
1 Internal Symmetries, Generators and Char-

ges

In this section we discuss a generic, global, internal symmetry and derive
several important quantities: the conserved currents associated to the sym-
metry and the corresponding charges that act as generators of the internal
symmetry.

First of all, we recall the derivation of the Noether’s theorem (which is
a theorem valid for classical symmetries but can fail in relativistic quan-
tum field theories because of the anomalies). Let us consider a Lagrangian
which depend on a set of fields which belong to a representation (reducible
or irreducible) of a given symmetry group

L = L (φa, ∂µφ
a) . (1)

Our Lagrangian is a function of some field φa, which has an internal index a,
and its derivative. Note that fields with a different indices a are independent
from each other. Thus we have[

φa (~x, t) , φb (~y, t)
]

=
[
πa (~x, t) , πb (~y, t)

]
= 0[

φa (~x, t) , πb (~y, t)
]

= iδabδ(3) (~x− ~y) , (2)

with,

πa (~x, t) =
δL

δ(∂0φa(~x, t))
. (3)

The classical equations of motion are

∂µ

[
δL

δ(∂µφa)

]
=

∂L
∂φa

. (4)

Let us study the transformation properties of the Lagrangian under an infi-
nitesimal rotation in the internal group space (for the moment we consider
the rotation to be global)

φa ′ = φa + i
(
TA
)a
b
αAφb +O

(
α2
)
. (5)
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We have

δL =
δL

δ (∂µφa)
δ (∂µφ

a) +
δL
δφa

δφa

=
δL

δ (∂µφa)
∂µ (δφa) + ∂µ

[
δL

δ (∂µφa)

]
δφa

= ∂µ

[
∂L

δ (∂µφa)
δφa
]

= ∂µ

(
i

[
∂L

δ (∂µφa)

] (
TA
)a
b
αAφb

)
. (6)

We now introduce a set of currents JAµ, one for any of the generators TA of
the transformation, defined as

JAµ = i

[
∂L

δ (∂µφa)

] (
TA
)a
b
φb (7)

from which we can write (
∂µJ

Aµ
)
αA = δL , (8)

or (
∂µJ

Aµ
)

=
δL
δαA

. (9)

If the Lagrangian is invariant under the full set of the generators, δL = 0
whatever is the choice of αA. Thus we can choose only a given αA different
from zero at a time and obtain, for the corresponding current, the continuity
equation (one for any of the generators)

∂µJ
Aµ =

∂

∂t
JA0 + ~∇ · ~JA = 0 . (10)

The above equation implies that the charge associated to JAµ is a constant of
motion or, which is equivalent, that the charge commutes with the Hamilto-
nian H

dQA (t)

dt
= 0 ↔ [H, QA] = 0 , (11)

where

QA (t) =

∫
d3x JA0 (x, t) = i

∫
d3x

[
δL

δ (∂0φa)

] (
TA
)a
b
φb

= i

∫
d3x πa (~x, t)

(
TA
)a
b
φb . (12)
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The conservation of the charge has several implications. First it means that,
given a certain rank of the group, you may classify the physical states as
eigenstates of the energy-momentum, of the invariant mass and of as many
internal quantum numbers as the rank of the group is. For example, if the
symmetry is SU(3) of flavour, corresponding to the up, down and strange
quarks, which has rank two, we can classify the physical states on the basis
of their isotopic spin and hypercharge (or electric charge). This includes
obviously the single particles states. Moreover, in any physical process, since
QA is conserved the charge of the initial states must be the same of the final
ones.

We now compute the commutator of the charge with a field:[
QA (t) , φd (~x, t)

]
= i

∫
d3y

[
πa (~y, t)

(
TA
)a
b
φb (~y, t) , φd (~x, t)

]
= i

∫
d3y

(
TA
)a
b
πa (~y, t)

[
φb (~y, t) , φd (~x, t)

]
+ i

∫
d3y

(
TA
)a
b

[
πa (~y, t) , φd (~x, t)

]
φb (~y, t) . (13)

Using eqs.(2) we then have[
QA (t) , φd (~x, t)

]
=
(
TA
)d
b
φb (~x, t) , (14)

which shows that we can write the transformation of the field in two com-
pletely equivalent ways

φa ′ =
(
eiT

AαA
)a
b
φb =

(
eiQ

AαA

φ e−iQ
AαA
)a

, (15)

where eiT
AαA

is a matrix and φ a complex vector, whereas in the last term on
the right hand side φ can be seen as a quantum field and eiQ

AαA
is function

of the quantum fields and their derivatives. To demonstrate this statement
it is sufficient to consider an infinitesimal transformation

φa ′ (~x, t) =
(
1 + iQAαA

)
φa (~x, t)

(
1− iQAαA

)
∼ φa (~x, t) + i αA

[
QA (t) , φa (~x, t)

]
+O(α2)

= φa (~x, t) + i αA
(
TA
)a
b
φb (~x, t) +O(α2) . (16)
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2 Complex Scalar Theory

The Lagrangian of a complex scalar field is:

L = ∂µφ
†∂µφ−m2φ†φ− λ

(
φ†φ
)2

(17)

Obviously the canonical variables of this Lagrangian are φ and φ† and the
kinetic term depends on their derivatives. The Lagrangian is invariant under
the infinitesimal transformation

φ′ = φ+ iα φ , φ† ′ = φ† − iα φ† . (18)

Using the general Nöther theorem discussed in the previous section we obtain
the current

Jµ = i

([
δL
δ∂µφ

]
φ−

[
δL
δ∂µφ†

]
φ†
)

= i
(
∂µφ

†φ− φ†∂µφ
)
. (19)

This recalls something that you have already seen in non relativistic quantum
mechanics where the three dimensional current and density probability are
defined as

~J = −i
(
φ∗~∇φ− φ~∇φ∗

)
, ρ = φ∗φ (20)

and the continuity equation is given by

∂ρ

∂t
+ ~∇ · ~J = 0 . (21)

2.1 Dirac Theory and Scalar Electro-dynamics

The Lagrangian is given by

L = ψ̄(i 6D −m)ψ − 1

4
FµνF

µν

= ψ̄(i 6∂ −m)ψ − 1

4
FµνF

µν + q JµAµ (22)

where
Jµ = ψ̄γµψ , (23)
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and q denotes the charge of the Dirac particle. As seen in the previous lectu-
res, the Feynman rules for the vertex is −i q γµαβ where α and β corresponds
to the spinor index of the outgoing or incoming particle respectively.

In the case of a scalar charged field, the electromagnetic Lagrangian is
written as

L = (Dµφ)†(Dµφ)−m2φ†φ− λ
(
φ†φ
)2 − 1

4
FµνF

µν (24)

from which we can derive the conserved electromagnetic current that, by
gauge invariance, must have the form

Jµscalar = i
[
(Dµφ)† φ− φ† (Dµφ)

]
, (25)

By gauge invariance the coupling between the scalar field and the vector
potential also contains a quadratic term in Aµ corresponding to the Feynman
rules

Vµ = i q (pµ + p′µ) , Vµν = 2 q2 gµν . (26)
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Exercise 1

Given the QCD Lagrangian:

LQCD = i
(
ū 6Du+ d̄ 6Dd+ s̄ 6Ds

)
−mu ūu−md d̄d−ms s̄s−

1

4

∑
A

GA
µνG

Aµν A = 1, . . . , 8 ;

= i
∑
f

q̄f 6Dqf −
∑
f,f ′

q̄fM f ′

f qf ′ −
1

4

∑
A

GA
µνG

Aµν

= iq̄ 6Dq − q̄M̂q − 1

4
GµνG

µν f, f ′ = 1, . . . , number of light flavours

and the transformation rules

q′f = U i
f qi q̄′ f = q̄i

(
U †
) f

i
U i
f =

(
eiα

AλA
) i

f

(
U †
) f

i
=
(
e−iα

AλA
) f

i
,

q′f =
(
eiβ

AλAγ5
) i

f
qi q̄′ f = q̄i

(
eiβ

AλAγ5
) f

i

with

q̄M̂q =
mu +md +ms

3

(
ūu+ d̄d+ s̄s

)
+

mu −md

2

(
ūu− d̄d

)
+
mu +md − 2ms

6

(
ūu+ d̄d− 2 s̄s

)
= m̄ q̄Îq + ∆mudq̄λ

3q +

√
1

3
∆mudsq̄λ

8q

∆mud = mu −md ∆muds = mu +md − 2ms ,

catalogue the symmetries of the theory in the massless limit and compute
the Ward ids for the currents,(

∂µJ
Aµ
)

=
δL
δαA

. (27)

with mu 6= md 6= ms.

Exercise 2

Given the baryon and antibaryon SU(3) matrices in the adjoint represen-
tation (Σm = Σ−, Ξ0 = Ξ0, pd = p̄, Λ0d = Λ̄0, etc.) , fig. 1 and fig. 2,
show that one can write the baryon matrix B as

∑
AB

AλA, where the λA

are the Gell-Mann matrices, and compute the coefficients BA. Compute the
commutator, [B, λ8] and the anti-commutator {B, λ8}.
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Figura 1: baryon octet

Figura 2: anti-baryon octet
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Exercise 3

Given the Fermi Hamiltonian

HF = −GF√
2

(ν̄µγ
ρ (1− γ5)µ) (ēγρ (1− γ5) νe) , (28)

prove the identity with the Fiery rearranged Hamiltonian

HF = −GF√
2

(ēγρ (1− γ5)µ) (ν̄µγρ (1− γ5) νe) . (29)

Exercise 4

Compute in dimensional regularisation the one loop electromagnetic correc-
tions to the Hamiltonian in eq. (29) and show that there is no logarithmic
divergence. You may also compute the corrections in the W-regulrisation
and show that there is no log[M2

W ].

Exercise 5

Draw all the diagrams, virtual and real photon emission) contributing to
the O(αem) corrections to the semileptonic rate. Draw the diagrams for the
decays K → µνµ`

+`−.
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