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Motivation: Particle Zoo
QCD gives rise to a very rich particle spectrum, here nucleon, ∆ and Λ

π
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[PDG 2016, picture: B. Metsch]

• most states are resonances → decay to two or more particles
⇒ first principles theoretical computation highly valuable
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What is a resonance?

• consider a simple, driven damped
harmonic oscillator

ω

• equations of motion

ẋ2 + 2Dω0ẋ+ ω2x = A sin(ωt)

• solution is known

x(t) = A′ sin(ωt+ δ)

• for D small, a resonance occurs
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ẋ2 + 2Dω0ẋ+ ω2x = A sin(ωt)

• solution is known

x(t) = A′ sin(ωt+ δ)

• for D small, a resonance occurs
0.0 0.5 1.0 1.5 2.0

ω

δ

0
π
/2

π

ω0 = 1, D = 0.15

C. Urbach: Hadron-Hadron Interactions from LQCD page 3/43



What is a resonance?

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

ω

A
′ /
A

ω0 = 1, D = 0.15

0.0 0.5 1.0 1.5 2.0

ω

δ

0
π
/2

π

ω0 = 1, D = 0.15

In general: resonances are characterised by
• resonance amplification in the amplitude ratio
• phase shift δ crosses π/2
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Scattering of Particles

• consider interaction of finite range R, spherically symmetric

R ϑ~k

~k′incoming outgoing

• interested in the elastic case

• in- and outgoing particles described by waves (asymptotic states)

• energy conservation: k = |~k| = |~k′|

• analyticity and unitarity further constrain the system

⇒ incoming and outgoing waves differ only by a phase shift
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Scattering of Particles

• consider interaction of finite range R, spherically symmetric

R ϑ~k

~k′incoming outgoing

• analyticity and unitarity:
⇒ scattering amplitude in the partial wave expansion

fk(ϑ) = −8π

M

∞∑
`=0

(2`+ 1) f`(k) P`(cosϑ)

with partial wave amplitude and phase shift δ`

f`(k) =
1

k cot δ`(k)− ik
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Scattering of Particles

R ϑ~k

~k′incoming outgoing

• it actuallly suffices to know the phase shifts δ`(k)

• often, even a single partial wave is enough (due to symmetries)

⇒ at small energies (small k) one can expand

k2`+1 cot δ` =
1

a`
+
r

2
k2 + ...

• a` scattering length, r effective range
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The ρ -Resonance

• ρ: lowest QCD resonance
(together with the σ)

• in ππ channel with I = 1

• experimentally well measured

• clear signal in the amplitude
⇒ pion formfactor

• textbook example of a resonance
phase shift

[Barkov et al., Nucl.Phys. B256 (1985)]
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The Lüscher Method

... or why finite volume effects can be useful

C. Urbach: Hadron-Hadron Interactions from LQCD page 9/43



Particle Interactions from Lattice QCD

• lattice stochastic methods:
work in finite volume / Euclidean space-time (→ Karl Jansen)

• consequence: energy levels are quantised

⇒ eigenvalues of the lattice Hamiltonian

• Maiani and Testa:
interactions properties cannot be studied directly
[Maiani and Testa, (1990)]

⇒ there is no one-to-one correspondence of an energy level to a resonance state
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Lüscher Method

instead: use finite volume as vehicle...

V

• for V →∞:

⇒ interaction probability very low

⇒ E2p(p = 0) = 2E1p

• for finite V :

⇒ interaction probability rises

⇒ E2p(p = 0) receives corrections
∝ 1/V

• Lüscher: correction in 1/V related
to scattering properties!
[Lüscher, 1986]
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Lüscher Method

How does this relation look like?

Consider the easiest case of two scalar particles at zero total momentum and assume small
scattering momentum |k|:

• then, the finite volume dependence reads
[Lüscher, 1986]

δE2 = E2 − 2M1 = − 4πa0
M1L3

(
1 + c1

a0
L

+ c2

(a0
L

)2
+

2πra20
M2

1L
3

+ ...

)
• known c-numbers ci

• finite range expansion assumed to be valid

• higher partial waves neglected
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Example: Complex φ4 Theory
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Example: Complex φ4 Theory

• Let’s have a look at an easy example
[Romero-Lopez, Rusetsky, CU, EPJC (2018)]

⇒ complex φ4 theory as toy model

• lattice action
S =

∑
x

(
− κ

∑
µ

(ϕ?xϕx+µ + cc) + λ(|ϕx|2 − 1)2 + |ϕx|2
)

• big advantage: fast to simulate

⇒ can simulate basically arbitrary volumes

• and study the interaction of two scalar particles

(or three, four, five, ... scalar particles)
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Example: Complex φ4 Theory

• need to compute ∆E = E2 − 2M1

• single particle energy from

C1(t) =
∑
t′

∑
x,y

〈Ôϕ(x, t′)Ô†ϕ(y, t+ t′)〉 t→∞∝ e−M1t

• n-particle energy from

C1(t) =
∑
t′

∑
x,y

〈Ô2ϕ(x, t′)Ô†2ϕ(y, t+ t′)〉 t→∞∝ e−E2t + thermal pollutions

• thermal pollutions due to finite time extend T and periodic BCs

⇒ have to be taken care of

C. Urbach: Hadron-Hadron Interactions from LQCD page 15/43



Example: Complex φ4 Theory

• compute ∆E as function of L

• for chosen bare parameters:
repulsive interaction

• depending on fit range sensitive
to a0 or r

• for too small L description breaks
down
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⇒ ∆E2 gives access to a0 and r
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Example: Complex φ4 Theory

• three particle formula (zero total momentum)

∆E3 = E3 − 3M1 = −12πa0
M1L3

(1 + ...)− D

48M3
1L

6

[see e.g. Sharpe 2017]

• D encodes three body interaction

• data well described

• a0, r input from ∆E2

• clear evidence for non-zero three
particle interaction!
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Four- and Five-Particles
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Lüscher Formula More General

• in general Lüscher formula is a matrix equation

det (Mlm,l′m′(k)− δll′δmm′ cot(δl)) = 0

• matrixMlm,l′m′(k) known analytically

• scattering momentum k from

E2 = 2
√
k2 +M2

1

• M contains the so-called Lüscher Z-function Z(q2)

• with
q =

L

2π
k
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Lüscher Z-Function
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• Singularities at free energy levels
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Example: Complex φ4 Theory

• for the example: consider only
s-wave

• determinant equation reduces to

⇒ cot(δ0) =
Z00(1, q2)

π3/2q

⇒ every volume translates into one
pair

(δ0(k), k)
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cot δ =
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π − π Scattering with I = 2
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Action Details

• most of the following results based on

• Wilson twisted mass ensembles by ETMC

• Nf = 2 + 1 + 1 dynamical quark flavours

• three values of the lattice spacing

[ETMC, 2010, 2011]

• has its weaknesses, which we can discuss later
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π − π Scattering for I = 2

• weakly repulsive channel

• very interesting check of chiral perturbation theory

• at small momenta k → 0 use effective range expansion

k2`+1 cot δ` =
1

a`
+O(k2)

scattering length a`

• only S-waves (` = 0) contribute (to a good approximation)

• precise results from experiment plus Roy equations available

⇒ benchmark quantity for lattice QCD
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π − π Scattering with I = 2: Finite Volume Dependence
Lüscher formula (known constants ci)

∆E = E2 − 2Mπ = − 4πa0
MπL3

(
1 + c1

a0
L

+ c2
a20
L2

)
+O(L−6) ,

• valid, if other FS corrections small

• three ensembles with identical
parameters but L

• smallest L deviates a few sigma

• smallest L too small

• all other ensembles have comparably
larger L-values
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π − π Scattering with I = 2: ChPT Fits
• ChPT formula at NLO [Beane et al, (2005,2007)]

Mπa0 = − M2
π

8πf2π

{
1 +

M2
π

16π2f2π

[
3 ln

M2
π

f2π
− 1− `I=2

ππ (µR = fπ,phys)

]}

• functional form highly constraining

• surprisingly small deviations from
LO ChPT

• lattice artefacts small
(in fact O(a2mq))

• see JHEP 1509 (2015) 109
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π − π Scattering with I = 2: Summary
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• result:
Mπa

I=2
0 = −0.0442(2)stat(

+4
−0)sys , `I=2

ππ = 3.79(0.61)stat(
+1.34
−0.11)sys

[ETMC, Helmes, CU, et al, (2015)]

C. Urbach: Hadron-Hadron Interactions from LQCD page 27/43



Two Goldstone Bosons at Maximal Isospin

π − π, π −K, K −K
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Two Goldstone Bosons at Maximal Isospin

• we have studied also π −K and K −K at maximal isospin
[ETMC, 2017; ETMC, 2018]

• for all three systems:

• carefully studied the continuum limit

• performed chiral extrapolation using
ChPT

• how far do we get with chiral
perturbation theory?

• relevant energy scale: M1 +M2+

scattering energy 0.00 0.05 0.10
r0ml
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M
K
a

0
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cont.
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D

phys.

C. Urbach: Hadron-Hadron Interactions from LQCD page 29/43



ChPT for Goldstone Boson Interaction with Maximal Isospin

• all two GB systems share

µaImax
0 =

µ2

4πf2

at leading order ChPT

• reduced mass µ
decay constant f (fπ or fK)

• all weakly interacting 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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•
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π − π Scattering with I = 1:

the ρ -Resonance
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How to map out the phase shift in QCD...

• unlike φ4-theory:
in LQCD often only few volumes available
(actually mostly a single one)

• use moving frames instead
[Rummukainen, Gottlieb, 1995]

• requires reformulation of Lüscher formalism for moving frames
→ Steve Sharpe

• need group theory for lattice symmetry group Oh
and irreducible representations
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P-Wave Phase Shift (Example)
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Extracting Mass and Width

• Extraction of mass and width requires phase shift parametrisation

• the functional form is

tan δ1 =
g2ρππ
6π

p3

ECM(M2
ρ − E2

CM)
, p =

√
E2

CM/4−M2
π

• ECM is the center of mass energy

• the width is given by

Γρ =
g2ρππ

√
M2
ρ/4−M2

π

3

6πM2
ρ

⇒ model dependence!
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Chiral Extrapolation

• chiral extrapolation using EFT with complex mass renormalisation

• introduce complexification
Z = (Mρ + iΓρ/2)2

• extrapolate

Z(Mπ) = Zχ + CχM
2
π −

g2

16π2
Z1/2
χ M3

π

[Djukanovic et al (2009,2010)]

• lattice artefacts come at O(a2) for our data
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Chiral Extrapolation
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• result (Breit-Wigner mass):

Mρ = 769(19) MeV , Γρ = 129(7) MeV
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Comparison to Experiment
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⇒ Reasonable agreement with experimental data

• ρ becomes stable around Mπ = 400 MeV
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Comparison to Lattice Data with Nf = 2 + 1(+1)
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⇒ in general good agreement!

• Some actions show lattice artefacts in Mρ
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yet another “Ruler” Plot...?

• only data by Fu and ours

• Mρ data well fitted by

Mρ = 680 MeV + 0.6Mπ

• on rather general grounds from
EFT

Mρ = M0
ρ + c1M

2
π + c2M

3
π + . . .

[Bruns, Meißner, 2004]

• linear term must not be there

• a cancellation!?
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• see also the “Ruler” plot for the nucleon mass → A. Walker-Loud
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π −N scattering and the ∆++ -Resonance

• Lüscher formula can be extended
to particles with spin

• here: π −N scattering with
I = 3/2

• ∆++ resonance

• example for Mπ ≈ 250 MeV
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J=3/2, P-wave Analysis

[Srijit Paul et al., Lattice 2018]
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Summary

• one can thoroughly test the Lüscher formalism in complex φ4 theory

⇒ consistent 2-5 particle energy shifts

• examples in Lattice QCD
• two Goldstone bosons at maximal isospin

• the ρ -resonance

• π −N scattering

• studies of three-particle systems very active field
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Outlook

• compute the binding energy of, say, Carbon directly from Quantum Chromodynamics?

⇒ clearly, a long way to go

• there are many challenges to deal with

• among others:
• binding energy tiny compared to mass of the nucleus

• very large volumes needed

• enormous number of contractions
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