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Study of the strongly interacting matter and its new “phases”

Past: 
AGS, SPS, Ecm=(1-17) GeV

Present : 
RHIC,  Ecm=(5.5-200) GeV, 
LHC, Ecm=2.76 TeV, 5.5 TeV

Future:  
NICA, CBM@FAIR 
Ecm=(1-10) GeV

Theory:

Low T, low density:
EFT
(Chiral perturbation
Theory) , 
Virial expansion

High T, high desnity:
Weak coupling
methods, 
Dimensionally
reduced EFT

Lattice
QCD
and
Super-
computing

Experiment:
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Relativistic Heavy Ion Collisions

RHIC:

LHC: ALICE,  also HI in  
CMS, ATLAS and LHCb

STAR

PHENIX

Supercomputing and LQCD at T>0: 

Titan, USA

2013: TOP500 rank: 3 TOP500 rank: 4 TOP500 rank: 9

Sequoia, USA MIRA, USA 2



Cabbibo, Parisi, PLB 59 (1975) 67

Realization that at high temperature hadronic language is not appropriate 
and reinterpretation of the limiting temperature as the phase transition temperature
to medium consisting of quarks and gluons 

Hagedorn, Nouvo Cim. 35 (1965) 395

Exponentially increasing density of hadronic states => limiting temperature 

New states of strongly interacting matter ?

Collins and Perry,  PRL 34 (1975) 1353
At very high density strongly interacting matter should consist of quarks due to assymptotic
freedom  

I. Ya. Pomeranchuk, Doklady Akad. Nauk. SSSR 78 (1951) 889 

Because of finite size of hadrons hadronic matter cannot exist up to arbitrarily high
temperature/density, hadron size has to be smaller than 1/T
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Deconfinement at high temperature and density

Hadron Gas 

Transition 

Quark Gluon Plasma (QGP)

temperature and/or density 

Why this is interesting  ? :
basic properties of strong interaction

astrophysical (compact stars and transients): 
boundaries of hadronic matter

cosmological consequences  
(Early Universe few microseconds after Big Bang,
e.g. axion cosmology)

LQCD
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Symmetries of QCD in the vacuum at high T
• Chiral symmetry : 

• Center (Z3) symmetry : invariance under global gauge transformation

Exact symmetry for infinitely heavy quarks and the order parameter is the
Expectation value of the Polyakov loop:

restored

broken

spontaneous symmetry breaking or Nambu-Goldstone symmetry realization 
2008

hadrons with  opposite parity have very different  masses, 
interactions between hadrons are weak  at low E

η’ meson mass, π-a0 mass difference

• Axial or UA(1) symmetry:  

is broken by anomaly (ABJ) : 

Effectively
restored ?

topology

QCD
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QCD phase diagram as function of the quark mass

relation to spin models

For very large quark masses there 
is a 1st order deconfining phase transition 

Chiral transition: 
• For vanishing u,d -quark masses the 
Chiral transition is either 1st order or 2nd

order phase  transition

• For physical quark masses there 
could be a 1st order  phase transition
or crossover

Evidence for 2nd order transition in the chiral limit
=> universal properties of QCD transition:

Pisarski, Wilczek,  PD29 (1984) 338 

transition is a  crossover 
for physical quark masses 
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In these lectures:

1. Basics of filed theory at T>0 and weak coupling expansion
2. Dimensionally reduced EFT (EQCD)
3. Virial expansion at low T
4. Lattice QCD at T >0 basics
5. Deconfinement transition in absence of quarks (SU(N) gauge theories)
6. Chiral transition in QCD
7. Equation of State in QCD
8. Deconfinement and color electric screening in QCD 
9. Chromo-magnetic screening and testing EQCD non-perturbatively
10. QCD at non-zero chemical potentials and Taylor expansion
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Quantum Statistical mechanics 
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Thermodynamics of scalar field theory 
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Particles aquire a
thermal mass !

UV divergent part renormalized as at T=0
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Resummation of ring diagrams corresponds to using massive 
propagators in n=0 modes 16



Resummation and screened perturbation theory 

I. INTRODUCTION

If we have a weakly-coupled quantum field theory in equilibrium at temperature T , we
should be able to use perturbation theory as a quantitative tool to study its properties. In
the case of a massless theory with coupling constant g, the naive perturbative expansion
in powers of g2 breaks down because of collective effects such as screening. However, the
perturbative expansion can be reorganized into a weak-coupling expansion in powers of g
either by using resummation methods or alternatively by using effective field theory. It
is reasonable to assume that this weak-coupling expansion provides a useful asymptotic
expansion for sufficiently small values of g.

Only in recent years has the calculational technology of thermal quantum field theory
advanced to the point where this assumption can be tested. Unfortunately, the assumption
seems to be false. One would expect the thermodynamic functions, such as the pressure,
to be among the quantities with the best-behaved weak-coupling expansion, since collective
effects are suppressed by several powers of g. However, in recent years, the thermodynamic
functions have been calculated to order g5 for massless scalar theories [1–3], abelian gauge
theories [4,5], and nonabelian gauge theories [1,6,7]. The weak-coupling expansions show
no sign of converging even for extremely small values of g. There is already a hint of the
problem in the g3 correction, which has the opposite sign and is relatively large compared
to the g2 coefficient. The large size of the g3 contribution is not necessarily fatal, since
it is the first term that takes into account collective effects. An optimist might still hope
that higher-order corrections would be well-behaved. This optimism has been dashed by the
explicit calculation of the g4 and g5 terms.

For a massless scalar field theory with a g2φ4/4! interaction, the weak-coupling expansion
for the pressure to order g5 is [1–3]
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where Pideal = (π2/90)T 4 is the pressure of an ideal gas of free massless bosons, α =
g2(µ)/16π2, and g(µ) is the MS coupling constant at the renormalization scale µ. In Fig. 1,
we show the successive perturbative approximations to P/Pideal as a function of g(2πT ).
Each partial sum is shown as a band obtained by varying µ from πT to 4πT . To express
g(µ) in terms of g(2πT ), we use the numerical solution to the renormalization group equation
µ ∂

∂µα = β(α) with a five-loop beta function [8]:

µ
∂

∂µ
α = 3α2 −

17

3
α3 + 32.54α4 − 271.6α5 + 2848.6α6 . (2)

The lack of convergence of the weak-coupling expansion is evident in Fig. 1. The band
obtained by varying µ by a factor of two is not necessarily a good measure of the error, but
it is certainly a lower bound on the theoretical error. Another indicator of the theoretical
error is the deviation between successive approximations. We can infer from Fig. 1 that the
error grows rapidly when g(2πT ) exceeds 1.5.
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FIG. 7. One-, two-, and three-loop SPT-improved pressure as a function of g(2πT ) for (a)
πT < µ < 4πT and (b) 1

2m∗ < µ < 2m∗.

three-loop band falling within the two-loop band. The bands for µ = am∗ are narrower
than those for µ = a(2πT ) partly because µ = a(2πT ) is larger and therefore closer to the
Landau pole of the running coupling constant. If g(2πT ) = 2, the Landau pole associated
with the five-loop beta function is far away at µ = 2.11 × 105(2πT ). If g(2πT ) = 4, the
Landau pole is rather nearby at µ = 5.49(2πT ). The coupling constant g(m∗) is smaller
than g(2πT ), having the values 1.76 and 3.07 if g(2πT ) = 2 and 4, respectively. Choosing
µ = am∗ instead of µ = a(2πT ) will therefore make the error due to the m4 terms in the
pressure smaller by factors of about 0.60 and 0.35 respectively. The band m∗/2 < µ < 2m∗

may therefore give an underestimate of the error of SPT.

B. Screening Mass

The one-loop SPT-improved approximation to the screening mass ms is simply the
solution m∗(T ) to the tadpole gap equation. A two-loop SPT-improved approximation can
be obtained by inserting the solution to the gap equation for m into (63). In Fig. 8, we show
the one-loop and two-loop SPT-improved approximations to the screening mass as functions
of g(2πT ). The bands are obtained by varying µ by a factor of two around the central values
µ = 2πT and µ = m∗.

The choice µ = am∗ appears again to give better convergence than µ = a(2πT ), with
the two-loop band falling within the one-loop band. With µ = am∗, there is a dramatic
improvement in apparent convergence over the weak-coupling approximations, which are
plotted on the same scale in Fig. 2. However, there is not much improvement in the apparent
convergence with µ = a(2πT ). The conservative conclusion is that screened perturbation
theory is not as effective in improving the prediction for the screening mass as it is for the
pressure.

20

0 1 2 3 4
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

g2

g3

g4

g5

id
e
a
l

/

2

3

4

5

g(2 T)

FIG. 1. Weak-coupling expansion to orders g2, g3, g4, and g5 for the pressure normalized to
that of an ideal gas as a function of g(2πT ).

A similar behavior can be seen in the weak-coupling expansion for the screening mass,
which has been calculated to next-to-next-to-leading order in g [3]:

m2
s =

2π2

3
αT 2
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In Fig. 2, we show the screening mass ms normalized to the leading order result mLO =
g(2πT )T/

√
24 as a function of g(2πT ), for each of the three successive approximations to

m2
s. The bands correspond to varying µ from πT to 4πT . The poor convergence is again

evident. The pattern is similar to that in Fig. 1, with a large deviation between the order-g2

and order-g3 approximations and a large increase in the size of the band for g4.

There are many possibilities for reorganizing the weak-coupling expansion to improve
its convergence. One possibility is to use Padé approximants [9]. This method is limited
to observables like the pressure, for which several terms in the weak-coupling expansion
are known. Its application is further complicated by the appearance of logarithms of the
coupling constant in the coefficients of the weak-coupling expansion. However, the greatest
problem with Padé approximants is that, with no understanding of the analytic behavior of
P at strong coupling, it is little more than a numerological recipe.

An alternative with greater physical motivation is a self-consistent approach [10]. Per-
turbation theory can be reorganized by expressing the free energy as a stationary point of a
functional Ω of the exact self-energy function Π(p0,p) called the thermodynamic potential
[11]. Since the exact self-energy is not known, Π can be regarded as a variational function.
The “Φ-derivable” prescription of Baym [10] is to truncate the perturbative expansion for
the thermodynamic potential Ω and to determine Π self-consistently as a stationary point
of Ω. This gives an integral equation for Π which is difficult to solve numerically, except in
cases where Π is momentum independent. In relativistic field theories, there are additional
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Karsch, Patkos, PP,  PLB 401 (97) 69 ,  
Andersen, Braaten, Strickland PRD63 (01) 105008

Arnold, Zhai, PRD50 (94) 7603
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Dirac Fields at finite temperature 
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Gauge field  at finite temperature 

4 gluons 

ghosts

-
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Gulon self energy and color screening in perturbation theory

d3k
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Arnold, Zhai,  Phys.Rev. D51 (1995) 1906, Kastening, Zhai, Phys.Rev. D52 (1995) 7232

QCD  at high temperatures 

Bosonic contribution:

Fermionic contribution:

Static resummation:
1

2
m2

DA2
0�!n,0
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Arnold, Zhai,  Phys.Rev. D51 (1995) 1906, Kastening, Zhai, Phys.Rev. D52 (1995) 7232 22



Convergence of perturbation theory and HTL

The same poor convergence of perturbative
series for the pressure as in scalar field
theory, the problem is largely due to odd
powers in g

Hard Thermal Loop (HTL) resumed
perturbation theory  absorbs odd powers
in g to lower order contributions

Andersen, Leganger, Strickland, Su, JHEP 1108 (2011) 053
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Pressure at order g6 and magnetic mass 

g(µ = 102GeV) =
p

4⇡↵s(µ = 102GeV) ' 1 g(µ = 1016GeV) ' 1/2
In practice g is not 
very small :

Confining nature of static chromomagnetic fields at high T 

l
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Dimensional reduction at high temperatures  

Braaten, Nieto, PRD 51 (95) 6990, PRD 53 (96) 3421
Kajantie et al, NPB 503 (97) 357, PRD 67 (03) 105008

EQCD

Integrate out A0

MQCD3d YM theory
F3d ~ g36

Fµ⌫ = DµAµ �D⌫Aµ

Aµ ! �1/2Aµ

F = F(non-static) + T F3d

mass term for n=0 mode

even powers in g odd powers in g
25



Relativistic Virial Expansion and Hadron Resonance Gas 

Density of hadrons is small at low temperature
Relativistic virial expansion : compute thermodynamic quantities in terms
as a gas of non-interacting particles and S – matrix
Dashen, Ma, Bernstein, Phys. Rev. 187 (1969) 345

lnZ = lnZ0 +
X

i1,i2

eµi1/T eµi2/T b(i1, i2)

b(i1, i2) =
V

4⇡i

Z
d3p

(2⇡)3

Z
dEe�(p2+E2)1/2/T

X

final


AS(S�1 @S

@E
� @S�1

@E
S)

�

Elastic scattering dominates at low T (final state = initial state)  

Free gas of stables hadros: π, K, N interactions

S(E) =
X

l,I

0(2l + 1)(2I + 1) exp(2i�Il (E))

perform the integral over the 3-momentum 

Partial wave
decomposition

b2 = T
2⇡3

R1
M dEE2K2(E/T )

P0
l,I(2l + 1)(2I + 1)@�

I
l (E)
@E

of the pair at threshold invariant mass 

(anti) symmetrization (spin-statistics)
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Use  experimental phase shifts to determine b2 , Venugopalan, Prakash, NPA546 (1992) 718 726 R. Venugopalan, M. Prakash /Thermal properties 
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Fig. I. Upper panel: ~t~t phase shifts as a function of center of mass momentum. Lower panel: 
Isospin-weighted sum of the phase shifts. 

with the corresponding variables for a free gas of pions and p-mesons. The reason for 
this was the nearly exact cancellation of the contributions from the S-wave attractive 
and repulsive channels which resulted in an effective contribution from the P-wave 
channel containing the p-meson resonance. The magnitudes of the S-wave phase shifts 
are such that their isospin-weighted sum nearly vanishes as shown in the lower panel of 
fig. 1. This cancellation, of dynamic origin, may be explicitly verified 20) on the basis 
of the low-energy phase shifts from the Weinberg chiral lagrangian 42). It is remarkable 
that the cancellation persists up to rather high c.m. energies. 

The interacting pressure expressed as the sum of contributions P~) and p(2) from " i n t  " i n t  

terms linear and quadratic in the scattering amplitude using eqs. (6) - (8)  are shown 
in fig. 2. In the upper panel we show the individual contributions to the interacting 
pressure from the resonant J~ phase shift. Virtually the entire contribution to the 
pressure comes from the resonant channel, i.e from p~2) _ the term quadratic in the - l n t  

scattering amplitude f ,  since near the resonance f is almost purely imaginary. 
The result is very different for the non-resonant channels (see the lower panel 

in fig. 2). The repulsive J0 2 phase shift remains relatively small in magnitude with 
energy and therefore f is almost purely real. Hence, the dominant contribution to the 
interacting pressure comes from P t~ - the term proportional to the real part of the ~ i n t  

forward scattering amplitude, in contrast, the magnitude of Jo ° becomes increasingly 
|arge with energy so that both the real and the imaginary parts of f are comparable. 

728 R, Fenugopalan. M. Prakosh / Thermal properties 
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Fig. 3. The pressure, energy density and entropy density of interacting pions (solid curves) all 
scaled to dimensionless units. The dashed lines are the corresponding results for a free gas of n- 

and p-mesons. 
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Fig. 4. Upper panel: nK phase shifts as a function of center-of-mass momentum. Lower panel 
isospin-weighted sum of the phase shifts. 

After summing all the channels only resonance contributions survives in  
0X

l,I

(2l + 1)(2I + 1)
@�Il (E)

@E

Interacting hadron gas = non-nteracting gas of hadrons and resonances 27
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