in LQCD is the continuum limit a
 ightarrow 0
- not so in NLEFT: the inverse lattice spacing serves as the UV regulator!
- physical range: $\Lambda=\pi/a$ must be bigger than M_{π} and smaller than $\Lambda_{
 m hard}$
- ullet this translates into $a\geq 1$ fm and $a\leq 2$ fm

 $a \in [1,2] ext{ fm } o p_{ ext{max}} \simeq [300,600] ext{ MeV}$

- lattice artefacts must be controlled at fixed $a \rightarrow$ feasible \hookrightarrow will discuss explicit examples later
- alternative approach possible: consider a cut-off EFT with $a \rightarrow 0$ by working with the relativistic path integral and block fields for a first try, see Urbach, Montvay, Eur. Phys. J. A48 (2012) 38

LATTICE NOTATION

- nucleon fields in the isospin basis
- nucleon annihilation/creation ops:

$$a_{0,0}^{(\dagger)} \equiv a_{\uparrow,p}, \; a_{1,0}^{(\dagger)} \equiv a_{\downarrow,p}, \; a_{0,1}^{(\dagger)} \equiv a_{\uparrow,n}, \; a_{1,1}^{(\dagger)} \equiv a_{\downarrow,n}$$

 \rightarrow labeling spin and isospin

• spatial & temporal lattice spacing: $a, a_t
ightarrow lpha_t \equiv a_t/a$

• lattice size: $L \equiv Na$, $L_t \equiv N_t a_t$ (typically $N = 6 - 10, N_t = 14 - 18$)

- lattice volume: $V = L^3 \times L_t$
- lattice momenta: $\vec{k} = (k_1, k_2, k_3) \equiv \left(\frac{2\pi}{N}\hat{k}_1, \frac{2\pi}{N}\hat{k}_2, \frac{2\pi}{N}\hat{k}_3\right)$

ightarrow in the first Brillouin zone: $|k_i| < \pi$ and $0 \leq |\hat{k}_i| < N/2$

LATTICE NOTATION cont'd

 any derivative operator requires *improvement*, as the simplest representation in terms of two neighboring points is afflicted by the largest discretization errors

$$\begin{split} k_l &\equiv \sum_{j=1}^{\nu+1} (-1)^{j+1} \theta_{\nu,j} \sin(jk_l) + \mathcal{O}(a^{2\nu+2}) \\ \frac{k_l^2}{2} &\equiv \sum_{j=0}^{\nu+1} (-1)^j \omega_{\nu,j} \cos(jk_l) + \mathcal{O}(a^{2\nu+2}) \end{split}$$

- no improvement ($\nu = 0$): $\theta_{0,1} = 1, \ \omega_{0,0} = 1, \ \omega_{0,1} = 1$
- Order a^2 improvement ($\nu = 1$): $\theta_{1,1} = \frac{4}{3}, \ \theta_{1,2} = \frac{1}{6},$ $\omega_{1,0} = \frac{5}{4}, \ \omega_{1,1} = \frac{4}{3}, \ \omega_{1,2} = \frac{1}{12}$

• Order a^4 improvement ($\nu = 2$): $\theta_{2,1} = \frac{3}{2}, \ \theta_{2,2} = \frac{3}{10}, \ \theta_{2,3} = \frac{1}{30}$ $\omega_{2,0} = \frac{49}{36}, \ \omega_{2,1} = \frac{3}{2}, \ \omega_{2,2} = \frac{3}{20}, \ \omega_{2,3} = \frac{1}{90}$

LATTICE NOTATION cont'd

• definition of the first order spatial derivative:

$$\nabla_{l,(\nu)} f(\vec{n}) \equiv \frac{1}{2} \sum_{j=1}^{\nu+1} (-1)^{j+1} \theta_{\nu,j} \bigg[f(\vec{n}+j\hat{e}_l) - f(\vec{n}-j\hat{e}_l) \bigg]$$

• second order spatial derivative:

$$\tilde{\nabla}_{l,(\nu)}^{2}f(\vec{n}) \equiv -\sum_{j=0}^{\nu+1} (-1)^{j} \omega_{\nu,j} \bigg[f(\vec{n}+j\hat{e}_{l}) + f(\vec{n}-j\hat{e}_{l}) \bigg]$$

• has two zeros in per Brillouin zone \rightarrow beneficial feature for tuning NLO coefficients

• improved lattice dispersion relation:
$$\omega^{(\nu)}(\vec{p}) \equiv \frac{1}{\tilde{m}_N} \sum_{j=0}^{\nu+1} \sum_{l=1}^3 (-1)^j \omega_{\nu,j} \cos(jp_l)$$

• every quantity in terms of the lattice spacing:

$$\left| \tilde{m}_N \equiv m_N a \right|$$

REMINDER: NUCLEAR FORCES at LO

- Nuclear Hamiltonian: $H = H_0 + V$
- Chiral expansion of the potential:

$$V = V_{\rm LO}^{\rm cont} + V_{\rm LO}^{\rm OPE} + V_{\rm NLO}^{\rm cont} + V_{\rm NLO}^{\rm TPE} + V_{\rm NNLO}^{\rm TPE} + \dots$$

• Leading order:

 $V_{\text{LO}}^{\text{cont}} = C_S + C_T (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \quad [2 \text{ LECs}]$ [on the lattice, $C_I (\vec{\tau}_1 \cdot \vec{\tau}_2)$ is also used]

$$V_{\rm LO}^{\rm OPE} = -\frac{g_A^2}{4F_\pi^2} \,\vec{\tau}_1 \cdot \vec{\tau}_2 \frac{(\vec{\sigma}_1 \cdot \vec{q}) \,(\vec{\sigma}_2 \cdot \vec{q})}{q^2 + M_\pi^2}$$

 \vec{q} = t-channel mom. transfer

LATTICE NOTATION: FREE FIELDS

- Only discuss some bits and pieces
- $O(a^4)$ improved LO free nucleon Hamiltonian:

$$\begin{split} \tilde{H}_{\text{free}} &= \frac{49}{12\tilde{m}_N} \sum_{\vec{n},i,j} a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}) - \frac{3}{4\tilde{m}_N} \sum_{\vec{n},i,j} \sum_{l=1}^3 \left[a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}+\hat{e}_l) + a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}-\hat{e}_l) \right] \\ &+ \frac{3}{40\tilde{m}_N} \sum_{\vec{n},i,j} \sum_{l=1}^3 \left[a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}+2\hat{e}_l) + a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}-2\hat{e}_l) \right] \\ &- \frac{1}{180\tilde{m}_N} \sum_{\vec{n},i,j} \sum_{l=1}^3 \left[a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}+3\hat{e}_l) + a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}-3\hat{e}_l) \right] \end{split}$$

• $O(a^4)$ improved LO free pion action in momentum space:

$$\begin{split} S_{\pi\pi}(\pi'_I) &= \frac{1}{2N^3} \sum_{I=1}^3 \sum_{\vec{k},t} \pi'_I(-\vec{k},t) \, D_{\pi}^{-1}(\vec{k}) \, \pi'_I(\vec{k},t) \\ D_{\pi}(\vec{k})^{-1} &= \left[1 + \frac{2\alpha_t}{q_{\pi}} \sum_{l=1}^3 \left(-\omega_{2,1} \cos(k_l) + \omega_{2,2} \cos(2k_l) - \omega_{2,3} \cos(3k_l) \right) \right] \\ \pi'_I(\vec{n},t) &= \sqrt{q_{\pi}} \, \pi_I(\vec{n},t) \,, \ q_{\pi} = \alpha_t (M_{\pi}^2 + 6\omega_{2,0}) \quad \text{rescaled pion fields} \end{split}$$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 \cdot O \triangleleft C \wedge ∇ > D \bullet

• SU(4) symmetric nucleon density:

$$ho^{a^{\dagger},a}(ec{n})\equiv\sum_{i,j=0,1}a^{\dagger}_{i,j}(ec{n})a_{i,j}(ec{n})$$

• Local spin densitiy:

$$\rho_{S}^{a^{\dagger},a}(\vec{n}) \equiv \sum_{i,j,i'=0,1} a_{i,j}^{\dagger}(\vec{n}) \left[\sigma_{S}\right]_{ii'} a_{i',j}(\vec{n}), \ , \ S = 1, 2, 3$$

 \bullet and similarly for the isospin $\rho_{I}(\vec{n},t)$ and the spin-isospin $\rho_{S,I}(\vec{n},t)$ densities

 \hookrightarrow LO four-nucleon action expressed in terms of these densities:

$$S_{\bar{N}N\bar{N}N} \equiv \frac{\tilde{C}_0 \alpha_t}{2} \sum_{\vec{n},t} \left[\rho(\vec{n},t) \right]^2 + \frac{\tilde{C}_T \alpha_t}{2} \sum_{S=1}^3 \sum_{\vec{n},t} \left[\rho_S(\vec{n},t) \right]^2$$

• as usual in proper powers of the lattice spacing: $ilde{C} = C/a^2$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

LATTICE NOTATION of THE LO HAMILTONIAN cont'd 52

 Simulations require auxiliary fields aka Hubbard-Stratonovich transformations aka Gaussian quadrature:

$$\begin{split} \exp\left(-\frac{\tilde{C}_0\alpha_t}{2}\left[\rho(\vec{n},t)\right]^2\right) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} ds \, \exp\left(-\frac{s^2}{2} + \sqrt{-\tilde{C}_0\alpha_t} \, \rho(\vec{n},t) \, s\right) \\ \exp\left(-\frac{\tilde{C}_T\alpha_t}{2} \sum_{S=1}^3 \left[\rho_S(\vec{n},t)\right]^2\right) \\ &= \int\left(\prod_{S=1}^3 \frac{ds_S}{\sqrt{2\pi}}\right) \exp\left(-\sum_{S=1}^3 \frac{s_S^2}{2} + i\sqrt{\tilde{C}_T\alpha_t} \, \sum_{S=1}^3 \rho_S(\vec{n},t) \, s_S\right) \end{split}$$

• auxiliary field action (just give one example):

$$egin{split} S_{ss}(s,s_S) &= rac{1}{2} \sum_{ec{n},t} s^2(ec{n},t) \ S_{ssar{N}N}(s,s_S,\xi^*,\xi) &= -\sqrt{- ilde{C}_0 lpha_t} \sum_{ec{n},t}
ho(ec{n},t) s(ec{n},t) + ... \end{split}$$

LO LATTICE HAMILTONIAN: OPE

- Consider the OPE (One-Pion-Exchange)
- Pion-nucleon coupling at a given time:

$$S_{\pi\bar{N}N}(\pi'_{I},a^{\dagger},a) = \frac{g_{A}\alpha_{t}}{2F_{\pi}\sqrt{q_{\pi}}} \sum_{I=1}^{3} \sum_{S=1}^{3} \sum_{\vec{n}} \left[\nabla_{S,(\nu)}\pi'_{I}(\vec{n},t) \right] \rho_{S,I}^{a^{\dagger},a}(\vec{n})$$

- pions behave as another set (triplet) of auxiliary fields
- we need to express this in terms of the pion-nucleon coupling constant $g_{\pi N}$

 $|g_A = 1.287$

• adjust g_A to account for the Goldberger-Treiman discrepancy:

$$g_{\pi N} = rac{g_A m_N}{F_\pi} \left(1 - rac{2M_\pi^2 d_{18}}{g_A}
ight) \;, \;\; rac{g_{\pi N}^2}{4\pi} = 13.7 \pm 0.1$$
Baru et al., Nucl. Phys. A **872** (2011) 69

 \rightarrow use instead of fixing d_{18} :

DIGRESSION: WIGNER SU(4) SYMMETRY

- Nuclear forces approximately spin- and isospin-independent
- Wigner's super-multiplet theory (1936 ff): Wigner, Phys. Rev. 51 (1937) 106; *ibid* 947
- Analysis in pionless EFT: $\mathcal{L}_2 = -rac{1}{2}C_0(N^\dagger N)^2 -rac{1}{2}C_T(N^\dagger \sigma_i N)^2$

• Wigner trafo: $N \mapsto UN$, $U = \exp[i\alpha_{\mu\nu}\sigma_{\mu}\tau_{\nu}]$, $\sigma_{\mu} = \{1, \sigma_i\}$, $\tau_{\nu} = \{1, \tau_a\}$ $\alpha_{\mu\nu} = 4 \times 4$ real matrix, $\alpha_{00} = 0$

 \hookrightarrow The C_0 term is invariant under a W.T., the C_T term is not

• in a partial-wave basis: $C({}^1S_0)=C_0-3C_T$, $C({}^3S_1)=C_0-C_T$

 \hookrightarrow in the Wigner symmetry limit, we have: $C({}^1S_0) = C({}^3S_1)$

 \hookrightarrow in the Wigner symmetry limit, we thus have: $1/a_{np}^{S=1}=1/a_{np}^{S=0}$

 \hookrightarrow Wigner symmetry breaking governed by: $\delta = \frac{1}{2}(1/a_{np}^{S=1} - 1/a_{np}^{S=0})$ $= \frac{1}{2}(\frac{1}{36.5 \text{ MeV}} - \frac{1}{8.3 \text{ MeV}})$

HIGHER ORDERS

 NLO: Leading two-pion exchange and 7 contact terms with 2 derivatives [cont. notation]

$$egin{aligned} V_{ ext{NLO}}^{ ext{cont}} &= oldsymbol{C}_1 q^2 + oldsymbol{C}_2 k^2 + ildsymbol{(C}_3 q^2 + oldsymbol{C}_4 k^2ig) \left(ec{\sigma}_1 \cdot ec{\sigma}_2ig) + i oldsymbol{C}_5 rac{1}{2} \left(ec{\sigma}_1 + ec{\sigma}_2ig) \cdot \left(ec{q} imes ec{k}
ight) \ &+ oldsymbol{C}_6 \left(ec{\sigma}_1 \cdot ec{q}
ight) \left(ec{\sigma}_2 \cdot ec{q}
ight) + oldsymbol{C}_7 (ec{\sigma}_1 \cdot ec{k}) (ec{\sigma}_2 \cdot ec{k}ig) \ &= ext{u-channel mom. transferming} \end{aligned}$$

$$egin{aligned} V_{ ext{NLO}}^{ ext{TPE}} &= -rac{ au_1\cdot au_2}{384\pi^2F_\pi^4}L(q)iggl[4M_\pi^2igl(5g_A^4-4g_A^2-1igr)+q^2igl(23g_A^4-10g_A^2-1igr)\ &+rac{48g_A^4M_\pi^4}{4M_\pi^2+q^2}igr] -rac{3g_A^4}{64\pi^2F_\pi^4}L(q)igl[(ec{q}\cdotec{\sigma}_1igr)igl(ec{q}\cdotec{\sigma}_2igr)-q^2igl(ec{\sigma}_1\cdotec{\sigma}_2igr)igr] \end{aligned}$$

• Loop function:
$$L(q) = \frac{1}{2q} \sqrt{4M_{\pi}^2 + q^2} \ln \frac{\sqrt{4M_{\pi}^2 + q^2} + q}{\sqrt{4M_{\pi}^2 + q^2} - q}$$

 $\rightarrow 1 + \frac{1}{3} \frac{q^2}{4M_{\pi}^2} + \cdots$ for $q \ll \Lambda$

 \rightarrow for coarse lattices $a \simeq 2$ fm, the TPE at N(N)LO can be absorbed in the LECs C_i \rightarrow no longer true as a decreases, need to account for the TPE explicitly

• At NNLO, further two-pion exchanges ($\sim c_i$) and leading 3NFs (2 LECs) \rightarrow same book-keeping techniques as shown for LO

COULOMB INTERACTION

• Proton-proton repulsion in coordinate space:

$$\mathcal{A}\big[V_{\rm em}\big] = \frac{\alpha_{\rm EM}}{r} \left(\frac{1+\tau_3}{2}\right)_A \left(\frac{1+\tau_3}{2}\right)_B, \ \alpha_{\rm EM} = e^2/(4\pi) \simeq 1/137$$

• Lattice operator:

$$egin{split} ilde{V}_{\mathsf{em}} = &rac{1}{2} : \sum_{ec{n},ec{n'}} rac{lpha_{\mathsf{em}}}{R(ec{n} - ec{n'})} \, rac{1}{4} \left[
ho^{a^{\dagger},a}(ec{n}) +
ho^{a^{\dagger},a}_{I=3}(ec{n})
ight] \left[
ho^{a^{\dagger},a}(ec{n'}) +
ho^{a^{\dagger},a}_{I=3}(ec{n'})
ight] : \ R(ec{n}) = \max(1/2,|ec{n}|) \end{split}$$

 \rightarrow effect of two protons on the same site **not** observable, $R(\vec{n}) = |\vec{n}|$ absorbed in pp contact term

 \rightarrow include pp and nn contact terms to allow for $a_{np} \neq a_{nn} \neq a_{pp}$ & other IB terms

$$\mathcal{A}ig[V_{nn}ig] = C_{nn} \left(rac{1- au_3}{2}
ight)_A \left(rac{1- au_3}{2}
ight)_B, \ \ \mathcal{A}ig[V_{pp}ig] = C_{pp} \left(rac{1+ au_3}{2}
ight)_A \left(rac{1+ au_3}{2}
ight)_B$$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

DIGRESSION: A NOTE on the POWER COUNTING

• Isospin breaking through strong ($\sim \epsilon$) and em ($\sim e$) interactions

$$\epsilon = rac{m_d - m_u}{m_d + m_u} \sim rac{1}{3} \ , \qquad e = \sqrt{rac{4\pi}{137.06}} \simeq 0.3 \ .$$

• Possible counting: $\epsilon \sim e \sim {Q \over \Lambda} \;, ~~~ {e^2 \over (4\pi)^2} \sim {Q^4 \over \Lambda^4}$

• Coulomb first appears at NLO, consider the S-wave in pp scattering:

$$V_{1\pi}^{(0)}(q) = \left(rac{g_A}{2F_\pi}
ight)^2 rac{q^2}{q^2 + M_\pi^2} \sim rac{Q^2}{Q^2 Q^2} \sim Q^{-2} \quad [4\pi \sim \Lambda/Q \text{ in WC}]$$

 $V_{ ext{Coulomb}}(q) = rac{e^2}{q^2} \sim rac{Q^2}{Q^2} \sim Q^0$

• one possible way, no rescaling of F_{π} etc needed in the purely strong sector

• for details, see Epelbaum, Glöckle, UGM, Nucl. Phys. A 747 (2005) 362

EUCLIDEAN TIME PROJECTION

• Euclidean time-projection amplitude for A nucleons (with Eucl. time τ):

$$Z_A(au) = \langle \Psi_A | \exp(- au H) | \Psi_A
angle$$

• the trial wave function Ψ_A = Slater determinant for A free nucleons [or ...]

• Transient energy
$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

- ground state: $E_A^0 = \lim_{ au o \infty} E_A(au)$
- \bullet Expectation value of any normal–ordered operator ${\cal O}$

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \ket{\Psi_A}$$

$$\lim_{ au o \infty} \, rac{Z_A^{\mathcal{O}}(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle$$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O << \land \bigtriangledown \triangleright \triangleright

EUCLIDEAN TIME PROJECTION cont'd

- Common situation: the trial wave function has more than one component
- Examples: excited states or transition between levels
- trial state with $N_{\rm ch}$ channels:

$$\approx \left(|\Psi\rangle \equiv \sum_{i=1}^{N_{\rm ch}} c_i |\Psi_i\rangle \right)$$

- with weights c_i like eg. Clebsch-Gordan coefficients
- Eucl. time projection amplitude recieves contributions from N_{ch}^2 channels:

$$\begin{split} Z(t) &= \langle \Psi | \exp(-H\tau) | \Psi \rangle = \sum_{i,j}^{N_{\rm ch}} c_i c_j A_{ij} \\ A_{ij} &= \langle \Psi_i | \exp(-H\tau) | \Psi_j \rangle \end{split}$$

• quite powerful for excited states, show one example

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown \lor \triangleright \triangleright •

EUCLIDEAN TIME PROJECTION cont'd

- Ground state and first excited state w/ the same quantum numbers in ¹²C
- 4 plane-wave and 2 cluster initial states (details later)

• states labelled by their angular momentum (J), parity (P) & level number (n): J_n^P

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

REMINDER: PATH INTEGRAL and TRANSFER MATRIX 61

• Path integral representation of the partition function (time proj. amp.):

$$Z = \int D\xi D\xi^* \exp\left(-S(\xi^*,\xi)\right) \quad [S = action]$$

 \hookrightarrow most simple to derive the lattice Feynman rules

• Transfer matrix representation: N_t Euclidean time slices

$$Z= ext{Tr}\left\{M^{N_t}
ight\}+O(lpha_t^2)\ ,\ \ M=:\exp\left(-lpha_t H(a^\dagger,a)
ight):$$

 \hookrightarrow most useful to perform the MC simulations

• Outline of the proof:

Creutz, Found. Phys. 30 (2000) 487

$${
m Tr}\left[:f(a,a^{\dagger}):
ight] = \int D\xi D\xi^{*} e^{2\xi^{*}\xi} f(\xi,\xi^{*}) \,, \ \ \xi(n,L_{t}) = -\xi(n,0)$$

$$f(\xi,\xi^*) = a_0 + a_1\xi + \bar{a}_1\xi^* + a_{12}\xi^*\xi$$

$$ightarrow {
m Tr}\left[:f(a,a^{\dagger}):
ight]=2a_{0}+a_{12}$$

that is all one needs...

TRANSFER MATRIX FORMALISM

- Time projection amplitude
 - = path-integral over pions & auxiliary fields

$$Z_{A}(\tau) = \mathcal{N} \int_{-\infty}^{+\infty} \mathcal{D}s \prod_{I=1,2,3} \mathcal{D}s_{I} \mathcal{D}\pi_{I} \langle \Psi_{A} | T \exp(-\tau H(s, s_{I}, \pi_{I})) | \Psi_{A} \rangle$$
$$= \mathcal{N} \int_{-\infty}^{+\infty} \mathcal{D}s \prod_{I=1,2,3} \mathcal{D}s_{I} \mathcal{D}\pi_{I} \exp(-S_{\pi\pi} - S_{ss}) \underbrace{\det \mathcal{M}(\pi_{I}, s, s_{I})}_{\text{Slater-determinant of single nucleon matrix elements}}$$

• Transfer matrix:

$$\mathcal{M}(\pi_I, s, s_I) = \langle \psi_{i,X} | M_X^{(L_t - 1)} \cdots M_X^{(0)} | \psi_{j,X} \rangle, \ X = 1, \dots, A$$

- this is an $A \times A$ matrix
- apply hybrid MC to the fields s, s_I, π_I for the calculation of the path-integral [not covered in these lectures, see chapter 6 of the book]

VISUALIZATION: TRANSFER MATRIX CALCULATION ⁶³

• Represent interactions and pions by auxiliary fields

 \rightarrow interactions become local, world-lines decouple:

WIGNER SU(4) SYMMETRY reloaded

- No sign problem for spin-isospin saturated nuclei in the W.S. limit! J. W. Chen et al., Phys. Rev. Lett. **93** (2004) 242302
- Eucl. time projection amplitude is given by det(M), where $M_{i,j}$ is the $A \times A$ matrix obtained from the single-nucleon amplitudes
- define $\mathcal{U}[M]$ as the set of unitary matrices such that $U^{\dagger}MU = M^{*}$
- it can be shown that $\det(M)$ is positive semi-definite, if there exists an antisymmetric matrix $U \in \mathcal{U}[M]$
- requires the action of U on the single-particle states $|\psi_i\rangle$ can be represented as an antisymmetric $A \times A$ matrix.
- PMC is free from sign oscillations, whenever the initial single-nucleon states are paired into spin-singlets or isospin-singlets
- breaking through OPE, Coulomb,..., but still an **approximate** symmetry

ANATOMY of the TRANSFER MATRIX CALCULATION

- start with pionless SU(4) symmetric theory as approx. inexpensive filter
- then use the full action as exact filter
- then insert the operator under consideration
- continue the filtering procedure to the final time (L_t steps)
- further refined by appropriate smearing procedures (see later)

INITIAL STATES

• Zero momentum standing waves for ⁴He to define $|\psi_A
angle = |\psi_{Z,N}^{\rm free}
angle$

$$egin{aligned} &\langle 0|a_{i,j}(ec{n}\,)|\psi_1
angle = L^{-3/2}\,\delta_{i,0}\delta_{j,1} = |\uparrow,n
angle \ &\langle 0|a_{i,j}(ec{n}\,)|\psi_2
angle = L^{-3/2}\,\delta_{i,0}\delta_{j,0} = |\uparrow,p
angle \ &\langle 0|a_{i,j}(ec{n}\,)|\psi_3
angle = L^{-3/2}\,\delta_{i,1}\delta_{j,1} = |\downarrow,n
angle \ &\langle 0|a_{i,j}(ec{n}\,)|\psi_4
angle = L^{-3/2}\,\delta_{i,1}\delta_{j,0} = |\downarrow,p
angle \end{aligned}$$

• Wave packets with small momentum spread for ⁴He to define $|\psi^{
m free}_{Z,N}
angle$

$$\begin{split} \langle 0 | a_{i,j}(\vec{n}) | \psi_1 \rangle &= L^{-3/2} \sqrt{2} \cos \left(2\pi n_z / L \right) \, \delta_{i,0} \delta_{j,1} \\ \langle 0 | a_{i,j}(\vec{n}) | \psi_2 \rangle &= L^{-3/2} \sqrt{2} \cos \left(2\pi n_z / L \right) \, \delta_{i,0} \delta_{j,0} \\ \langle 0 | a_{i,j}(\vec{n}) | \psi_3 \rangle &= L^{-3/2} \sqrt{2} \cos \left(2\pi n_z / L \right) \, \delta_{i,1} \delta_{j,1} \\ \langle 0 | a_{i,j}(\vec{n}) | \psi_4 \rangle &= L^{-3/2} \sqrt{2} \cos \left(2\pi n_z / L \right) \, \delta_{i,1} \delta_{j,0} \end{split}$$

- or more complex initial states ...
- Exercise: construct an initial ground state for ⁸Be

CONFIGURATIONS

⇒ all *possible* configurations are sampled
 ⇒ preparation of *all possible* initial/final states
 ⇒ *clustering* emerges *naturally*

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright

INITIAL STATES again

• Alpha-cluster states [cf. Λ and Δ for ${}^{12}C(0^+_{1,2})$]

4 nucleons one one site with a Gaussian radial distribution

$$R_lpha(r)\sim \exp\left(-rac{r_d^2}{2\Gamma_lpha}
ight)$$

• with the squared distance r_d^2 given by

$$r_d^2 = \min(x^2, (L-x)^2) + \min(y^2, (L-y)^2) + \min(z^2, (L-z)^2)$$

ullet and a suitably chosen width parameter Γ_{lpha}

• natural choice of Γ_{α} is given by the rms radius of the α -particle

$$r_{lpha} \simeq 1.68 \; {
m fm}$$
 Sick (2008)

• other choices: optimize convergence or overlap with the ground state or ...

CLUSTERING INSTABILITY

- Already at LO, the configurations with four nucleons on one site require some massaging
- Consider LO SU(4)-symmetric pionless EFT
- let $E_1^{
 m loc}$ be the expectation value of the single nucleon kinetic energy & $V_2 < 0$
- fix the scattering length, then: $E_1^{
 m loc} \sim -V_2 \sim rac{\Lambda^2}{2m_N}$
- total energy for 2,3,4 N on one lattice site:

$$egin{aligned} E_2^{ ext{loc}} &= 2E_1^{ ext{loc}} + V_2 \ E_3^{ ext{loc}} &= 3E_1^{ ext{loc}} + 3V_2 \ E_4^{ ext{loc}} &= 4E_1^{ ext{loc}} + 6V_2 \ E_A^{ ext{loc}} &= AE_1^{ ext{loc}} + inom{A}{2}V_2 \end{aligned}$$

→ Thomas collapse in the 3N system: 3NF or other stabilizing effect needed Thomas, Phys. Rev. 47 (1935) 903

CLUSTERING INSTABILITY cont'd

• repeat this exercise with a repulsive 3NF:

$$egin{aligned} E_2^{ ext{loc}} &= 2E_1^{ ext{loc}} + V_2 \ E_3^{ ext{loc}} &= 3E_1^{ ext{loc}} + 3V_2 + V_3 \ E_4^{ ext{loc}} &= 4E_1^{ ext{loc}} + 6V_2 + 4V_3 \end{aligned}$$

• realistic nuclear forces overbind ⁴He as long as $\Lambda \leq 1.6$ GeV (pionless EFT) Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254

- \bullet not a useful starting point for NLEFT \rightarrow smearing
- smear the 4N contact interactions with (simplest choice):

$$f(ec{q}^{\,2}) \propto \exp\left[-b\sum\limits_{l_s=1,2,3}(1-\cos q l_s)
ight]$$

• smearing width b determined from the average effective range: $b \simeq 0.6$ l.u.

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < < < > > > > • •

SMEARED LO 4N INTERACTIONS

- Consider three different LO actions (suppression of finite cut-off errors)
- LO1: naive discretization \rightarrow multi-particle clustering at coarse a

 $\mathcal{A}(V_{\text{LO1}}) = C_0 + C_I \,\vec{\tau}_1 \cdot \vec{\tau}_2 + \mathcal{A}(V^{\text{OPEP}})$

• LO2: Gaussian smearing \rightarrow no clustering but too attractive P-waves

$$\mathcal{A}(V_{ ext{LO2}}) = C_0 f(ec{q}^2) + C_I f(ec{q}^2) \, ec{ au}_1 \cdot ec{ au}_2 + \mathcal{A}(V^{ ext{OPEP}})$$

• LO3: Gaussian smearing and spin-isopin projections (combines advantages of LO1 & LO2)

$$\mathcal{A}(V_{\text{LO3}}) = C_{1S0} f(\vec{q}^{\,2}) \underbrace{\left(\frac{1}{4} - \frac{1}{4}\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}\right)}_{S=1} \underbrace{\left(\frac{3}{4} + \frac{1}{4}\vec{\tau}_{1}\cdot\vec{\tau}_{2}\right)}_{I=0} + C_{3S1} f(\vec{q}^{\,2}) \underbrace{\left(\frac{3}{4} + \frac{1}{4}\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}\right)}_{S=1} \underbrace{\left(\frac{1}{4} - \frac{1}{4}\vec{\tau}_{1}\cdot\vec{\tau}_{2}\right)}_{I=0} + \mathcal{A}(V^{\text{OPEP}})$$

PHASE SHIFTS for LO3

• how to calculate these? \rightarrow next lecture

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •
SMEARING EFFECTS

• Added advantage of the 4N smearing: resummation of range corrections

 \Rightarrow different types of smearing (OPE, non-local, ...) will be of use later

NON-LOCAL SMEARING

• Local operators/densities:

 $a(n), a^{\dagger}(n)$ [n denotes a lattice point]

 $ho_{
m L}({
m n})=a^{\dagger}({
m n})a({
m n})$

• Non-local operators/densities:

 \hookrightarrow further suppression of remaining sign oscillations

$$a_{\mathrm{NL}}^{(\dagger)}(\mathbf{n}) = a^{(\dagger)}(\mathbf{n}) + s_{\mathrm{NL}} \sum_{\langle \mathbf{n}' | \mathbf{n} \rangle} a^{(\dagger)}(\mathbf{n}')$$

$$\rho_{\rm NL}(\mathbf{n}) = a_{\rm NL}^{\dagger}(\mathbf{n})a_{\rm NL}(\mathbf{n})$$

 \bullet where $\sum_{\langle {\bf n'} \, {\bf n} \rangle}$ denotes the sum over nearest-neighbor lattice sites of ${\bf n}$

- the smearing parameter $s_{\rm NL}$ is determined when fitting to the phase shifts
- turns out to be very significant!

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

ROTATIONAL SYMMETRY BREAKING

- Already mentioned: deal with the lattice spacing artefacts at finite a!
- Example: SO(3) \rightarrow SO(3,Z) \rightarrow new operators at NLO $O(Q^2)$ [more details later]

$$\sum_{l=1}^{3} q_{l}^{2} \left(\sigma_{A}\right)_{l} \left(\sigma_{B}\right)_{l}, \quad \left(\tau_{A} \cdot \tau_{B}\right) \sum_{l=1}^{3} q_{l}^{2} \left(\sigma_{A}\right)_{l} \left(\sigma_{B}\right)_{l}$$

- terms with total spin S = 0, 2, 4. S = 0 terms already included in NLO contact operators. Others introduce unphysical mixing such as ${}^{3}D_{3}$ into ${}^{3}S_{1} {}^{3}D_{1}$
- introduce two lattice operators

$$\begin{split} \tilde{V}_{R1} &= \frac{1}{2} \, \tilde{C}_{R1} : \sum_{S=1}^{3} \sum_{\vec{n}} \left[\nabla_{S,(\nu)} \rho_{S}^{a^{\dagger},a}(\vec{n}) \right] \nabla_{S,(\nu)} \rho_{S}^{a^{\dagger},a}(\vec{n}) : \\ \tilde{V}_{R2} &= \frac{1}{2} \, \tilde{C}_{R2} : \sum_{S=1}^{3} \sum_{I=1}^{3} \sum_{\vec{n}} \left[\nabla_{S,(\nu)} \rho_{S,I}^{a^{\dagger},a}(\vec{n}) \right] \nabla_{S,(\nu)} \rho_{S,I}^{a^{\dagger},a}(\vec{n}) : \end{split}$$

 \rightarrow adjust the isoscalar combination of these terms to eliminate the unphysical mixing of the ${}^{3}D_{3}$ partial wave. The isovector comb. is set to zero (unphys. mixing tiny)

GALILEAN INVARIANCE BREAKING: NN SYSTEM

Li, Elhatisari, Epelbaum, Lu, Lee, UGM, Phys. Rev. C 99 (2019) 064001

- Consider np scattering first with total momentum $\vec{P} = 0$, match to Nijmegen PWA
- ullet then boost to a moving frame with $ec{P}=(2\pi/L)ec{k}$
- \Rightarrow if the results are different, then there is Galilean invariance breaking \rightarrow slide
- introduce operators to compensate for GIB (up-to-next-to-next-to-nearest neighbors)

$$\begin{split} V_{\rm GIR} &= V_{\rm GIR}^0 + V_{\rm GIR}^1 + V_{\rm GIR}^2 \\ V_{\rm GIR}^0 &= C_{\rm GIR}^0 \sum_{{\rm n},i,j,i',j'} a_{i,j}^{\dagger}({\rm n}) a_{i',j'}^{\dagger}({\rm n}) a_{i',j'}({\rm n}) a_{i,j}({\rm n}) \\ V_{\rm GIR}^1 &= C_{\rm GIR}^1 \sum_{{\rm n},i,j,i',j'} \sum_{|{\rm n}'|=1} a_{i,j}^{\dagger}({\rm n}+{\rm n}') a_{i',j'}^{\dagger}({\rm n}+{\rm n}') a_{i',j'}({\rm n}) a_{i,j}({\rm n}) \\ V_{\rm GIR}^2 &= C_{\rm GIR}^2 \sum_{{\rm n},i,j,i',j'} \sum_{|{\rm n}'|=\sqrt{2}} a_{i,j}^{\dagger}({\rm n}+{\rm n}') a_{i',j'}^{\dagger}({\rm n}+{\rm n}') a_{i',j'}({\rm n}) a_{i,j}({\rm n}) \end{split}$$

• restore GI by fixing the coefficients (in each partial wave such that)

$$\left(C_{
m GIR}^{0} + 6 C_{
m GIR}^{1} + 12 C_{
m GIR}^{2} = 0
ight)$$

BREAKING and RESTORATION of GALILEAN INV.

• Consider highly smeared N3LO interactions,

compare rest-frame k = [0, 0, 0] with moving frame k = [3, 3, 3]

 \Rightarrow effects i.g. small but must be taken care of

CENTER-of-MASS PROBLEM

 AFQMC calculations involve states that are superpositions of many different center-of-mass (com) positions

 $egin{aligned} Z_A(au) &= \langle \Psi_A(au) | \Psi_A(au)
angle \ &| \Psi_A(au)
angle &= \exp(-H au/2) | \Psi_A
angle \end{aligned}$

• but: translational invariance requires summation over all transitions

 $Z_A(au) = \sum_{i_{
m com}, j_{
m com}} \langle \Psi_A(au, i_{
m com}) | \Psi_A(au, j_{
m com})
angle, \ \ {
m com} = {
m mod}((i_{
m com} - j_{
m com}), L)$

 $i_{\rm com}~(j_{\rm com})=$ position of the center-of-mass in the final (initial) state

- density distributions of nucleons can not be computed directly, only moments
- need to overcome this deficient

PINHOLE ALGORITHM

Solution to the CM-problem:

track the individual nucleons using the *pinhole algorithm*

 Insert a screen with pinholes with spin & isospin labels that allows nucleons with corresponding spin & isospin to pass = insertion of the A-body density op.:

$$egin{aligned} &
ho_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\cdots \mathrm{n}_A)\ &=:
ho_{i_1,j_1}(\mathrm{n}_1)\cdots
ho_{i_A,j_A}(\mathrm{n}_A): \end{aligned}$$

MC sampling of the amplitude:

$$egin{aligned} &A_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\ldots,\mathrm{n}_A,L_t) & \Xi \ &= \langle \Psi_A(au/2) |
ho_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\ldots,\mathrm{n}_A) | \Psi_A(au/2)
angle \end{aligned}$$

- Allows to measure proton and neutron distributions
- Resolution scale $\sim a/A$ as cm position $\mathbf{r_{cm}}$ is an integer $\mathbf{n_{cm}}$ times a/A

Scattering on a lattice

spherical wall method: Borasoy, Epelbaum, Krebs, Lee, UGM, EPJA 34 (2007) 185 auxiliary potential method: Lu, Lähde, Lee, UGM, Phys. Lett. B760 (2016) 309

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

EXTRACTING PHASE SHIFTS on the LATTICE

• Lüscher's method:

Two-body energy levels below the inelastic threshold on a periodic lattice are related to the phase shifts in the continuum

Lüscher, Comm. Math. Phys. **105** (1986) 153 Lüscher, Nucl. Phys. **354** (1991) 531

• Spherical wall method:

Impose a hard wall on the lattice and use the fact that the wave function vanishes for $r = R_{wall}$:

 $\psi_\ell(r) \sim [\cos \delta_\ell(p) j_\ell(pr) - \sin \delta_\ell(p) y_\ell(pr)]$

Borasoy, Epelbaum, Krebs, Lee, UGM, EPJA **34** (2007) 185 Carlson,Pandharipande, Wiringa, NPA **424** (1984) 47

SCATTERING in a FINITE VOLUME

Lüscher, Comm. Math. Phys. 104 (1986) 177; 105 (1986) 153; Nucl. Phys, B 354 (1991) 531

- cubic lattice: rotation group SO(3) broken to SO(3,Z)
- 5 irreducible representations (A_1, T_1, E, T_2, A_2) include definite J modulo 4
- Lüscher's formula for phase shifts $(LM_{
 m light}\gg 1)$

$$\exp(2i\delta_0) = rac{Z_{00}(1;q^2) + i\pi^{3/2}q}{Z_{00}(1;q^2) - i\pi^{3/2}q}$$

$$q=2\pi n/L\,,~~n\in\mathbb{Z}^3$$

$$Z_{00}(s;q^2) = rac{1}{\sqrt{4\pi}}\sum_{n\in\mathbb{Z}^3}rac{1}{(n^2-q^2)^s}$$

- standard method in lattice QCD, see e.g. NPLQCD on hadron-hadron scattering Beane, Orginos, Savage, Int. J. Mod. Phys. E 17 (2008) 1517
- however: problems w/ partial-wave mixing & higher p.w., need a different formalism

SO(3,Z) REPRESENTATIONS

• Irreducible SO(3,Z) representations

	$J_z \pmod{4}$	$Y_{L,M}(heta,\phi)$
A_1	0	$Y_{0,0}$
$\mid T_1$	0, 1, 3	$\{Y_{1,0},Y_{1,1},Y_{1,-1}\}$
E	0, 2	$\left\{Y_{2,0},(Y_{2,-2}+Y_{2,2})/\sqrt{2} ight\}$
T_2	1, 2, 3	$\left\{Y_{2,1},(Y_{2,-2}-Y_{2,2})/\sqrt{2},Y_{2,-1} ight\}$
A_2	2	$\left\{ (Y_{3,2}-Y_{3,-2})/\sqrt{2} ight\}$

• SO(3,Z) decompositions

SO(3)	SO(3,Z)	S	SO(3)	SO(3,Z)
J = 0	A_1	J	J = 4	$A_1 \oplus T_1 \oplus E \oplus T_2$
J = 1	T_1	Ĵ	J = 5	$T_1\oplus T_1\oplus E\oplus T_2$
J=2	$E\oplus T_{2}$	J	J = 6	$A_1\oplus T_1\oplus E\oplus T_2\oplus T_2\oplus A_2$
J=3	$T_1\oplus T_2\oplus A_2$	Ĵ	J = 7	$T_1\oplus T_1\oplus E\oplus T_2\oplus T_2\oplus A_2$

REMINDER: SCATTERING THEORY I

• Two-body scattering theory in the center-of-mass (CMS) frame:

• Incoming and outgoing waves:

$$egin{aligned} & \widehat{\psi(ec{r}\,)} & \mathop{\longrightarrow}\limits_{r
ightarrow \infty} \exp(iec{p}\cdotec{r}) + f(ec{p}',ec{p}) rac{\exp(ipr)}{r} \end{pmatrix} \end{aligned}$$

REMINDER: SCATTERING THEORY II

• Time-indepedent Schrödinger equation \rightarrow spherical waves

 $\psi(r, heta,\phi)=R(r)\Phi(heta,\phi)$, $\Phi(heta,\phi)=Y_{L,M}(heta,\phi)$

• all possible integers such that: $|M| \leq L$

ightarrow radial equation: $u(r) = r \cdot R(r)$ $-u''(r) + \left[2\mu V(r) + \frac{L(L+1)}{r^2}\right]u(r) = 2\mu E \cdot u(r)$

REMINDER: SCATTERING THEORY III

• S-matrix from the phase shift:

$$\begin{split} \sin[pr - \pi L/2 + \delta_L(p)] \\ &= \frac{1}{2i} \left\{ e^{i[pr - \pi L/2 + \delta_L(p)]} - e^{-i[pr - \pi L/2 + \delta_L(p)]} \right\} \\ &= \frac{1}{2i} e^{-i\delta_L(p)} \left\{ \underbrace{e^{2i\delta_L(p)}}_{S_L(p)} e^{i(pr - \pi L/2)} - e^{-i(pr - \pi L/2)} \right\} \end{split}$$

• Partial wave decomposition of the scattering amplitude:

$$egin{aligned} \psi(ec{r}) & \longrightarrow \exp(iec{p}\cdotec{r}) + f(ec{p}',ec{p})rac{\exp(ipr)}{r} \ f(ec{p}',ec{p}) &= \sum_{L=0}^{\infty} f_L(p) P_L(\cos heta) \ f_L(p) &= rac{-i}{2p} \left[e^{2i\delta_L(p)} - 1
ight] = rac{1}{p[\cot\delta_L(p) - i]} \end{aligned}$$

[partial wave mixing can also be dealt with in more complex cases]

SPHERICAL WALL METHOD

• Spherical wall method: place a wall at sufficiently large $R = R_{wall}$

 $V(\vec{n}_1 - \vec{n}_2) \to V(\vec{n}_1 - \vec{n}_2) + V_{\text{wall}}\theta(|\vec{n}_1 - \vec{n}_2| - \tilde{R}_{\text{wall}})$

- standing wave allows to extract phase shifts δ_L and mixings ϵ_L
- uncoupled singlet partial waves:

$$\Psi(ec{r}\,) = [\cos \delta_L j_L(kr) - \sin \delta_L y_L(kr)] Y_{L,m}(heta,\phi)$$

$$\Psi(R)=0 \Rightarrow \left[an \delta_L = rac{j_L(kR)}{y_L(kR)}
ight]$$

- coupled triplet waves: more involved
- see chapter 5 of the book

87

MEASURING PHASE SHIFTS on the LATTICE I

• Toy model: attractive Gaussian potential w/ central & tensor forces

reproduces continuum phase shifts accurately

extra copies of the 2-particle interaction due to periodic b.c. removed

VS

much better than standard boxes

 $R = 10 + \epsilon$

$$V = 1$$

 2^3

MEASURING PHASE SHIFTS on the LATTICE II

• Free particle spectrum for $R = 10 + \epsilon$

• Interacting spectrum for S = 0

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

RADIAL HAMILTONIAN METHOD

- Consider $|\vec{r}\rangle\otimes|S_z
 angle$: a two-body quantum state with separation \vec{r} and z-component of total spin S_z
- Define radial lattice coordinates (ρ, φ) by grouping equidistant mesh points
- Construct radial wave functions with total angular momentum (J, J_z) :

$$|m\rangle_{(L)}^{(J),(J_z)} = \sum_{\vec{n},L_z,S_z} \underbrace{C_{L,L_z,S,S_z}^{J,J_z}}_{\text{CG coeffs sph. harmonics}} \underbrace{Y_{L,L_z}(\hat{n})}_{\text{radial shell}} \times \underbrace{\delta_{
ho_m,|\vec{n}|}}_{\text{radial shell}} |\vec{n}\rangle \otimes |S_z\rangle$$

- ullet not exactly good quantum numbers, denoted by (J) etc
- ullet pick out all lattice points for which $ho_m=|ec{n}|$

• the $|m\rangle_L^{J,J_z}$ form a complete (but non-orthonormal) basis \rightarrow compute norm matrices

RADIAL HAMILTONIAN METHOD continued

- Rotational symmetry breaking disappears as $a \rightarrow 0$, how much is left at finite a?
- study our toy model w/ the tensor force switched off:

• magnitude of unphysical mixing matrix elements is greatly suppressed

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

AUXILIARY POTENTIAL METHOD

- Simple sph. wall: small energies require large volumes, accuracy limited
- Improved method: auxiliary potential \rightarrow shift energy levels

 $V_{
m aux} = V_0 \exp\left[-(r-R_W)^2/a^2
ight] \;, \;\; R_0 \le r \le R_W$

• Single channel potential ($V_0 = -25 \text{ MeV}$)

• Extension to coupled channels requires time-reversal symmetry breaking \hookrightarrow details see in the above reference or in the book

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

AUXILIARY POTENTIAL METHOD: RESULTS

Lu, Lähde, Lee, UGM, Phys. Lett. **B 760** (2016) 309

- ullet same toy model with $R_I=9.02a, R_0=12.02a, R_W=15.02a$ and $U_0=20.0\,{
 m MeV}$
- continuum results from solving the LS equation

NLEFT PHASE SHIFTS at N2LO

Alarcon et al., Eur. Phys. J. A53 (2017) 83

• Consider np scattering for a = 1.97 fm – a coarse lattice

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land ∇ >

94

NLEFT PHASE SHIFTS at N2LO

Alarcon et al., Eur. Phys. J. **A53** (2017) 83

• Consider np scattering for a = 0.98 fm – a fine lattice

• some residual lattice spacing dependence

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

NLEFT PHASE SHIFTS at N3LO

Li et al., Phys. Rev. C98 (2018) 044002

• Consider np scattering for a = 0.99 - 1.97 fm - S-waves

• no more lattice spacing dependence

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < / V > > •

NLEFT PHASE SHIFTS at N3LO

Li et al., Phys. Rev. C98 (2018) 044002

 $< \land \nabla$

 \triangleleft

• np scattering for a = 1.97 fm with error bands \rightarrow small at N3LO

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O

97

PROTON-PROTON SCATTERING at N2LO

Klein, Elhatisari, Lee, UGM, Eur. Phys. J. A54 (2018) 121

• well-established formalism, substitute the Bessel and von Neumann functions by the respective Coulomb functions in terms of $\eta = lpha_{
m EM}/(2m_p)$:

 $j_\ell(pr) o F_\ell(\eta, pr) , \ y_\ell(pr) o G_\ell(\eta, pr)$

• results at LO and N2LO for various lattice spacings:

- fine descriptions, improved at N3LO
- for details on the formalism, see chapter 5 of the book

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 \cdot O < \land ∇ > \triangleright

- **NUCLEUS-NUCLEUS SCATTERING on the LATTICE**
- Processes involving α-particles and α-type nuclei comprise a major part of stellar nucleosynthesis, and control the production of certain elements in stars e.g. α+¹²C→¹⁶O+γ
- Ab initio calculations of scattering and reactions suffer from computational scaling with the number of nucleons in the clusters (exponential or factorial)

NLEFT computational scaling $\Rightarrow (A_1 + A_2)^2$

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502 Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151 Elhatisari, Lee, Phys. Rev. C **90** (2014) 064001 Rokash et al., Phys. Rev. C **92** (2015) 054612 Elhatisari, Lee, UGM, Rupak, Eur. Phys. J. A **52** (2016) 174

ADIABATIC PROJECTION METHOD

 Basic idea to treat scattering and inelastic reactions: split the problem into two parts

First part:

use Euclidean time projection to construct an *ab initio* low-energy cluster Hamiltonian, called the **adiabatic Hamiltonian**

Second part:

compute the two-cluster scattering phase shifts or reaction amplitudes using the adiabatic Hamiltonian

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019

 $\cdot \circ \triangleleft < \land \bigtriangledown >$

ADIABATIC PROJECTION METHOD II

- Construct a low-energy effective theory for clusters
- Use initial states parameterized by the relative separation between clusters

 $ert ec{R}
angle = \sum_{ec{r}} ert ec{r} + ec{R}
angle \otimes ec{r}$

 project them in Euclidean time with the chiral EFT Hamiltonian H

 $ert ec{R}
angle_{ au} = \exp(-H au) ert ec{R}
angle$

- \vec{R}
- \rightarrow "dressed cluster states" (polarization, deformation, Pauli)
- The adiabatic projection in Euclidean times gives a systematically improvable description of the low-lying scattering states
- In the limit of large Euclidean time, the description becomes exact

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

ADIABATIC HAMILTONIAN

• Construct the adiabatic Hamiltonian from the dressed cluster states:

$$[H_{ au}]_{ec{R}ec{R}'} = {}_{ au}\langleec{R}|H|ec{R}'
angle_{ au}$$

• States are i.g. not normalized, require norm matrix:

$$[N_{ au}]_{ec{R}ec{R}'}={}_{ au}\langleec{R}ec{R}ec{R}'
angle_{ au}$$

• construct the full adiabatic Hamiltonian:

$$\begin{bmatrix} H_{\tau}^{a} \end{bmatrix}_{\vec{R}\vec{R}'} = \sum_{\vec{R}_{n}\vec{R}_{m}} \begin{bmatrix} N_{\tau}^{-1/2} \end{bmatrix}_{\vec{R}\vec{R}_{n}} \begin{bmatrix} H_{\tau} \end{bmatrix}_{\vec{R}_{n}\vec{R}_{m}} \begin{bmatrix} N_{\tau}^{-1/2} \end{bmatrix}_{\vec{R}_{m}\vec{R}'}$$

→ The structure of the adiabatic Hamiltonian is similar to the Hamiltonian matrix used in recent ab initio NCSM/RGM calculations

Navratil, Quaglioni, Phys. Rev. C **83** (2011) 044609 Navratil, Roth, Quaglioni, Phys. Lett. B **704** (2011) 379 Navratil, Quaglioni, Phys. Rev. Lett. **108** (2012) 042503

SCATTERING CLUSTER WAVE FUNCTIONS

• During Euclidean time interval τ_{ϵ} , each cluster undergoes spatial diffusion:

 $d_{arepsilon,i} = \sqrt{ au_arepsilon/M_i}$

• Only non-overlapping clusters if

 $ert ec R ert \gg d_{arepsilon,i} \ \Rightarrow \ ert ec R
angle_{ au_arepsilon}$

 \bullet Defines asymptotic region, where the amount of overlap between clusters is less than ε

 $|ec{R}| > R_{arepsilon}$

In the asymptotic region we can describe the system in terms of an effective cluster Hamiltonian (the free lattice Hamiltonian for two clusters) plus infinite-range interactions (like the Coulomb int.)

ADIABATIC HAMILTONIAN plus COULOMB

TESTING the ADIABATIC HAMILTONIAN

- Consider fermion-dimer scattering (Fermion = $|\uparrow\rangle$, dimer = $|\uparrow\rangle \times |\downarrow\rangle$)
- Fermion mass = m_N
- $V(\vec{r} \vec{r'}) = c_0 \delta^{(3)}(\vec{r} \vec{r'})$, c_0 tuned to the deuteron B.E.
- Microscopic Hamiltonian scaling: $L^{3(A-1)} \times L^{3(A-1)}$
- Adiabatic HamitItonian scaling:
 - $L^3 \times L^3$
- calculation on a 7^3 lattice, lattice spacing a = 1.93 fm Pine, Lee, Rupak, EPJA 49 (2013) 151

exact Lanzcos: black dashed lines adiabatic Hamiltonian: solid colored lines

The POWER of the RADIAL HAMILTONIAN

• Consider fermion-dimer scattering on large lattices:

$$|ec{d}\,
angle = \sum_{ec{n}} |ec{n} + ec{d}\,
angle_1 \otimes |ec{n}
angle_2$$

[note renaming of $ec{R} o ec{d}]$

• radial projection: $|d\rangle^{\ell,\ell_z} = \sum_{\vec{d'}} Y_{\ell,\ell_z}(\hat{d}\,')\delta_{d,|\vec{d}\,'|}\,|\vec{d}\,'\rangle$

- Increase efficiency: group lattice points into radial rings of width a_R
- \bullet define ${\boldsymbol{R}}$ as radial distance to the midpoint of the corresponding ring

• initial cluster states now are:
$$|R
angle^{\ell,\ell_z} = \sum_{|d-R| < a_R/2} |d
angle^{\ell,\ell_z}$$

• Completeness:
$$1 = \sum_{R,R'} |R\rangle^{\ell,\ell_z} \ [N_0^{-1}]_{R,R'}^{\ell,\ell_z} \ ^{\ell,\ell_z} \langle R'|$$

• Norm matrix:
$$[N_0]_{R,R'}^{\ell,\ell_z} = {}^{\ell,\ell_z} \langle R|R'\rangle^{\ell,\ell_z}$$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 \cdot O \triangleleft C \wedge ∇ > D \bullet

The POWER of the RADIAL HAMILTONIAN II

• Reduction of computational costs:

L	$[M_{L_t}]_{ec{d},ec{d'}}$	$[M_{L_t}]^{0,0}_{d,d'}$	$[M_{L_t}]^{0,0}_{R,R'}$	$[M_{L_t}]^{0,0}_{R,R'}$
			$a_R=0.125$ l.u.	$a_R=0.250$ l.u.
10	$10^3 imes 10^3$	22 imes 22	21 imes 21	14 imes14
20	$20^3 imes 20^3$	85 imes 85	58 imes58	34 imes 34
30	$30^3 imes 30^3$	189 imes 189	97 imes 97	54 imes54
40	$40^3 imes 40^3$	335 imes 335	137 imes137	74 imes74
50	$50^3 imes 50^3$	522 imes 522	177 imes 177	94 imes94
60	$60^3 imes 60^3$	752 imes752	217 imes217	114×114

 $[M_{L_t}]_{\vec{d},\vec{d'}}$ = initial cluster state on the cubic lattice $[M_{L_t}]_{d,d'}^{0,0}$ = projecting onto ang. mom. $\ell = 0, \ell_z = 0$ $[M_{L_t}]_{R,R'}^{0,0}$ = ang. mom. proj. + grouping in rings of width a_R

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

Assorted results

Elhatisari, Epelbaum, Krebs, Lähde, Lee, Luu, Lu, UGM, Rupak + post-docs + students
NNLO: FIXING PARAMETERS & FIRST RESULTS

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 104 (2010) 142501; Eur. Phys. J. A 45 (2010) 335; ...

- most simulations with coarse lattices, only recently finer lattice
- some groundstate energies and differences [NNLO, 12+2 LECs] \rightarrow next slide

- promising results \Rightarrow uncertainties down to the 1% level
- excited states more difficult \Rightarrow projection MC method + triangulation

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < < < > > > > • •

PARAMETERS AT NNLO

- 12 2N LECs: $C_{S,T}$, b, $C_{1...7}$, $C_{pp,nn}$ from S- and P-waves, ε_1 and a_{pp} , a_{nn} \hookrightarrow already shown before
- 3N forces at NNLO:
 - three topologies
 - two parameters D and E
- determine D and E from fit to the E(³H) and $a_{nd}^{(2)}$
- \Rightarrow make predictions
- D can also be determined in pion production experiments or from electroweak processes
 → power of EFT

RESULTS from LATTICE NUCLEAR EFT

- □ Lattice EFT calculations for A=3,4,6,12 nuclei, PRL 104 (2010) 142501
- □ Ab initio calculation of the Hoyle state, PRL 106 (2011) 192501
- □ Structure and rotations of the Hoyle state, PRL 109 (2012) 142501
- Validity of Carbon-Based Life as a Function of the Light Quark Mass PRL 110 (2013) 142501
- □ Ab initio calculation of the Spectrum and Structure of ¹⁶O, PRL 112 (2014) 142501
- □ Ab initio alpha-alpha scattering, Nature 528 (2015) 111
- □ Nuclear Binding Near a Quantum Phase Transition, PRL 117 (2016) 132501
- Ab initio calculations of the isotopic dependence of nuclear clustering, PRL 119 (2017) 222505

 $|\delta m_a/m_a| = 0.01$

 $|\delta m_a/m_a| = 0.05$

-0.5

Ā

0.5

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown \lor \triangleright \triangleright •

BREAKTHROUGH: SPECTRUM of CARBON-12

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 106 (2011) 192501 Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. 109 (2012) 252501

• After 8 • 10⁶ hrs JUGENE/JUQUEEN (and "some" human work)

A SHORT HISTORY of the HOYLE STATE

• Heavy element generation in massive stars: triple- α process

Bethe 1938, Öpik 1952, Salpeter 1952, Hoyle 1954, ...

 ${}^{4}\text{He} + {}^{4}\text{He} \rightleftharpoons {}^{8}\text{Be}$ ${}^{8}\text{Be} + {}^{4}\text{He} \rightleftharpoons {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma$ ${}^{12}\text{C} + {}^{4}\text{He} \rightleftharpoons {}^{16}\text{O} + \gamma$

• Hoyle's contribution: calculation of the relative abundances of ⁴He, ¹²C and ¹⁶O \Rightarrow need a resonance close to the ⁸Be + ⁴He threshold at $E_R \simeq 0.37$ MeV \Rightarrow this corresponds to a $J^P = 0^+$ excited state 7.7 MeV above the g.s.

- a corresponding state was experimentally confirmed at Caltech at $E E(g.s.) = 7.653 \pm 0.008$ MeV Dunbar et al. 1953, Cook et al. 1957
- still on-going experimental activity, e.g. EM transitions at SDALINAC
 M. Chernykh et al., Phys. Rev. Lett. 98 (2007) 032501
- side remark: relevance to the anthropic principle?

H. Kragh, An anthropic myth: Fred Hoyle's carbon-12 resonance level, Arch. Hist. Exact Sci. 64 (2010) 721

GOING up the ALPHA CHAIN

- \bullet Consider the α ladder 12 C, 16 O, 20 Ne, 24 Mg, 28 Si as $t_{\rm CPU} \sim A^2$
- Improved "multi-state" technique to extract ground state energies
 - \Rightarrow higher A, better accuracy
 - \Rightarrow overbinding at LO beyond A = 12 persists up to NNLO

REMOVING the OVERBINDING

Lähde, Epelbaum, Krebs, Lee, UGM, Rupak, Phys. Lett. B 732 (2014) 110

• Overbinding is due to four α clusters in close proximity

 \Rightarrow remove this by an effective 4N operator [present/on-going: N3LO]

$$egin{split} V^{(4\mathrm{N}_{\mathrm{eff}})} &= D^{(4\mathrm{N}_{\mathrm{eff}})} \sum_{1 \leq (ec{n}_i - ec{n}_j)^2 \leq 2}
ho(ec{n}_1)
ho(ec{n}_2)
ho(ec{n}_3)
ho(ec{n}_4) \ . \end{split}$$

• fix the coefficient $D^{(4N_{eff})}$ from the BE of ²⁴Mg

 \Rightarrow excellent description of the ground state energies

А	12	16	20	24	28
Th	-90.3(2)	-131.3(5)	-165.9(9)	-198(2)	-233(3)
Exp	-92.16	-127.62	-160.64	-198.26	-236.54

 \rightarrow ultimately, reduce lattice spacing [interaction more repulsive] & N³LO

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

GROUND STATE ENERGIES

STRUCTURE of ¹⁶O

• Mysterious nucleus, despite modern ab initio calculations

Hagen et al. (2010), Roth et al. (2011), Hergert et al. (2013), ...

- Alpha-cluster models since decades, some experimental evidence Wheeler (1937), Dennison (1954), Robson (1979), ..., Freer et al. (2005)
- Spectrum very close to tetrahedral symmetry group
- Relevant configurations in lattice simulations:

Tetrahedron (A)

Square (narrow (B) and wide (C))

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < / ∇ > \triangleright

Bijker & lachello (2014)

DECODING the STRUCTURE of ¹⁶O

Epelbaum, Krebs, Lähde, Lee, UGM, Rupak, Phys. Rev. Lett. **112** (2014) 102501

- measure the 4N density, where each of the nucleons is placed at adjacent points
- $\Rightarrow 0_1^+$ ground state: mostly tetrahedral config
- $\Rightarrow 0_2^+$ excited state: mostly square configs
 - 2_1^+ excited state: rotational excitation of the 0_2^+

RESULTS for ¹⁶O

• Spectrum:

• LO EM properties:

	LO	NNLO(2N)	NNLO(3N)	$4N_{eff}$	Exp.
0^+_1	-147.3(5)	-121.4(5)	-138.8(5)	-131.3(5)	-127.62
0^+_2	-145(2)	-116(2)	-136(2)	-123(2)	-121.57
$ 2_1^+$	-145(2)	-116(2)	-136(2)	-123(2)	-120.70

• LO charge radius: $r(0_1^+) = 2.3(1)$ fm Exp. $r(0_1^+) = 2.710(15)$ fm

 \Rightarrow compensate for this by rescaling with appropriate units of $r/r_{
m LO}$

	LO	LO(r-scaled)	Exp.
$Q(2^+_1)$ [e fm 2]	10(2)	15(3)	
$B(E2,2^+_1 ightarrow 0^+_2)$ [e 2 fm 4]	22(4)	46(8)	65(7)
$B(E2,2^+_1 ightarrow 0^+_1)$ [e 2 fm 4]	3.0(7)	6.2(1.6)	7.4(2)
$M(E0,0^+_2 ightarrow 0^+_2)$ [e fm²]	2.1(7)	3.0(1.4)	3.6(2)

 \Rightarrow gives credit to the interpretation of the 2_1^+ as rotational excitation

CLUSTERING in NUCLEI

• Introduced theoretically by Wheeler already in 1937:

John Archibald Wheeler, "Molecular Viewpoints in Nuclear Structure," Physical Review **52** (1937) 1083

• many works since then... Ikeda, Horiuchi, Freer, Ring, Schuck, Röpke, Khan, Zhou, Iachello, ...

Zhou, Yao, Li, Ring, Meng (2015)

⇒ can we understand this phenomenon from *ab initio* calculations? for a recent review, see Freer et al. Rev. Mod. Phys. **90** (2018) 035004

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

RESULTS on NUCLEAR CLUSTERING

• Already a number of intriguing results on clustering [N2LO, coarse lattice]:

Ab initio calculation of the spectrum and structure of ¹²C (esp. the Hoyle state) Ab initio calculation of the spectrum and structure of ¹⁶O Ground state energies of α -type nuclei up to ²⁸Si within 1% Ab initio calculation of α - α scattering Quantum phase transition from Bose gas of α 's to nuclear liquid for α -type nuclei

- However: when adding extra neutrons/protons, the precision quickly deteriorates due to sign oscillations
- New LO action with smeared SU(4) local+non-local symmetric contact interactions & smeared one-pion exchange

$$egin{aligned} a_{ ext{NL}}(ext{n}) &= a(ext{n}) + s_{ ext{NL}} \sum_{\langle ext{n' n}
angle} a(ext{n'}) \ a^{\dagger}_{ ext{NL}}(ext{n}) &= a^{\dagger}(ext{n}) + s_{ ext{NL}} \sum_{\langle ext{n' n}
angle} a^{\dagger}(ext{n'}) \end{aligned}$$

GROUND STATE ENERGIES

• Fit parameters to average NN S-wave scattering length and effective range and α - α S-wave scattering length

 \rightarrow predict g.s. energies of H, He, Be, C and O isotopes \rightarrow quite accurate (LO)

PROBING NUCLEAR CLUSTERING

• Local densities on the lattice: $ho({
m n})$, $ho_p({
m n})$, $ho_n({
m n})$

• Probe of alpha clusters: $ho_4 = \sum_n :
ho^4(n)/4!:$

- Another probe for Z=N= even nuclei: $ho_3=\sum_{\mathrm{n}}:
 ho^3(\mathrm{n})/3!:$
- ρ_4 couples to the center of the α -cluster while ρ_3 gets contributions from a wider portion of the alpha-particle wave function
- Both ho_3 and ho_4 depend on the regulator, a, but not on the nucleus
- The ratios $\rho_3/\rho_{3,\alpha}$ and $\rho_4/\rho_{4,\alpha}$ free of short-distance ambiguities and model-independent
- $ho_3/
 ho_{3,lpha}$ measures the effective number of alpha-cluster N_lpha
- \Rightarrow Any deviation from N_{α} = integer measures the entanglement of the α -clusters in a given nucleus

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

PROBING NUCLEAR CLUSTERING

• ρ_3 -entanglement of the α -clusters:

$$\left(rac{\Delta^{
ho_3}_lpha}{N_lpha} = rac{
ho_3/
ho_{3,lpha}}{N_lpha} - 1
ight)$$

Nucleus	^{4,6,8} He	^{8,10,12,14} Be	12,14,16,18,20,22C	16,18,20,22,24,26
$\Delta_lpha^{ ho_3}/N_lpha$	0.00 - 0.03	0.20 - 0.35	0.25 - 0.50	0.50 - 0.75

124

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

PROBING NUCLEAR CLUSTERING

 The transition from cluster-like states in light systems to nuclear liquid-like states in heavier systems should not be viewed as a simple suppression of multi-nucleon short-distance correlations, but rather as an increasing *entanglement* of the nucleons involved in the multi-nucleon correlations.

PROTON and NEUTRON DENSITIES in CARBON

FORM FACTORS

• Fit charge distributions by a Wood-Saxon shape

- \hookrightarrow get the form factor from the Fourier-transform (FT)
- \hookrightarrow uncertainties from a direct FT of the lattice data

 \Rightarrow detailed structure studies become possible

Anthropic considerations

UGM, Sci. Bull. 60 (2015) no.1, 43-54

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

THE ANTHROPIC PRINCIPLE

- so **many** parameters in the Standard Model, the landscape of string theory, ...
- \Rightarrow The anthropic principle:

"The observed values of all physical and cosmological quantities are not equally probable but they take on values restricted by the requirement that there exist sites where carbon-based life can evolve and by the requirements that the Universe be old enough for it to have already done so."

Carter 1974, Barrow & Tippler 1988, ...

 \Rightarrow can this be tested? / have physical consequences?

- Ex. 1: "Anthropic bound on the cosmological constant"
- Ex. 2: "The anthropic string theory landscape"

Weinberg (1987) [849 cites] Susskind (2003) [998 cites]

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

<u>A PRIME EXAMPLE for the ANTHROPIC PRINCIPLE</u>

• Hoyle (1953):

Prediction of an excited level in carbon-12 to allow for a sufficient production of heavy elements (^{12}C , ^{16}O ,...) in stars

• was later heralded as a prime example for the AP:

"As far as we know, this is the only genuine anthropic principle prediction" Carr & Rees 1989

"In 1953 Hoyle made an anthropic prediction on an excited state – 'level of life' – for carbon production in stars" Linde 2007

"A prototype example of this kind of anthropic reasoning was provided by Fred Hoyle's observation of the triple alpha process..." Carter 2006

The RELEVANT QUESTION

Date: Sat, 25 Dec 2010 20:03:42 -0600 From: Steven Weinberg (weinberg@zippy.ph.utexas.edu) To: Ulf-G. Meissner (meissner@hiskp.uni-bonn.de) Subject: Re: Hoyle state in 12C

Dear Professor Meissner,

Thanks for the colorful graph. It makes a nice Christmas card. But I have a detailed question. Suppose you calculate not only the energy of the Hoyle state in C12, but also of the ground states of He4 and Be8. How sensitive is the result that the energy of the Hoyle state is near the sum of the rest energies of He4 and Be8 to the parameters of the theory? I ask because I suspect that for a pretty broad range of parameters, the Hoyle state can be well represented as a nearly bound state of Be8 and He4.

All best,

Steve Weinberg

- How does the Hoyle state move relative to the ⁴He+⁸Be threshold, if we change the fundamental parameters of QCD+QED?
- not possible in nature, but on a high-performance computer!

The NON-ANTHROPIC SCENARIO

• Weinberg's assumption: The Hoyle state stays close to the 4He+8Be threshold

The ANTHROPIC SCENARIO

•The AP strikes back: The Hoyle state moves away from the 4He+8Be threshold

NUCLEAR FORCES for VARYING QUARK MASSES

- Nuclear forces: Pion-exchange contributions & short-distance multi-N operators
- graphical representation of the quark mass dependence of the LO potential

• always use the Gell-Mann–Oakes–Renner relation: $M^2_{\pi^{\pm}}$

$$M_{\pi^{\pm}}^2 \sim (m_u + m_d)$$

• fulfilled in QCD to better than 94%

Colangelo, Gasser, Leutwyler 2001

 \Rightarrow Quark mass dependence of hadron properties from lattice QCD, contact interaction require modeling \rightarrow challenge to lattice QCD

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

FINE-TUNING of FUNDAMENTAL PARAMETERS

Fig. courtesy Dean Lee

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O << \land \bigtriangledown \lor \triangleright \triangleright •

EARLIER STUDIES of the ANTHROPIC PRINCIPLE

• rate of the 3
$$lpha$$
-process: $r_{3lpha}\sim\Gamma_\gamma\,\exp\left(-rac{\Delta E_{h+b}}{kT}
ight)$

$$\Delta E_{h+b} = E_{12}^{\star} - 3E_{lpha} = 379.47(18) \, {
m keV}$$

• how much can ΔE_{h+b} be changed so that there is still enough ¹²C and ¹⁶O?

$$\Rightarrow \left| \delta | \Delta E_{h+b}
ight| \lesssim 100 \ {
m keV}$$

Oberhummer et al., Science **289** (2000) 88 Csoto et al., Nucl. Phys. A **688** (2001) 560 Schlattl et al., Astrophys. Space Sci. **291** (2004) 27 [Livio et al., Nature **340** (1989) 281]

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 \cdot O \leq \wedge ∇ > \triangleright

RECENT STELLAR SIMULATIONS

Adams, Huang, Grohs, Astropart. Phys. 105 (2019) 13

ullet Stellar evolution calculations for massive stars in the range $M_*=15-40M_{\odot}$

 \hookrightarrow study yields of ¹²C and ¹⁶O consistent with present abundances

• 2 scenarios: low metallicity ($\mathcal{Z} = 10^{-4}$) and solar metallicity ($\mathcal{Z} = 0.02$)

 \hookrightarrow main effect of \mathcal{Z} : relative importance of p-p chain versus CNO cycle

• Results:

 $\begin{array}{ll} ^{12}{\rm C}(\mathcal{Z}=10^{-4}){\rm :} & -300~{\rm keV} \leq \Delta E_{h+b} \leq 500~{\rm keV} \\ ^{16}{\rm O}(\mathcal{Z}=10^{-4}){\rm :} & -300~{\rm keV} \leq \Delta E_{h+b} \leq 300~{\rm keV} \\ ^{12}{\rm C}(\mathcal{Z}=0.02){\rm :} & -300~{\rm keV} \leq \Delta E_{h+b} \leq 160~{\rm keV} \\ ^{16}{\rm O}(\mathcal{Z}=0.02){\rm :} & -150~{\rm keV} \leq \Delta E_{h+b} \leq 200~{\rm keV} \\ \end{array}$

- asymmetric and less fine-tuned than before
- for stars with low metallicity, ¹⁶O production is more limiting

FINE-TUNING: MONTE-CARLO ANALYSIS

Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. 110 (2013) 112502

- consider first QCD only ightarrow calculate $\partial \Delta E / \partial M_{\pi}$
- relevant quantities (energy differences)

4
He + 4 He \leftrightarrow 8 Be $~\sim$ $\Delta E_b \equiv E_8 - 2E_4$

$$^4 ext{He} + {}^8 ext{Be}
ightarrow {}^{12} ext{C}^* \hspace{0.2cm} \sim \sim \hspace{0.2cm} \left[\Delta E_h^{} \equiv E_{12}^* - E_8^{} - E_4^{}
ight]$$

• energy differences depend on parameters of QCD (LO analysis)

$$E_i = E_i \bigg(M_\pi^{\text{OPE}}, m_N(M_\pi), \tilde{g}_{\pi N}(M_\pi), C_0(M_\pi), C_I(M_\pi) \bigg)$$

$${\tilde g}_{\pi N} \equiv g_A^{}/(2F_\pi^{})$$

• QED in the same manner ightarrow calculate $\partial \Delta E / \partial lpha_{
m EM}$

PION MASS VARIATIONS

• consider pion mass changes as *small perturbations*

$$egin{aligned} & \left. rac{\partial E_i}{\partial M_{\pi}}
ight|_{M_{\pi}^{\mathrm{phys}}} = \left. rac{\partial E_i}{\partial M_{\pi}^{\mathrm{OPE}}}
ight|_{M_{\pi}^{\mathrm{phys}}} + x_1 \left. rac{\partial E_i}{\partial m_N}
ight|_{m_N^{\mathrm{phys}}} + x_2 \left. rac{\partial E_i}{\partial ilde g_{\pi N}}
ight|_{ ilde g_{\pi N}^{\mathrm{phys}}} \ & + x_3 \left. rac{\partial E_i}{\partial C_0}
ight|_{C_0^{\mathrm{phys}}} \left. + x_4 \left. rac{\partial E_i}{\partial C_I}
ight|_{C_I^{\mathrm{phys}}} \end{aligned}$$

with

$$x_1 \equiv \left. \frac{\partial m_N}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \, x_2 \equiv \left. \frac{\partial \tilde{g}_{\pi N}}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \, x_3 \equiv \left. \frac{\partial C_0}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \, x_4 \equiv \left. \frac{\partial C_I}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}$$

 \Rightarrow problem reduces to the calculation of the various derivatives using AFQMC and the determination of the x_i

- $ullet x_1$ and x_2 can be obtained from LQCD plus CHPT
- x_3 and x_4 can be obtained from two-body scattering and its M_{π} -dependence

AFQMC RESUTS for the DERIVATIVES

• ⁴He

DETERMINATION of the x_i

• x_1 from the quark mass expansion of the nucleon mass:

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rev. Lett. 115 (2015) 092301; J. Phys. G45 (2018) 024001

$$\left(x_1=2rac{\sigma_{\pi N}}{M_\pi}=0.84(7)
ight)$$

• x_2 from the quark mass expansion of the pion decay constant and the nucleon axial-vector constant:

Chang et al., Nature 558 (2018) 91

$$\left[x_2 = rac{1}{2F_\pi} \left. rac{\partial g_A}{\partial M_\pi} \right|_{M^{
m phys}_\pi} - rac{g_A}{2F^2_\pi} \left. rac{\partial F_\pi}{\partial M_\pi} \right|_{M^{
m phys}_\pi} = 0.078(2) ext{ l.u.}
ight]$$

• x_3 and x_4 can be mapped onto:

$$ar{A}_s = rac{\partial a_s^{-1}}{\partial M_{\pi}} \bigg|_{M_{\pi}^{\mathrm{phys}}}, \quad ar{A}_t = rac{\partial a_t^{-1}}{\partial M_{\pi}} \bigg|_{M_{\pi}^{\mathrm{phys}}}$$

• these are most difficult to determine \rightarrow recent progress

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright •

142

Lähde, UGM, Epelbaum, arXiv:1906.00607 [nucl-th]

Combine LQCD results with Low-Energy Theorems next slides
 Baru et al., Phys Rev. C 92 (2015) 014001, Phys Rev. C 94 (2016) 014001

• note the postive sign of $ar{A}_t$

LO Lorentz-invariant chiral EFT:

UPDATE on $A_{s,t}$

• Original estimate (resonance saturation):

$$\left (ar{A}_s = 0.29^{+0.25}_{-0.23} \,, \; \, ar{A}_t = -0.18(10)
ight)$$

Berengut et al., Phys. Rev. D87 (2013) 085018

$$igl(ar{A}_s=0.50(23)\ ,\ ar{A}_t=-0.12(08)$$

Behrendt et al., Eur. Phys. J. A52 (2016) 296

LOW-ENERGY THEOREMS for NN SCATTERING

Cohen, Hansen (1999), Baru et al (2015,2016)

143

• Basic idea: consider non-relativistic scattering for particles with mass *m* and interacting by a non-singular potential of finite range

$$S = e^{2i\delta(k)} = 1 - i\left(rac{km}{8\pi^2}
ight)T(k), \quad T(k) = -rac{16\pi^2}{m}rac{1}{F(k) - ik}$$

- Central object: the effective range function: $F(k) = k \cot(\delta(k))$
- Effective range expansion (ERE): $F(k) = -\frac{1}{a} + \frac{1}{2} r k^2 + v_2 k^4 + v_3 k^6 + v_4 k^8 + \dots$
- Generalization: consider a potential made of a long-range & a short-range piece

$$V = V_L + V_S$$
, $r_L \sim M_L^{-1}$, $r_S \sim M_S^{-1} \ll M_L^{-1}$

• Idea: Keep the long-range physics explicitly \rightarrow modified ERE (determined by V_S)

$$F^{M}(k^{2}) \equiv \lim_{r \to 0} \left[\frac{d}{dr} \frac{f^{L}(k,r)}{f^{L}(k)} \right] + \frac{k}{|f^{L}(k)|} \cot \left[\delta(k) - \delta^{L}(k) \right], \quad \underbrace{f_{L}(k) \equiv f_{L}(k,r)|_{r=0}}_{\text{Jost function, solves SEq}}$$

LOW-ENERGY THEOREMS for NN SCATTERING cont'd144

• $F^{M}(k^{2})$ is a meromorphic fct in a larger region set by r_{S}^{-1} , modified ERE:

$$F^{M}(k) = -rac{1}{a^{M}} + rac{1}{2} r^{M} k^{2} + v_{2}^{M} k^{4} + v_{3}^{M} k^{6} + v_{4}^{M} k^{8} + \dots$$

• Meaning of the LETs: calculate the phase shift in terms of the known long-range part:

$$k \cot \delta(k) = rac{|f^L(k)| \left(F^M(k^2) - R^L(k^2)
ight) k \cot \delta^L(k) - k^2}{|f^L(k)| \left(F^M(k^2) - R^L(k^2)
ight) + k \cot \delta^L(k)}$$

• At leading order, the MERE is given by $F_{1.o.}^{M}(k^2) \simeq -1/a^{M} \rightarrow a$ single piece of information on a^{M} or, equivalently a, lets one predict **all** coefficients in the ERE:

$$r = rac{f_1(aM_L)}{M_L} \ , \ \ v_2 = rac{f_2(aM_L)}{M_L^3} \ , \ \ v_3 = rac{f_3(aM_L)}{M_L^5} \ , \ldots$$

- with known polynomials f_1, f_2, \ldots These LETs are accurate up to corrections from the second term in the MERE
- Using a^M and r^M (or a and r) as input ightarrow refined predictions/LETs
CORRELATIONS

• map $C_{0,I}(M_{\pi})$ onto $\bar{A}_{s,t} \equiv \partial a_{s,t}^{-1} / \partial M_{\pi} |_{M_{\pi}^{\mathrm{phys}}}$ [singlet/triplet scatt. length]

• vary the derivatives $\bar{A}_{s,t} \equiv \partial a_{s,t}^{-1} / \partial M_{\pi} |_{M_{\pi}^{\mathrm{phys}}}$ within $-1,\ldots,+1$:

• all fine-tunings in the triple-alpha process are *correlated*, as speculated Weinberg (2000)

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

THE END-OF-THE-WORLD PLOTS

- Combine results to generate exclusion plots
- \bullet Sensitivity on $\boldsymbol{\mathcal{Z}}$
- $\hookrightarrow \mathsf{low}\; \mathcal{Z} \to \mathsf{less}\; \mathsf{fine-tuning}$
- LQCD constraints on $\bar{A}_{s,t}$ \hookrightarrow no fine-tuning-scenario excluded
- ullet other determinations of $ar{A}_{s,t}$ allow for larger variations in m_q
- need better LQCD calc's of the NN system!
- tolerance for variations in $\alpha_{\rm EM}$ increased from 2.5% to 7.5%

[NB: black diagonal line = no fine-tuning]

Scattering on a lattice: Results

NUCLEON-DEUTERON SCATTERING

Elhatisari, Lee, UGM, Rupak, Eur. Phys. J. A 52 (2016) 174

- Use improved methods (cluster states projected onto spherical harmonics, etc.) & algorithmic improvements
- Precision calculation of proton-deuteron and neutron-deuteron scattering

Pionless EFT: König, Hammer, Gabbiani, Bedaque, Rupak, Griesshammer, van Kolck, 1998-2011

• Note: the quartet channel has no 3NF

ALPHA-ALPHA SCATTERING

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, UGM, Nature 528 (2015) 111

- same lattice action as for the Hoyle state in ¹²C and the structure of ¹⁶O
- 9 NN + 2 3N LECs, coarse lattice a = 1.97 fm, N = 8
- new algorithm for Monte Carlo updates and alpha clusters
- adiabatic projection method to construct a two-alpha Hamiltonian
- spherical wall method to extract the phase shifts using radial Hamiltonian

$$|R
angle^{\ell,\ell_{m{z}}} = \sum_{ec{R'}} Y_{\ell,\ell_{m{z}}}(ec{R'})\,\delta_{R,|ec{R'}|}\,|ec{R'}
angle$$

→ precise extraction of phase shifts & mixing angles
 → inclusion of long-range Coulomb effects (important!)

• Uncertainty analysis tbd w/ better action

• Show data for the S-wave:

LATTICE DATA II

• Show data for the D-wave:

PHASE SHIFTS

• S-wave and D-wave phase shifts (LO has no Coulomb)

Nuclear binding near a quantum phase transition

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, UGM, Epelbaum, Krebs, Lähde, Lee, Rupak, Phys. Rev. Lett. **117** (2016) 132501 [arXiv:1602.04539]

Editors' suggestion, featured in Physics viewpoint: D.J. Dean, Physics 9 (2016) 106

GENERAL CONSIDERATIONS

- Ab initio chiral EFT is an excellent theoretical framework
- not guaranteed to work well with increasing A
- \rightarrow possible sources of problems:
 - higher-body forces, higher orders, cutoff dependence, ...
- very many ways of formulating chiral EFT at any given order (smearing etc.)
- → use not only NN scattering and light nuclei BEs but also light nucleus-nucleus scattering data to pin down the pertinent interactions
- \rightarrow troublesome corrections might be small
- → investigate these issues using two seemingly equivalent interactions [not a precision study!]

LOCAL and NON-LOCAL INTERACTIONS

- General potential: $V(\vec{r}, \vec{r'})$
- Two types of interactions:
 - local: $\vec{r} = \vec{r}'$ non-local: $\vec{r} \neq \vec{r}'$
- Taylor two very different interactions:

Interaction A at LO (+ Coulomb)

Non-local short-range interactions

- + One-pion exchange interaction
 - (+ Coulomb interaction)

\rightarrow tuned to NN phase shifts

Local interaction

Nonlocal interaction

Interaction B at LO (+ Coulomb)

Non-local short-range interactions

- + Local short-range interactions
- + One-pion exchange interaction

(+ Coulomb interaction)

 \rightarrow tuned to NN + $\alpha\text{-}\alpha$ phase shifts

NN and ALPHA–ALPHA PHASE SHIFTS

• Both interactions very similar for NN but **not** for α - α phase shifts:

 \rightarrow Interaction A fails, interaction B fitted

 \hookrightarrow consequences for nuclei?

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < \land \bigtriangledown

GROUND STATE ENERGIES I

• Ground state energies for alpha-type nuclei plus ³He:

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O

 $< \land \nabla$

 \langle

GROUND STATE ENERGIES I

• Ground state energies for alpha-type nuclei (in MeV):

	A (LO)	A (LO+C.)	B (LO)	B (LO+C.)	Exp.
⁴ He	-29.4(4)	-28.6(4)	-29.2(1)	-28.5(1)	-28.3
⁸ Be	-58.6(1)	-56.5(1)	-59.7(6)	-57.3(7)	-56.6
^{12}C	-88.2(3)	-84.0(3)	-95.0(5)	-89.9(5)	-92.2
^{16}O	-117.5(6)	-110.5(6)	-135.4(7)	-126.0(7)	-127.6
²⁰ Ne	-148(1)	-137(1)	-178(1)	-164(1)	-160.6

• B (LO+Coulomb) quite close to experiment (within 2% or better)

• A (LO) describes a Bose condensate of particles:

 $E(^{8}\text{Be})/E(^{4}\text{He}) = 1.997(6)$ $E(^{12}\text{C})/E(^{4}\text{He}) = 3.00(1)$

 $E(^{16}\text{O})/E(^{4}\text{He}) = 4.00(2)$ $E(^{20}\text{Ne})/E(^{4}\text{He}) = 5.03(3)$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 \cdot O \triangleleft C \wedge ∇ > \triangleright •

FIRST INSIGHT

- Interaction B was tuned to the nucleon-nucleon phase shifts, the deuteron binding energy, and the S-wave α - α phase shift
- Interaction A starts from interaction B, but *all* local short-distance interactions are switched off, then the LECs of the non-local terms are refitted to describe the nucleon-nucleon phase shifts and the deuteron binding energy
- \rightarrow The alpha-alpha interaction is sensitive to the degree of locality of the NN int.
- \rightarrow Qualitative understanding: tight-binding approximation (eff. α - α int.)

CONSEQUENCES for NUCLEI and NUCLEAR MATTER

• Define a one-parameter family of interactions that interpolates between the interactions A and B:

$$igg[V_\lambda = (1-\lambda)\,V_A + \lambda\,V_Bigg]$$

- To discuss the many-body limit, we turn off the Coulomb interaction and explore the zero-temperature phase diagram
- As a function of λ , there is a quantum phase transition at the point where the alpha-alpha scattering length vanishes

Stoof, Phys. Rev. A 49 (1994) 3824

• The transition is a first-order transition from a Bose-condensed gas of alpha particles to a nuclear liquid

ZERO-TEMPERATURE PHASE DIAGRAM

FURTHER CONSEQUENCES

- By adjusting the parameter λ in *ab initio* calculations, one can move the of any α -cluster state up and down to alpha separation thresholds.
- \rightarrow This can be used as a new window to view the structure

of these exotic nuclear states

• In particular, one can tune the α - α scattering length to infinity!

 \rightarrow In the absence of Coulomb interactions, one can thus make contact to **universal Efimov physics**:

for a review, see Braaten, Hammer, Phys. Rept. 428 (2006) 259

Hoyle state of 12 C
$$\lambda \rightarrow$$
Universal Efimov trimerSecond 0+ of 16 O $\lambda \rightarrow$ Universal Efimov tetramer

Open ends / On-going developments

STRANGENESS NUCLEAR PHYSICS

- Substitute one (or two) nucleon(s) by a hyperon (Λ, Σ)
- A few known hypernuclei
- Also: very few hyperon-nucleon scattering data
- ⇒ important role of hypernuclear spectra
- \Rightarrow lattice can make an impact!

- Step 1: Crash course on YN/YY scattering in chiral EFT
- Step 2: Impurity Lattice Monte Carlo (ILMC) algorithm

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land ∇ >

164

BARYON-BARYON INTERACTIONS in CHIRAL EFT

LO: Polinder, Haidenbauer, UGM, Nucl. Phys. A **779** (2006) 244 NLO: Haidenbauer, Petschauer, Kaiser, UGM, Nogga, Weise, Nucl. Phys. A **915** (2013) 24

165

 Goldstone boson octet interacts with the the ground-state baryon octet and via contact interactions (just like NN)

$$M = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} \quad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

• Use SU(3) symmetry to relate *MBB* couplings and the various contact term LECs

- Need SU(3) breaking for a combined description of NN and YN interactions
- Exercise: how many LECs contribute to YN scattering at LO (use group th'y)?

BARYON-BARYON INTERACTIONS in CHIRAL EFT

• Total XS results (fit to 36 low-energy data points, only cut-off variations)

closed symbols: fit open symbols: prediction

Jülich '04 potential: Haidenbauer and UGM, Phys. Rev. C 72 (2005) 044005

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

HYPERON-NUCLEON INTERACTIONS in LIGHT NUCLEI

• Separation energies in light hyper-nuclei (all in MeV)

YN interaction	$E_{\Lambda}(^3_{\Lambda}{ m H})$	$E_\Lambda(^4_\Lambda { m He}(0^+))$	$E_{\Lambda}(^4_{\Lambda}{ m He}(1^+))$
NLO13(500)	0.135	1.705	0.790
NLO13(550)	0.097	1.503	0.586
NLO13(600)	0.090	1.477	0.580
NLO13(650)	0.087	1.490	0.615
NLO19(500)	0.100	1.643	1.226
NLO19(550)	0.094	1.542	1.239
NLO19(600)	0.091	1.462	1.055
NLO19(650)	0.095	1.530	0.916
Jülich'04	0.046	1.704	2.312
Expt.	0.13(5)	2.39(3)	0.98(3)

• NLO13 as described before

• NLO19: make use of explicit SU(3) breaking contact terms at NLO

 \hookrightarrow remedy friction between the NN and YN S-waves

Haidenbauer, UGM, Nogga, arXiv:1906.11681

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < < > > > • •

LATTICE FORMULATION

- Simpler physics as there are no unnaturally large scattering lengths (as far as they are known)
- Formulation as for the NN is possible, spin-flavor matrices:

	$\langle a_{0,0} \rangle$		$\left(egin{array}{c} a_{\uparrow} \ ,p \end{array} ight)$	
 LO simulations for the contact interactions 	$a_{1,0}$		$a_{\downarrow,p}$	
\Rightarrow feasible. I ECs fitted to threshold ratios	$a_{0,1}$		$a_{\uparrow \ ,n}$	
> volume dependence of the coettoring lengths	$\begin{vmatrix} a_{1,1} \\ a_{2,2} \end{vmatrix}$		$a_{\downarrow,n}$ a_{\uparrow} \land	
\Rightarrow volume dependence of the scattering lengths	$a_{0,2}$ $a_{1,2}$		$a_{\downarrow,\Lambda}$	
consistent with the Luscher formula	$a_{0,3}$	=	$a_{\uparrow \ ,\Sigma^+}$	
S. Bour, diploma thesis, Bonn, 2009	$a_{1,3}$		a_{\downarrow,Σ^+}	
 however, no follow-up due to missing SU(4) Wigner symmetry 	$a_{0,4}$		$a_{\uparrow \ , \Sigma^0}$	
	$a_{1,4}$		a_{\downarrow,Σ^0}	
\hookrightarrow too little control on the sign oscillations	$\left(\begin{array}{c} a_{0,5}\\ a_{1,5} \end{array}\right)$		$\begin{pmatrix} u_{\uparrow} , \Sigma^{-} \\ a \end{pmatrix}$	
(expectation, not a calculation)	\~1,5/		$\langle u_{\downarrow,\Sigma^{-}} \rangle$	

• is there another method to deal with hyperons in nuclei?

IMPURITY MONTE CARLO

Elhatisari, Lee, Phys. Rev. C 90 (2014) 046001

- Basic idea: Consider the hyperon(s) as **impurity(ies)** in a sea of nucleons
- Benchmark calculation: a \downarrow -particle in a sea of \uparrow -particles ($m_{\uparrow} = m_{\downarrow} = m$)
- Lattice Hamiltonian $(H_0 + V)$:

$$\begin{split} H_{0} &= H_{0}^{\uparrow} + H_{0}^{\downarrow} \\ H_{0}^{s} &= \frac{1}{2m} \sum_{l=1}^{3} \sum_{\vec{n}} \left[2a_{s}^{\dagger}(\vec{n})a_{s}(\vec{n}) - a_{s}^{\dagger}(\vec{n})a_{s}(\vec{n}+\hat{l}) - a_{s}^{\dagger}(\vec{n})a_{s}(\vec{n}-\hat{l}) \right] \\ V &= C_{0} \sum_{\vec{n}} \rho_{\uparrow} \ (\vec{n}) \rho_{\downarrow}(\vec{n}) \end{split}$$

$$(s = \uparrow, \downarrow)$$

• Work in occupation number basis:

$$egin{aligned} \chi^{\uparrow}_{n_t},\chi^{\downarrow}_{n_t} &
angle = \prod_{ec{n}} \left\{ \left[a^{\dagger}_{\uparrow} \ (ec{n})
ight]^{\chi^{\uparrow}_{n_t}(ec{n})} \left[a^{\dagger}_{\downarrow}(ec{n})
ight]^{\chi^{\downarrow}_{n_t}(ec{n})}
ight\}, & \chi^s_{n_t}(ec{n}) = 0 ext{ or } 1 \end{aligned}$$

• allows to calculate the transfer matrix: $\langle \chi^{\uparrow}_{n_t+1}, \chi^{\downarrow}_{n_t+1} | M | \chi^{\uparrow}_{n_t}, \chi^{\downarrow}_{n_t} \rangle$

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

• Worldline configuration and the reduced transfer matrix (integrate out the impurity)

• impurity makes one spatial hop:

$$M_{ec{n}^{\prime\prime}\pm \hat{l},ec{n}^{\prime\prime}} = \left(rac{lpha_t}{2m}
ight)\,:\, \exp\left[-lpha_t H_0^\uparrow
ight]$$

• impurity worldline remains stationary:

$$\begin{split} M_{\vec{n}^{\prime\prime},\vec{n}^{\prime\prime}} &= \left(1 - \frac{3\alpha_t}{m}\right) \\ \times : \exp\left[-\alpha_t H_0^{\uparrow} - \frac{\alpha_t C_0}{1 - 3\alpha_t/m}\rho_{\uparrow} \ (\vec{n}^{\prime\prime})\right] \end{split}$$

 can also be extended to the Adiabatic Projection Method

IMPURITY MONTE CARLO: BENCHAMRK CALCULATION

Bour, Lee, Hammer, UGM, Phys. Rev. Lett. 115 (2015) 185301

- ullet 9 $\left| \uparrow
 ight
 angle + 1 \left| \downarrow
 ight
 angle$, $L = 10^3$, zero range interaction
- caluclate the ground-state energy:

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < \wedge ∇

WHAT is a POLARON?

- Polaron = quasiparticle to understand the electron-atom interactions
 Landau, Phys. Z. Sowjetunion 3 (1933) 644
- consider an electron moving in a dielectric crystal
- ⇒ the atoms move from their equilibrium positions to effectively screen the charge of an electron (phonon cloud)
- ⇒ this lowers the electron mobility and increases the electron's effective mass
- for details, see:
 - J. T. Devreese

Encyclopedia of Applied Physics 14 (1996) 383

@Wikipedia

172

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019

 $\cdot \circ \triangleleft < \land \bigtriangledown > \triangleright \bullet$

IMPURITY MONTE CARLO: POLARON RESULTS

Bour, Lee, Hammer, UGM, Phys. Rev. Lett. 115 (2015) 185301

• Energy of the 3D polaron (in units of the fermi energy) in the unitary limit

Schirotzek et al., Phys. Rev. Lett. 102 (2009) 023402

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < 🔨 🗸 🗸

173

IMPURITY MONTE CARLO: POLARON RESULTS

Bour, Lee, Hammer, UGM, Phys. Rev. Lett. **115** (2015) 185301

- Attractive polarons in 2D (two-body bound state develops)
- First calculation that covers the whole range in η

 $\eta = rac{1}{2} \ln(2\epsilon_F/|\epsilon_B|)$

- good agreement with earlier calculations and experiment (where available)
- smooth crossover form the polaron to the molecular state (new!) by looking at density-density correlations
- ILMC is a **powerful** method

Figure courtesy Dean Lee

< 1

 $< \land \bigtriangledown > \triangleright$

SUMMARY & OUTLOOK

- Chiral EFT for nuclear forces
 - \rightarrow based on the symmetries of QCD
 - \rightarrow systematic, precise and controlled theoretical errors
- Nuclear lattice EFT: a new quantum many-body approach
 - \rightarrow based on the successful continuum chiral EFT
 - \rightarrow a number of highly visible results already obtained
 - ightarrow clustering emerges naturally, lpha-cluster nuclei
 - \rightarrow appears to be *the framework* for *ab initio* nuclear structure & reaction calc's
- Further improvements / not treated
 - \rightarrow algorithms, CPU/GPU architectures, eigenvector continuation, . . .

Frame et al., Phys. Rev. Lett. 121 (2018) 032501

 \rightarrow heavier nuclei, nuclear/neutron matter, thermodynamics, ...

SPARES

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

HYBRID MONTE CARLO

Duane et al., Phys. Lett. B 195 (1986) 216

• apply hybrid MC to fields s, s_I, π_I for the calculation of the path-integral

• introduce conjugate fields p_{π_I}, p_s, p_{S_I}

$$H_{HMC} = rac{1}{2} \sum\limits_{I,ec{n}} \left(p^2_{\pi_I}(ec{n}\,) + p^2_s(ec{n}\,) + p^2_{s_I}(ec{n}\,)
ight) + V(\pi_I,s,s_I)$$

$$V(\pi_I, s, s_I) = S_{\pi\pi} + S_{ss} - \log\{|\text{det}\mathcal{M}|\}$$

NO-CORE-SHELL MODEL: p-SHELL NUCLEI

No-core-shell-model calculation

Navratil et al., Phys. Rev. Lett. 99, 042501 (2007)

- NN interaction at N³LO and NNN interaction at N²LO
- Fix *D*&*E* from BE of ³H and level structure of ⁴He, ⁶Li, ^{10,11}B and ^{12,13}C

MODERN MANY-BODY THEORY and the HOYLE STATE¹⁷⁹

- one of the most sophisticated many-body theories (No-Core-Shell-Model)
- excellent description of p-shell nuclei from ^{6}Li to ^{13}C

P. Navratil et al., Phys. Rev. Lett. 99 (2007) 042501 + updates

⇒ NO signal of the Hoyle state (i.g. α -cluster states) ⇒ must develop a better method

RESULTS at LEADING ORDER

Borasoy, Epelbaum, Krebs, Lee, M., Eur. Phys. J. A31 (2007) 105

- 2 LECs fitted to B_d and $a_{np}({}^1S_0)$
- Promising results for A = 2, 3, 4
 - ightarrow b fitted from the average effective range

	Simulation	Experiment
r_d [fm]	1.989(1)	1.9671(6)
Q_d [fm 2]	0.278(1)	0.2859(3)
B_t [fm]	-8.9(2)	-8.482
r_t [fm]	2.27(7)	1.755(9)
B_{lpha} [fm]	-21.5(9)	-28.296
r_{lpha} [fm]	1.50(14)	1.673(1)

• CPU time scales linear with $A \ (A \le 10)$

Nucleon density correlation in ³H in the x-y plane

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •
RESULTS at LEADING ORDER

Borasoy, Epelbaum, Krebs, Lee, M., Eur. Phys. J. A31 (2007) 105

• Phase

• CPU time

 \rightarrow much improved by now

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark

Neutron-proton scattering at NNLO for varying lattice spacings

> Alarcón, Du, Klein, Lähde, Lee, Li, Luu, UGM Eur. Phys. J. A (2017) in print [arXiv:1702.05319]

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 · O < < \land \bigtriangledown > \triangleright O

NUCLEAR FORCES at NNLO

for details, see: Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

• Potential at next-to-next-to-leading order $[Q = \{p/\Lambda, M_{\pi}/\Lambda\}]$:

• NN potential to NNLO [all πN and $\pi \pi N$ LECs fixed from πN scattering]:

$$\begin{split} V_{\rm NN} &= V_{\rm LO}^{(0)} + V_{\rm NLO}^{(2)} + V_{\rm NNLO}^{(3)} \\ &= V_{\rm LO}^{\rm cont} + V_{\rm LO}^{\rm OPE} + V_{\rm NLO}^{\rm cont} + V_{\rm NLO}^{\rm TPE} + V_{\rm NNLO}^{\rm TPE} \end{split}$$

NUCLEAR FORCES at NNLO continued

• Analytic expressions [2+7 LECs]:

$$egin{aligned} V_{ ext{LO}}^{ ext{cont}} &= oldsymbol{C}_{oldsymbol{S}} + oldsymbol{C}_{oldsymbol{T}}\left(ec{\sigma}_1\cdotec{\sigma}_2
ight) \\ V_{ ext{LO}}^{ ext{OPE}} &= -rac{g_A^2}{4F_\pi^2}\, au_1\cdot au_2rac{\left(ec{\sigma}_1\cdotec{q}
ight)\left(ec{\sigma}_2\cdotec{q}
ight)}{q^2+M_\pi^2} \ &ec{q}^2 + M_\pi^2 \end{aligned}$$
 $ec{q}$ = t-channel mom. transfer

$$V_{
m NLO}^{
m cont} = C_1 q^2 + C_2 k^2 + (C_3 q^2 + C_4 k^2) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + i C_5 rac{1}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} imes \vec{k}) + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$$
 $\vec{k} = u$ -channel mom. transfer

$$V_{ ext{NLO}}^{ ext{TPE}} = -rac{ au_1 \cdot au_2}{384 \pi^2 F_\pi^4} L(q) ig[4M_\pi^2 ig(5g_A^4 - 4g_A^2 - 1 ig) + q^2 ig(23g_A^4 - 10g_A^2 - 1 ig) \ + rac{48g_A^4 M_\pi^4}{4M_\pi^2 + q^2} ig] - rac{3g_A^4}{64\pi^2 F_\pi^4} L(q) ig[(ec{q} \cdot ec{\sigma}_1) ig(ec{q} \cdot ec{\sigma}_2) - q^2 ig(ec{\sigma}_1 \cdot ec{\sigma}_2) ig]$$

• Loop function:
$$L(q) = \frac{1}{2q} \sqrt{4M_{\pi}^2 + q^2} \ln \frac{\sqrt{4M_{\pi}^2 + q^2} + q}{\sqrt{4M_{\pi}^2 + q^2} - q}$$

 $\rightarrow 1 + \frac{1}{3} \frac{q^2}{4M_{\pi}^2} + \cdots$ for $q \ll \Lambda$

 \rightarrow for coarse lattices $a \simeq 2$ fm, the TPE at N(N)LO can be absorbed in the LECs C_i \rightarrow no longer true as a decreases, need to account for the TPE explicitly

Nuclear lattice EFT: An introduction – Ulf-G. Meißner – PKU lattice school, Beijing, July 2019 • O < < \land \bigtriangledown > \triangleright •

A FEW DETAILS ON THE FITS

•	Fits in	large &	fixed	volumes,	vary	a from	1 to 2 fm:
---	---------	---------	-------	----------	------	--------	------------

a^{-1} [MeV]	<i>a</i> [fm]	L	La [fm]
100	1.97	32	63.14
120	1.64	38	62.48
150	1.32	48	63.14
200	0.98	64	63.14

ullet OPE and TPE LECs completely fixed ($g_A \sim g_{\pi NN}$ and $c_{1,2,3,4}$ from RS analysis)

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rev. Lett. 115 (2015) 092301

• Smeared LO S-wave contact interactions:

$$f(\vec{q}\,)\equiv f_0^{-1}\exp\left(-b_srac{ec{q}\,^4}{4}
ight)$$

- Partial-wave projection of the contact interactions
- ightarrow fit b_s and two S-wave LECs C_i at LO up to $p_{
 m cm}=100\,$ MeV
- ightarrow w/ b_s fixed, fit two/seven S/P-wave LECs C_i at NLO/NNLO up to $p_{
 m cm}=150\,$ MeV
- \rightarrow treat NLO and NNLO corrections perturbatively and non-perturbatively

RESULTS for VARIOUS LATTICE SPACINGS - nonpert.

186

 \triangleright

RESULTS for VARIOUS LATTICE SPACINGS - pert.

perturbative treatment of NLO and NNLO corrections

ightarrow up to $p_{
m cm}\simeq 150$ MeV, physics is indendependent of $a_{
m ov}$

- ightarrow description consistent with the continuum within error bands $\ \sqrt{}$
- \rightarrow explore this for nuclei —- work in progress / stay tuned