Hadron-Hadron Interactions from Lattice QCD

Carsten Urbach

HISKP, University of Bonn
Extended Twisted Mass Collaboration
Lattice Summer School, Beijing, June 2019

Motivation: Particle Zoo
QCD gives rise to a very rich particle spectrum, here nucleon, Δ and Λ

- most states are resonances \rightarrow decay to two or more particles
\Rightarrow first principles theoretical computation highly valuable

Motivation: Particle Zoo
QCD gives rise to a very rich particle spectrum, here nucleon, Δ and Λ

- most states are resonances \rightarrow decay to two or more particles
\Rightarrow first principles theoretical computation highly valuable
- consider a simple, driven damped harmonic oscillator

- equations of motion

$$
\dot{x}^{2}+2 D \omega_{0} \dot{x}+\omega^{2} x=A \sin (\omega t)
$$

- solution is known

$$
x(t)=A^{\prime} \sin (\omega t+\delta)
$$

- for D small, a resonance occurs
- consider a simple, driven damped harmonic oscillator

- equations of motion

$$
\dot{x}^{2}+2 D \omega_{0} \dot{x}+\omega^{2} x=A \sin (\omega t)
$$

- solution is known

$$
x(t)=A^{\prime} \sin (\omega t+\delta)
$$

- for D small, a resonance occurs

- consider a simple, driven damped harmonic oscillator

- equations of motion

$$
\dot{x}^{2}+2 D \omega_{0} \dot{x}+\omega^{2} x=A \sin (\omega t)
$$

- solution is known

$$
x(t)=A^{\prime} \sin (\omega t+\delta)
$$

- for D small, a resonance occurs

What is a resonance?

In general: resonances are characterised by

- resonance amplification in the amplitude ratio
- phase shift δ crosses $\pi / 2$
- consider interaction of finite range R, spherically symmetric

- interested in the elastic case
- in- and outgoing particles described by waves (asymptotic states)
- energy conservation: $k=|\vec{k}|=\left|\vec{k}^{\prime}\right|$
- analyticity and unitarity further constrain the system
\Rightarrow incoming and outgoing waves differ only by a phase shift

Scattering of Particles

- consider interaction of finite range R, spherically symmetric

- analyticity and unitarity:
\Rightarrow scattering amplitude in the partial wave expansion

$$
f_{k}(\vartheta)=-\frac{8 \pi}{M} \sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(k) P_{\ell}(\cos \vartheta)
$$

with partial wave amplitude and phase shift δ_{ℓ}

$$
f_{\ell}(k)=\frac{1}{k \cot \delta_{\ell}(k)-i k}
$$

- it actually suffices to know the phase shifts $\delta_{\ell}(k)$
- often, even a single partial wave is enough (due to symmetries)
\Rightarrow at small energies (small k) one can expand

$$
k^{2 \ell+1} \cot \delta_{\ell}=\frac{1}{a_{\ell}}+\frac{r}{2} k^{2}+\ldots
$$

- a_{ℓ} Scattering length, r effective range
- ρ : lowest QCD resonance (together with the σ)
- in $\pi \pi$ channel with $I=1$
- experimentally well measured
- clear signal in the amplitude \Rightarrow pion formfactor

[Barkov et al., Nucl.Phys. B256 (1985)]
- ρ : lowest QCD resonance (together with the σ)
- in $\pi \pi$ channel with $I=1$
- experimentally well measured
- clear signal in the amplitude \Rightarrow pion formfactor
- textbook example of a resonance phase shift

[^0]
The Lüscher Method

... or why finite volume effects can be useful

Particle Interactions from Lattice QCD

- lattice stochastic methods:
work in finite volume / Euclidean space-time $\quad(\rightarrow$ Karl Jansen)
- consequence: energy levels are quantised
\Rightarrow eigenvalues of the lattice Hamiltonian
- Maiani and Testa: interactions properties cannot be studied directly
[Maiani and Testa, (1990)]
\Rightarrow there is no one-to-one correspondence of an energy level to a resonance state

Lüscher Method

instead: use finite volume as vehicle...

- for $V \rightarrow \infty$:
\Rightarrow interaction probability very low
$\Rightarrow E_{2 p}(p=0)=2 E_{1 p}$
instead: use finite volume as vehicle...

- for $V \rightarrow \infty$:
\Rightarrow interaction probability very low
$\Rightarrow E_{2 p}(p=0)=2 E_{1 p}$
- for finite V :
\Rightarrow interaction probability rises
$\Rightarrow E_{2 p}(p=0)$ receives corrections $\propto 1 / V$
instead: use finite volume as vehicle...

- for $V \rightarrow \infty$:
\Rightarrow interaction probability very low
$\Rightarrow E_{2 p}(p=0)=2 E_{1 p}$
- for finite V :
\Rightarrow interaction probability rises
$\Rightarrow E_{2 p}(p=0)$ receives corrections $\propto 1 / V$
- Lüscher: correction in $1 / V$ related to scattering properties!
[Lüscher, 1986]

Lüscher Method

How does this relation look like?

Consider the easiest case of two scalar particles at zero total momentum and assume small scattering momentum $|k|$:

- then, the finite volume dependence reads
[Lüscher, 1986]

$$
\delta E_{2}=E_{2}-2 M_{1}=-\frac{4 \pi a_{0}}{M_{1} L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2}\left(\frac{a_{0}}{L}\right)^{2}+\frac{2 \pi r a_{0}^{2}}{M_{1}^{2} L^{3}}+\ldots\right)
$$

- known c-numbers c_{i}
- finite range expansion assumed to be valid
- higher partial waves neglected

Example: Complex ϕ^{4} Theory

Example: Complex ϕ^{4} Theory

- Let's have a look at an easy example
[Romero-Lopez, Rusetsky, CU, EPJC (2018)]
\Rightarrow complex ϕ^{4} theory as toy model
- lattice action

$$
S=\sum_{x}\left(-\kappa \sum_{\mu}\left(\varphi_{x}^{\star} \varphi_{x+\mu}+c c\right)+\lambda\left(\left|\varphi_{x}\right|^{2}-1\right)^{2}+\left|\varphi_{x}\right|^{2}\right)
$$

- big advantage: fast to simulate
\Rightarrow can simulate basically arbitrary volumes
- and study the interaction of two scalar particles

Example: Complex ϕ^{4} Theory

- Let's have a look at an easy example
[Romero-Lopez, Rusetsky, CU, EPJC (2018)]
\Rightarrow complex ϕ^{4} theory as toy model
- lattice action

$$
S=\sum_{x}\left(-\kappa \sum_{\mu}\left(\varphi_{x}^{\star} \varphi_{x+\mu}+c c\right)+\lambda\left(\left|\varphi_{x}\right|^{2}-1\right)^{2}+\left|\varphi_{x}\right|^{2}\right)
$$

- big advantage: fast to simulate
\Rightarrow can simulate basically arbitrary volumes
- and study the interaction of two scalar particles
(or three, four, five, ... scalar particles)

Example: Complex ϕ^{4} Theory

- need to compute $\Delta E=E_{2}-2 M_{1}$
- single particle energy from

$$
C_{1}(t)=\sum_{t^{\prime}} \sum_{x, y}\left\langle\hat{\mathcal{O}}_{\varphi}\left(\mathbf{x}, t^{\prime}\right) \hat{\mathcal{O}}_{\varphi}^{\dagger}\left(\mathbf{y}, t+t^{\prime}\right)\right\rangle \quad \stackrel{t \rightarrow \infty}{\propto} \quad e^{-M_{1} t}
$$

- n-particle energy from

$$
C_{1}(t)=\sum_{t^{\prime}} \sum_{x, y}\left\langle\hat{\mathcal{O}}_{2 \varphi}\left(\mathbf{x}, t^{\prime}\right) \hat{\mathcal{O}}_{2 \varphi}^{\dagger}\left(\mathbf{y}, t+t^{\prime}\right)\right\rangle \stackrel{t \rightarrow \infty}{\propto} \quad e^{-E_{2} t}+\text { thermal pollutions }
$$

- thermal pollutions due to finite time extend T and periodic BCs
\Rightarrow have to be taken care of

Example: Complex ϕ^{4} Theory

- compute ΔE as function of L
- for chosen bare parameters: repulsive interaction
- depending on fit range sensitive to a_{0} or r
- for too small L description breaks down

$\Rightarrow \Delta E_{2}$ gives access to a_{0} and r

Example: Complex ϕ^{4} Theory

- three particle formula (zero total momentum)

$$
\Delta E_{3}=E_{3}-3 M_{1}=-\frac{12 \pi a_{0}}{M_{1} L^{3}}(1+\ldots)-\frac{D}{48 M_{1}^{3} L^{6}}
$$

[see e.g. Sharpe 2017]

- D encodes three body interaction
- data well described
- a_{0}, r input from ΔE_{2}
- clear evidence for non-zero three particle interaction!

L

Example: Complex ϕ^{4} Theory

- three particle formula (zero total momentum)

$$
\Delta E_{3}=E_{3}-3 M_{1}=-\frac{12 \pi a_{0}}{M_{1} L^{3}}(1+\ldots)-\frac{D}{48 M_{1}^{3} L^{6}}
$$

[see e.g. Sharpe 2017]

- D encodes three body interaction
- data well described
- a_{0}, r input from ΔE_{2}
- clear evidence for non-zero three particle interaction!

$L_{\text {min }}$

- in general Lüscher formula is a matrix equation

$$
\operatorname{det}\left(\mathcal{M}_{l m, l^{\prime} m^{\prime}}(k)-\delta_{l l^{\prime}} \delta_{m m^{\prime}} \cot \left(\delta_{l}\right)\right)=0
$$

- matrix $\mathcal{M}_{l m, l^{\prime} m^{\prime}}(k)$ known analytically
- scattering momentum k from

$$
E_{2}=2 \sqrt{k^{2}+M_{1}^{2}}
$$

- \mathcal{M} contains the so-called Lüscher Z-function $Z\left(q^{2}\right)$
- with

$$
q=\frac{L}{2 \pi} k
$$

- Singularities at free energy levels

Example: Complex ϕ^{4} Theory

- for the example: consider only s-wave
- determinant equation reduces to

$$
\Rightarrow \quad \cot \left(\delta_{0}\right)=\frac{Z_{00}\left(1, q^{2}\right)}{\pi^{3 / 2} q}
$$

\Rightarrow every volume translates into one pair

$$
\left(\delta_{0}(k), k\right)
$$

- blue line reconstructed from

$$
\cot \delta=\frac{1}{a_{0}}+\frac{r}{2} k^{2}
$$

$\pi-\pi$ Scattering with $I=2$

Action Details

- most of the following results based on
- Wilson twisted mass ensembles by ETMC
- $N_{f}=2+1+1$ dynamical quark flavours
- three values of the lattice spacing
[ETMC, 2010, 2011]
- has its weaknesses, which we can discuss later
- weakly repulsive channel
- very interesting check of chiral perturbation theory
- at small momenta $k \rightarrow 0$ use effective range expansion

$$
k^{2 \ell+1} \cot \delta_{\ell}=\frac{1}{a_{\ell}}+\mathcal{O}\left(k^{2}\right)
$$

scattering length a_{ℓ}

- only S-waves $(\ell=0)$ contribute (to a good approximation)
- precise results from experiment plus Roy equations available
\Rightarrow benchmark quantity for lattice QCD

Lüscher formula (known constants c_{i})

$$
\Delta E=E_{2}-2 M_{\pi}=-\frac{4 \pi a_{0}}{M_{\pi} L^{3}}\left(1+c_{1} \frac{a_{0}}{L}+c_{2} \frac{a_{0}^{2}}{L^{2}}\right)+\mathcal{O}\left(L^{-6}\right),
$$

- valid, if other FS corrections small
- three ensembles with identical parameters but L
- smallest L deviates a few sigma
- smallest L too small
- all other ensembles have comparably larger L-values

- ChPT formula at NLO ${ }_{\text {[Beane etal, (2005,2007]) }}$

$$
M_{\pi} a_{0}=-\frac{M_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{M_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \ln \frac{M_{\pi}^{2}}{f_{\pi}^{2}}-1-\ell_{\pi \pi}^{I=2}\left(\mu_{R}=f_{\pi, \mathrm{phys}}\right)\right]\right\}
$$

- functional form highly constraining
- surprisingly small deviations from LO ChPT
- lattice artefacts small (in fact $\mathcal{O}\left(a^{2} m_{q}\right)$)
- see JHEP 1509 (2015) 109

- result:

$$
M_{\pi} a_{0}^{I=2}=-0.0442(2)_{\mathrm{stat}}\left({ }_{-0}^{+4}\right)_{\mathrm{sys}}, \quad \ell_{\pi \pi}^{I=2}=3.79(0.61)_{\mathrm{stat}}\binom{+0.34}{-0.11}_{\mathrm{sys}}
$$

[^1]
Two Goldstone Bosons at Maximal Isospin

$$
\pi-\pi, \pi-K, K-K
$$

- we have studied also $\pi-K$ and $K-K$ at maximal isospin
- for all three systems:
- carefully studied the continuum limit
- performed chiral extrapolation using ChPT
- how far do we get with chiral perturbation theory?
- relevant energy scale: $M_{1}+M_{2}+$ scattering energy

- all two GB systems share

$$
\mu a_{0}^{I_{\max }}=\frac{\mu^{2}}{4 \pi f^{2}}
$$

at leading order ChPT

- reduced mass μ decay constant $f\left(f_{\pi}\right.$ or $\left.f_{K}\right)$
- all weakly interacting

- all two GB systems share

$$
\mu a_{0}^{I_{\max }}=\frac{\mu^{2}}{4 \pi f^{2}}
$$

at leading order ChPT

- reduced mass μ decay constant $f\left(f_{\pi}\right.$ or $\left.f_{K}\right)$
- all weakly interacting

$\pi-\pi$ Scattering with $I=1$:

the ρ-Resonance

- unlike ϕ^{4}-theory:
in LQCD often only few volumes available (actually mostly a single one)
- use moving frames instead
[Rummukainen, Gottlieb, 1995]
- requires reformulation of Lüscher formalism for moving frames
\rightarrow Steve Sharpe
- need group theory for lattice symmetry group O_{h} and irreducible representations

Extracting Mass and Width

- Extraction of mass and width requires phase shift parametrisation
- the functional form is

$$
\tan \delta_{1}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{E_{\mathrm{CM}}\left(M_{\rho}^{2}-E_{\mathrm{CM}}^{2}\right)}, \quad p=\sqrt{E_{\mathrm{CM}}^{2} / 4-M_{\pi}^{2}}
$$

- E_{CM} is the center of mass energy
- the width is given by

$$
\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}{\sqrt{M_{\rho}^{2} / 4-M_{\pi}^{2}}}^{3}}{6 \pi M_{\rho}^{2}}
$$

\Rightarrow model dependence!

Chiral Extrapolation

- chiral extrapolation using EFT with complex mass renormalisation
- introduce complexification

$$
Z=\left(M_{\rho}+i \Gamma_{\rho} / 2\right)^{2}
$$

- extrapolate

$$
Z\left(M_{\pi}\right)=Z_{\chi}+C_{\chi} M_{\pi}^{2}-\frac{g^{2}}{16 \pi^{2}} Z_{\chi}^{1 / 2} M_{\pi}^{3}
$$

[Djukanovic et al $(2009,2010)$]

- lattice artefacts come at $\mathcal{O}\left(a^{2}\right)$ for our data

Chiral Extrapolation

- result (Breit-Wigner mass):

$$
M_{\rho}=769(19) \mathrm{MeV}, \quad \Gamma_{\rho}=129(7) \mathrm{MeV}
$$

Comparison to Experiment

\Rightarrow Reasonable agreement with experimental data

- ρ becomes stable around $M_{\pi}=400 \mathrm{MeV}$

Comparison to Lattice Data with $N_{f}=2+1(+1)$

\Rightarrow in general good agreement!

- Some actions show lattice artefacts in M_{ρ}

yet another "Ruler" Plot...?

- only data by Fu and ours
- M_{ρ} data well fitted by

$$
M_{\rho}=680 \mathrm{MeV}+0.6 M_{\pi}
$$

- on rather general grounds from EFT

$$
M_{\rho}=M_{\rho}^{0}+c_{1} M_{\pi}^{2}+c_{2} M_{\pi}^{3}+\ldots
$$

[Bruns, Meißner, 2004]

- linear term must not be there
- a cancellation!?

- see also the "Ruler" plot for the nucleon mass \rightarrow A. Walker-Loud
- Lüscher formula can be extended to particles with spin
- here: $\pi-N$ scattering with $I=3 / 2$
- Δ^{++}resonance
- example for $M_{\pi} \approx 250 \mathrm{MeV}$

- one can thoroughly test the Lüscher formalism in complex ϕ^{4} theory
\Rightarrow consistent 2-5 particle energy shifts
- examples in Lattice QCD
- two Goldstone bosons at maximal isospin
- the ρ-resonance
- $\pi-N$ scattering
- studies of three-particle systems very active field

Outlook

- compute the binding energy of, say, Carbon directly from Quantum Chromodynamics?
\Rightarrow clearly, a long way to go
- there are many challenges to deal with
- among others:
- binding energy tiny compared to mass of the nucleus
- very large volumes needed
- enormous number of contractions
- the lattice QCD group in Bonn:
C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, K. Ottnad, M. Petschlies, F. Pittler, F. Romero Lopez, M. Ueding, M. Werner
- Chuan Liu
- NIC and JSC for providing the resources and the support
- the DFG for funding this project in the Sino-German CRC 110
- the ETM collaboration
- ... and for your attention!

[^0]: [Barkov et al., Nucl.Phys. B256 (1985)]

[^1]: [ETMC, Helmes, CU, et al, (2015)]

