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•  Definition of the Fermi theory 
including electromagnetism 

•  Effective Hamiltonians and 
electromagnetism 

•  Renormalisation of the 
relevant operators 

•   Leptonic decays  
•  Numerical results 

PLAN OF THE LECTURES 
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Muon decay and the 
definition of the 
Fermi constant
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Muon decay and the 
definition of the 
Fermi constant

The  Fermi  Lagrangian  is  an  effective  (non-
renormalizable)  theory defined by  a  dimension six-
operator



Standard Model  Lagrangian and 
radiative corrections

How to relate the result to the effective 
Fermi theory approach ?



Fermi Hamiltonian and radiative 
corrections

How  to  relate  the  result  to  the  Standard  Model 
calculation?

 diagrams with loops involving the
W boson disappear



The Sirlin miracle ! using the W-regularization we have:

All  diagrams  involving  the  virtual  W boson  are  taken  into 
account by using the physical value of the Fermi constant i.e. 
the physical value f the renormalized gW and W

+ +

+ +…

+… =



W-regularization
in the Standard Model we have the box diagram which is ultraviolet 
finite 

in the Fermi theory the diagram  is logarithmically divergent



Structure of the 
divergences

Fierz rearrangement

use Fierz rearrangement 

in the Fermi theory the sum of the vertex  diagrams  is NOT 
logarithmically divergent because of (quasi-) current conservation
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The Effective Hamiltonian  

s 
u 

νµ  
W(q) 

µ+     

u 
s 

µ+     

νµ  



The Effective Hamiltonian  

W(q) 
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A. Sirlin
matching of the
 W-regularization 
to the SM 

 is the operator O1 renormalised 
in the W-scheme; its matrix elements are finite



The Effective Hamiltonian  

     

matching of the
 W-regularization 
to the SM 

+

 to obtain O1 in the 
W-regularisation 
write the remaining 
Feynman diagrams 
and compute the 
correction using 
dimensional 
regularisation

+



GENERAL FRAMEWORK: 
THE OPE 
 

AFI  (2π4 ) δ4 (pF -pI ) =   ∫ d4x d4y Dµν (x, MW )  
‹ F |T[ Jµ (y+x/2) J†

ν (y-x/2)] | I ›  
‹ F | HΔS=1 | I › =  GF/√2  Vus

* Σi Ci (µ) ‹ F | Qi (µ) | I › 
                                                                       (MW) 

di-6 

di= dimension of the operator Qi (µ) 
Ci (µ) Wilson coefficients,  they depend on 
MW /µ and αs (µ)
Qi (µ)  local operators renormalized at the 
scale µ
 

Standard Model 

W(q) 
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GENERAL FRAMEWORK: 
THE OPE 
 

AFI  (2π4 ) δ4 (pF -pI ) =   ∫ d4x d4y Dµν (x, MW )  
‹ F |T[ Jµ (y+x/2) J†

ν (y-x/2)] | I ›  
‹ F | HΔS=1 | I › =  GF/√2  Vus

* Σi Ci (µ) ‹ F | Qi (µ) | I › 
                                                                       (MW) 

di-6 

Standard Model 

W(q) 

µ+     

u 
s 

νµ  

u 
s 

µ+     

νµ  matching is an operator 
relations it does not depend on 
the external states



GENERAL FRAMEWORK 

HΔS=1 = GF/√2 Σi=1,10 [ (1-τ) Σi=1,2 zi (Qi -Qc
i) + τ 

( zi + yi ) Qi   ]
 Where yi and zi are short distance coefficients, which are known
In perturbation theory at the NLO        (Buras et al. + Ciuchini et al.)
                                τ = -Vts

*Vtd/Vus
*Vud 

 We have to compute ‹ F IQ i I I ›, e.g. 
‹ (ππ)I=0,2 IQ i I K ›  with a non perturbative technique  
(lattice,  QCD sum rules, 1/N expansion etc.) 



Ai (µ)      = ‹ FI Q i (µ) I I › 
          = Zik(µ a) ‹ FI Q k (a) I I › 

where Q k (a) is the bare lattice operator and 
 a the lattice spacing. 
   The effective Hamiltonian can then be read as:

‹ F | HΔS=1 | I › = GF/√2VudVus
*Σi Ci (1/a) ‹ F | Qi (a) | I › 

                                                                   
In practice the renormalization scale (or 1/a) are the scales 
which separate short and long distance dynamics 

The effective Hamiltonian in terms of
 bare lattice operators*

* power divergences require a special treatment (R. Sommer) 



The Effective Hamiltonian  

     

matching of the
 W-regularization 
to the SM 

under strong interactions the quark vector and axial vector  
currents appearing in O1 do not renormalise (they are conserved 
in the massless theory) . 

with a (lattice) regularisation that breaks vector and axial vector 
symmetries we have to use currents renormalised by finite 
constants 



W Regularization in perturbation theory  
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matching the  (Wilson) lattice to the W-regularization.  



GENERAL FRAMEWORK 

‹ HΔS=1 › = GF/√2 Vud Vus
* ... Σi Ci (a) ‹ Qi(a) › 

MW = 100 GeV

a-1 =  2-5 GeV 

ΛQCD , MK  =  0.2-0.5 GeV 

Effective Theory - quark & gluons

Hadronic non-perturbative region



Large mass scale: heavy degrees of 
freedom (mt , MW,  Ms ) are removed and 
their effect included in the Wilson 
coefficients 

renormalizazion scale µ (inverse lattice 
spacing 1/a);  this is the scale where 
the quark theory is matched to the  
effective hadronic theory  

100 GeV

1-2-5 GeV

Scale of the low energy process 
Λ  ~ Mπ 

THE SCALE PROBLEM:   Effective theories prefer low scales,  
                                        Perturbation Theory prefers  large scales 



if the scale µ is too low
problems from higher dimensional operators
(Cirigliano, Donoghue, Golowich)
- it is illusory to think that the problem is solved by using dimensional
 regularization

on the lattice this problem is called
           DISCRETIZATION ERRORS
(reduced by using improved actions and/or scales µ > 2-4 GeV



The Effective Hamiltonian  for leptonic and 
semileptonic decays: 

Radiative corrections to the physical rates   

     We have the renormalised, finite  Hamiltonian  expressed in 
terms of the lattice operators.
 Now we have to compute the  corrections to the physical rate.
                                          point-like real photon emission
                  Leptonic    
                                         non-perturbative  real photon  emission

                 Semileptonic
                                                

matching of the
 W-regularization 
to the SM 



RM123 Collaboration:A Desidero, G de Divitiis, M Garofalo, M Hansen, R Frezzotti, N Tantalo, 
M di Carlo, D Giusti, V Lubicz,  GM, F Mazzetti,  F Sanfilippo, S Simula, C Tarantino  &  C 
Sachrajda 

Electromagnetic	Corrections	to	Decay	
Amplitudes:	

Leptonic	Decays	

Physical quantities like hadron masses and decay 
rates are infrared finite. However infrared  
divergences can arise in the intermediate steps.

This is at the origin of some problems in the 
calculation of the radiative corrections to the 
decays rates   



How to solve the problem of the 
infrared divergences discussed 
through an explicit example   
 
 
 
NOTE: Chiral Perturbation Theory is 
NOT Used 
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1) Virtual photons

2) Real photons

+

�(�E) = �0 + �1(�E)�(�E) =

Z �E

0
dE�

d�

dE�

Rate at O(α)    
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τ



Leptonic decays at tree level 
Since the mass of the pion is much lower than MW we use the 
effective Hamiltonian 

He↵ = �GFp
2
V

⇤
ud(d̄�

µ(1� �
5)u) (⌫̄`�µ(1� �

5)`)

from which we compute 

�tree
0 (⇡+ ! `+⌫`) =

G2
F |Vud|2f2

⇡

8⇡
m⇡ m

2
`
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`
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•  0  in Γ0  means zero photons 
•  GF  is the Fermi constant       

defined from µ decay 
•  fπ  is computed in lattice 

QCD 
νℓ

ℓ+u

d

π+

Lectures by C. Sachrajda



Leptonic decays at O(α) – The ultraviolet matching 
in the ``W Regularization”  
If GF  is the Fermi constant defined at O(α) from µ decay  in the 
standard (convention dependent ) way 
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S.M.Berman, PR 112 (1958) 267; T.Kinoshita and A.Sirlin, PR 113 (1959) 1652 
then the effective Hamiltonian in the W-regularization  
is given by (Sirlin PRD 22 (80) 971) 
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Rate at O(α) 
| Vud |  

�(�E) = �0 + �1(�E)

where �(�E) =

Z �E

0
dE�

d�

dE�

contrary to the hadron masses  
at O(α) both  Γ0 and Γ1(ΔE) are  
INFRARED DIVERGENT 
although the divergence cancel in the sum 
 F. Bloch, A. Nordsieck Phys.Rev. 52 (1937) T.D. Lee, M. 
Nauenberg Phys.Rev. 133 (1964)  
and the infinite volume limit cannot be  
separately taken 



Courtesy of C. Sachrajda



In a first paper it was proposed to compute Γ1(ΔE) in perturbation  
theory @ values of ΔE corresponding to photons which are 
sufficiently soft for the point-like approximation of the pion to be 
valid  
(ΔE  <<  ΛQCD  ≈  4π fπ ) 
but hard  enough with respect to the experimental resolution.  
A value of O(10-20 MeV) seems to be appropriate both 
theoretically and experimentally. 
F. Ambrosino et al., KLOE Collaboration,�
PLB 632 (2006) 76; EPJC 64 (2009) 627; 65 (2010) 703(E);
 J. Bijnens, G. Ecker, J. Gasser, NPB 396 (1993) 81; V.Cirigliano, I.Rosell, JHEP 
0710 (2007) 005 
  
In the future, as techniques and resources improved, it  will  
possible (and certainly appropriate for heavy mesons) to compute 
Γ1(ΔE)  nonperturbatively over a larger range of photon energies  
(about the analytical continuation to the Euclidean see later). See 
last lecture
NOTE: we do not use chiral perturbation theory !!



MASTER FORMULA for the rate at O(α) 

�(�E) = lim
V!1

(�0 � �pt
0 )+

lim
V!1

(�pt
0 + �1(�E))

•  the infrared divergences in Γ0 and  Γ0
pt  are  

     exactly the same and cancel in the difference 
•  Γ’(ΔE) = Γ0

pt +Γ1(ΔE) is infrared finite since is a physical, 
well defined quantity F. Bloch, A. Nordsieck Phys.Rev. 52 (1937) T.D. Lee, 
M. Nauenberg Phys.Rev. 133 (1964)  

•  the infrared divergences in ΔΓ0 (L) = Γ0- Γ0
pt  and        

Γ(ΔE) = Γ0
pt +Γ1(ΔE)  cancel separately  hence  

   they can be regulated  with different infrared cutoff 
•  Γ0 and  Γ0

pt are also ultraviolet finite  
We now discuss the two terms, ΔΓ0 (L)  and Γ’(ΔE) 

pt  =  
point-like & 
perturbative

CKM 

 

THE 





Leptonic decays at O(α) – Perturbative Calculation of                                    
Γ(ΔE) = Γ0

pt +Γ1(ΔE) 
 
U.V. & Infrared finite but contains log(MW) & log(ΔE) 
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Γ(ΔEl) T.Kinoshita, PRL 2 (1959) 477



Leptonic decays at O(α) – Perturbative Calculation of                                    
Γ(ΔE) = Γ0

pt +Γ1(ΔE) 
 

 



Structure dependent contributions to the O(α)  
perturbative calculation of  Γ1(ΔE) 

 
 

1) For sufficiently small values of ΔE(/ΛQCD)  
the structure dependent contributions to Γ1(ΔE) can be 
neglected 
2) How big are they for experimentally accessible values of 
ΔE ? We can have an estimate from chiral perturbation theory 
(although not all LEC are available) 
J.Bijnens, G.Ecker and J.Gasser, hep-ph/9209261, J.Bijnens, G.Colangelo, G.Ecker and J.Gasser, hep-ph/
9411311. V. Cirigliano and I. Rosell, arXiv:0707.3439 [hep-ph]], L. Ametller, J. Bijnens, A. Bramon and F. 
Cornet, hep-ph/9302219. 

 



The structure dependent 
c o n t r i b u t i o n s  t o 
perturbative calculation of  
Γ1(ΔE): the decay into an 
electron is the worse case ! 
In the case of the decay in 
a muon the effect is of the 
O(10-3-10-7) 
In the case of B mesons, 
due to the small scale 
represented by mB* - mB, 
it is likely that it will be 
necessary to perform a full 
non-perturbative 
calculation of the real 
emission D. Becirevic, B. Haas and E. Kou, arXiv:0907.1845 [hep-ph] 



Leptonic decays at O(α) – The first term of the    
Master Formula        ΔΓ(L) = Γ0

 - Γ0
pt  

•  Each of the two terms is U.V. finite but contains log(MW) 
•  Infrared divergences cancel in the difference 

at this order we 
can take the 
difference of the 
amplitudes 
 
Can be computed as 
discussed in arXiv:
1303.4896,Phys.Rev. 
D87(2013)  
NOT by including the 
electromagnetic field in 
the action  

+ disconnected



DISCONNECTED DIAGRAMS 
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ℓ+u

d

π+

(a)

νℓ
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d
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(b)

νℓ
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d

π+

(c)

C1(t) =
1

2

Z
d3x d4x1 d

4x2 h0|T
�
J⌫
W (0) jµ(x1)jµ(x2)�

†(x, t)
 
| 0i �(x1, x2)

The relevant correlation function is (the lepton leg is trivial)

weak V-A 
current electromagnetic current 

 
 
jµ(x) =

X

f

Qf f̄(x)�µf(x)

this is the same set of diagrams used to compute the 
electromagnetic corrections to the pion (hadron) mass 
(the lepton leg is completely irrelevant)



νℓ

ℓ+u

d

π+

(a)

νℓ

ℓ+u

d

π+

(b)

νℓ

ℓ+u

d

π+

(c)

Combining C1(t) with the lowest order correlator

Zϕ  and the matrix element of the axial current 
however are infrared divergent and cannot be 
interpreted as a correction to fπ  

where the O(α) corrections are included; by writing 

C0(t) + C1(t) '
e�m⇡t

2m⇡
Z� h 0 |J0

W (0) |⇡+i

e�m⇡t ' e�m0
⇡t (1� �m⇡ t)

δmπ   is infrared finite and gauge invariant 



This diagram is an easy case: its contribution to   
ΔΓ(L) = Γ0

 - Γ0
pt  can be readily obtained in 

perturbation theory. 
The recipe is simply to redefine the operator O1

W-reg 

and compute fπ  in the numerical simulation 

νℓ

ℓ+
u

d

π+

(d)



 
 
 
 
•  Certainly these diagrams  are not simply a generalization  
     of the evaluation of  fπ  ; they are also infrared divergent) 
•  We have to isolate the finite volume  ground state 
     (necessity of a mass gap – Minkowski         Euclidean  
     continuation  J. Gasser and G.R.S. Zarnauskas, 
         Phys. Lett. B  693 (2010) 122 ) 
•   Finite volume effects, expected of the O(1/L ΛQCD) after  
     the cancellation of the infrared divergence,  should be  
     investigated in a numerical simulation. 
 
This diagram does not  contribute to the mass renormalisation 
 

νℓ

ℓ+
u

d

π+

(e)

νℓ

ℓ+
u

d
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NASTY DIAGRAMS 



Calculation of the `nasty’  diagrams  
in a lattice simulation    
 
 
 
 
 
The starting point is the Minkowski Green function 
 
 
from which we can compute the on-shell amplitude 
 
 
 
which in the Euclidean simulation becomes 
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d
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(e)

νℓ
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d
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(f)

Z
d4x1d

4x2 < 0|T (jµ(x1)J
⌫
W (0)) |⇡ > iDF (x1 � x2)

�
ū(p⌫`)�

⌫(1� �5)(iSF (x2))�
µv(p`)

 
eip`·x2

ū↵(p⌫`)(M̄1)↵�v�(p`) = �i lim
k0!m⇡

(k0
2 �m2

⇡)

Z
d4x1d

4x2 d
4x e�ik0y0

< 0|T (jµ(x1)J
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�
ū(p⌫`)�⌫(1� �5)(iSF (x2))�

µv(p`)
 
eip`·x2

C̄1(t)↵� =

Z
d3x d4x1 d

4x2 h0|T
�
J⌫
W (0) jµ(x1)�

†(x, t)
 
| 0i �(x1 � x2)
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�
�⌫(1� �5)S(x2)�

µ
�
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eE` t2e�ip`·x2



SM expectation 
Δms = (16.92 ± 0.99 ) ps-1 

A few technical but non trivial   
IMPORTANT slides:  

the continuation from Minkowski to Euclidean  

1)  Momentum conservation: 
since we integrate over x2 

      pl =kl +kγ 

2) The integrations over the energies k4l and k4γ lead to the 
exponential factor e-(ωl + ωγ 

– El) t2  where ωl =√ml2 +kl2 ,  
ωγ =√mγ2 +kγ2 , and mγ is the mass of the photon introduced 
as an infra-red cut-off.  

we need to ensure that the t2 integration up to ∞ converges in 
spite of the factor eEl t2 where El =  √ml2 +pl2 is the energy of 
the outgoing charged lepton



SM expectation 
Δms = (16.92 ± 0.99 ) ps-1 

A few technical but non trivial   
IMPORTANT slides:  

the continuation from Minkowski to Euclidean  

3)  … but  (ωl+ωγ) ≥ √(ml+mγ) 2  +pl2 > El =  √ml2 +pl2

thus the argument of the exponent e-(ωl + ωγ 
– El) t2  is 

negative for every term appearing in the sum over the 
intermediate states and the integral over t2 converges 

4) note that the integration over t2 is also convergent if we 
set mγ=0 but remove photon zero mode in finite volume. In 
this case (ωl+ωγ) >  El+[1-(pl/El)]  (kγ)min 

-  necessity of a mass gap 
-  absence of a lighter intermediate state



under these conditions  

and the contribution to the amplitude from these diagrams  
is given by 

C̄1(t)↵� ' Z�
0

e�m0
⇡|t|

2m0
⇡

(M̄1)↵�

ū↵(p⌫`)(M̄1)↵�v�(p`)



where rl = ml/mP and mP and ml are the masses of the 
pseudoscalar meson and the lepton respectively

FINITE VOLUME CORRECTIONS



�pt
0

Universality of the logarithmically divergent 
term and of the 1/L correction (Tantalo at Lattice 2016)

�pt
0 (L) = C0(r`) + C̃0(r`)Log [mPL] +

C1(r`)

mPL
+ . . .

Depends  on  the  ir 
regularization.  The 
r e g u l a r i z a t i o n 
dependent part does not 
depend on the  internal 
structure of the hadron

Does NOT depend on the ir 
regularization  or  on  the 
internal  structure  of  the 
hadron

Thus ΔΓ(L) = Γ0
 - Γ0

pt   = Infrared finite,  
independent of the regularization up to O(1/L2)

BMW, Science 347 (2015) 1452
B. Lucini et al., JHEP 1602 (2016)



1) The coefficients C0(rl), Ĉ0 (rl) and C1(rl) are universal, 
although C0(rl) and C1 (rl) depend  on the infrared 
regulator     (Ward Ids – highly non trivial)                                                                                

2) Ĉ0 (rl) is universal and does not depend on the 
regularisation. 

3) C0 (rl), Ĉ0 (rl) and C1 (rl) cancel the corresponding terms 
contained in Γ0 (L). In this way Γ0 (L)-Γpt

0 (L) is infrared 
finite and independent of the infrared regularisation up to 
terms of O(1/L2) 

for the generalization to semileptonic or other cases see later 



Kij are suitable constants that can be easily 
computed numerically
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The nasty diagram
sum vs integral under study 
A NEW STRATEGY  

� =

Z
dq0
2⇡

1

Ld

0X

~q=2⇡/L(n1,n2,...,nd)

1

(q2 +�2)
⇣
(p� q)2 +m2 +�2

⌘⇣
(pµ � q)2 +m2

µ +�2
⌘

� =

Z
dq0
2⇡

1

Ld

X

~q=2⇡/L(n1,n2,...,nd)

Z 1

0
dydx x

Z 1

0
d��2e��[(1�x) q2+x(1�y)((p�q)2+m2)+xy((pµ�q)2+m2

µ)+�2]

�2 = � 1

Ld

Z
dq0
2⇡

Z 1

0
dydx x

Z 1

0
d��2 e��[(1�x) q2+x(1�y)((p�q)2+m2)+xy((pµ�q)2+m2

µ)+�2]|~q=0 =

� 1

Ld

Z
dV0

2⇡
2

Z 1

0
dydx x

1

[V 2
0 +M2x2 + ~p2µx

2y2 +�2]3

M2 = m2(1� y) +m2
µy

�2 = �
(Eµ +m)

�
E2

µ +m2
�

32E4
µL

3m4
+

1

8EµL3m�3
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The nasty diagram

� =

Z
dq0
2⇡

1

Ld

X

~q=2⇡/L(n1,n2,...,nd)

Z 1

0
dydx x

Z 1

0
d��2e��[(1�x) q2+x(1�y)((p�q)2+m2)+xy((pµ�q)2+m2

µ)+�2]

using the Poisson formula
�IV +

0X

~k=···�2,�1,+1,+2,...

Z 1

0
dydx x

Z 1

0
d��2

Z
dq0
2⇡

dqd

(2⇡)d
eiL

~k·~q��[(1�x) q2+x(1�y)((p�q)2+m2)+xy((pµ�q)2+m2
µ)+�2]

You may shift and integrate on the loop  momenta  
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~k=...
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0
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e�⇡~k2/t�tL2�2/(4⇡)

/
Z 1

0
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0
dt t↵�(d+1)/2�1e�tL2/(4⇡)M2x2

e�tL2�2/(4⇡)

0
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The nasty diagram
the HL trick !!
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(4⇡)(d+1)/2

✓
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4⇡

◆↵�(d+1)/2

⇥
Z 1

0
dydx x
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@
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0
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@
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,
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!
� 1

1
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Z 1

0
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2
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0
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1
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µ)x
2
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1
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◆
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The nasty diagram

�L =
1

16⇡2

�
1 + r2µ

�
2

4� 1

m3L3

⇡2 (✏µ + 1)
�
✏2µ + 1
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✏4µ
+

2
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⇣
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h
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⇥
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�
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� +
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⇥
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2
�
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�
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5+
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⇥
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⇤

�
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� + 1 + Log


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W

m2

�
+ . . .

#
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4⇡

⇥
2Log[m2

W /m2
⇡]� 3/2 + 2Log[L2m2

⇡]� 8⇡2 ⇥ 0.0621547
⇤
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Leptonic	Decays:	Numerical	Results	

weak quark  current pseudoscalar meson source



=

Leptonic	Decays:	Numerical	Results	

Strong Isospin Breaking

Tadpole  



up to finite time
 effects  ≈ - δMP t

O(αem) correction to the amplitude 
* source matrix element

Strong  isospin 
breaking



Leptonic	Decays:	Nasty	Diagrams	

=

No mass renormalisation =  No term linear in t ;  to remove the 
backward signal:   





Leptonic	Decays	
It is time to put all the ingredients 
together

Matching 
 W-regularisation to 
SM

shift in the lowest 
order amplitude due 
to the mass-shift

Point-like O(αem) 
correction

matching lattice 
operator to the
 W-regularisation

finite volume 
corrections

nasty



Extrapolation in 1/L2

Extrapolation to the physical point in the infinite 
volume limit



π

K



Back	to	Physics:	From	the	Kaon	Decay	Rate	

at the physical pion mass: 

input quark masses

chiral log in the 
fitting formula

different 
extrapolations  to 
infinite volume at 
O(1/L2) discretisation 

effects

electro-
quenching



Back	to	Physics	

S. Aoki et al. [Flavour Lattice Averaging 
Group], arXiv:1902.08191 [hep-lat]using 

with a precision of 0.2%



Back	to	Physics:	from	the	ratio	of	decay	rates	



the Standard Model 

a robust animal 



	
		

THANKS	FOR	YOUR	ATTENTION 


