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Introduction:
What are we here interested in?

QCD without CP-violating term, quark masses are real

LQCD = � 1

2g2
0

tr {Fµ⌫Fµ⌫}+
X

f

 f{D +mf} f

LQCD(g0,mf ) $

Experimentz }| {2

66664

mproton

m⇡

mK

mD

mB

3

77775
(mu = md, ignore top)

bare parameters ! masses, observables
theory parametrized in terms of observables

NP renormalization
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What are we interested in?
Strong interactions at large energies

LHC (and other collider physics):

pp̄ ! H ! . . .

SM (or MSSM) predictions depend on

renormalized perturbation theory (PT) in ↵s(µ) ⌘ ↵R(µ)

µ = O(10GeV) . . .O(300GeV)

What is ↵R(µ) in a given renormalization scheme?

What is ⇤QCD:

mproton = #⇥ ⇤QCD

↵R(µ)
µ/⇤�1⇠

1

b0 ln(µ/⇤)

⇢
1� b1

b2
0
ln(µ/⇤)

ln(ln(µ/⇤)) + O(ln(µ/⇤)�2)

�
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What are we interested in?
Weak interactions

Weak decays (search for BSM physics) of quarks:

low energy effective theory
2-quark op’s, 4-quark op’s  

(
SM

+BSM

necessitates the renormalization of composite fields
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What will we do?

I Renormalization in PT (repetition)
I RGE’s, RGI
I NP renormalization (principle)
I Large scale ratios, step scaling functions (SSF)
I Finite volume schemes
I Gradient flow (recent development)

I very incomplete coverage of techniques
concentrate on concepts

recommend to study yourself
• RI-sMOM
• chirally rotated SF
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Renormalization in PT
Repetition

Consider continuum PT, D = 4� 2✏ dimensions as a regularisation

gauge-invariant, physical Example
observable force between static quarks

G F (r)

bare, regularised
G0(✏, q, g0,m0i) q ⌘ 1/r

G0 is singular as ✏ ! 0 at fixed q, g0,m0i
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Renormalization in PT
MS scheme

Renormalizability:

all observables G become finite after the

Renormalization: dimensionful coupling in D dimensions

g2
R
⌘ g2 = Zg(✏, g2)µ�2✏g2

0

mass–independent
renormalization scheme

mR,i ⌘ mi = Zm(✏, g2)m0i

GR(µ, q, g,mi) = lim
✏!0

G0(✏, q, Z
�1/2
g gµ✏

| {z }
g0

, Z�1

m mi| {z }
m0i

)

The limit exists with

Zx = 1 + g2zx,1✏
�1 + g4[zx,2✏

�2 + zx,3✏
�1] + . . .

“minimal subtraction” (of ✏ poles; only those)
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Renormalization in PT
lat scheme

on the lattice: G0(a, q, g0,m0i)

g2lat ⌘ g2 = Zg(ln(aµ), g
2
) g20

mlat,i ⌘ mi = Zm(ln(aµ), g2) m̂q,i (⇤)
Glat

R (µ, q, glat,mi) = lim
a!0

G0(a, q, Z
�1/2
g g

| {z }
g0

, m0i|{z}
Z

�1
m mlat,i

)

when rm = 1

The limit exists (continuum limit) with different Zx !

Zx = 1 + g2zx,1 ln(aµ) + g4[zx,2(ln(aµ))
2
+ zx,3 ln(aµ)] + . . .

“lattice minimal subtraction” (of logs ln(aµ); only those) g = glat,m = mlat

Proven to all orders of PT for Wilson reg’n [T. Reisz ].

Expected also non-perturbatively and for other regularisations (universality).

(*) m̂q,i are bare subtracted masses,

m̂q,i = mq,i + (rm(g0) � 1)
1

Nf
tr Mq

mq,i = m0i � mc(g0) , Mq = diag(mq,1,mq,2, . . .)

with sufficient chiral symmetry: rm = 1,mc = 0
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Renormalization in PT
Universality

The limit is universal (does not depend on the regularisation) after changing
the renormalization scheme: finite renormalization

g2
lat

= �g(gMS) g
2

MS
, �g(g) = 1 + �(1)

g g2 + . . .

mlat,i = �m(gMS)mMS,i , �m(g) = 1 + �(1)

m g2 + . . .

GR(µ, q, gMS,mMS,i) = Glat

R
(µ, q,�g(gMS) g

2

MS| {z }
glat

,�m(gMS)mMS,i| {z }
mlat,i

)
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Renormalization in PT
µ-dependence

Renormalized masses and coupling depend on µ:

lim
a!0

µ@µglat|g0,mq,i
⌘ �lat(glat) = �g3

lat
(b0 + b1g

2

lat
+ . . .)

lim
a!0

µ@µmlat,i|g0,mq,i
⌘ ⌧lat(glat)mlat,i

⌧lat(glat) = �g2
lat

(d0 + dlat
1
g2
lat

+ . . .)

b0 = 1

(4⇡)2

�
11� 2

3
Nf

�
, d0 = 8

(4⇡)2

b1 = 1

(4⇡)4

�
102� 38

3
Nf

�

or in the MS-scheme

lim
✏!0

µ@µgMS|g0,m0,i
⌘ �MS(gMS) = �g3

MS
(b0 + b1g

2

MS
+ . . .)

lim
✏!0

µ@µmMS,i|g0,m0,i
⌘ ⌧MS(gMS)mMS,i

⌧MS(gMS) = �g2
MS

(d0 + dMS

1
g2
MS

+ . . .)
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Renormalization Group
RGE

A physical quantity GR does not depend on µ, since G0 does not depend on µ:

µ
d

dµ
G0 = 0 ! µ

d

dµ
GR(µ, q, g,mi) = 0

(µ@µ + �(g)@g + ⌧(g)mi@mi)GR = 0

The general solution of the RGE can be expressed in terms of special
solutions:

1. mi, q-independent function ⇤(µ, g): mi@mi⇤ = 0

(µ@µ + �(g)@g)⇤ = 0

⇤ = µ'g(g) , 'g dimensionless
(1 + �(g)@g)'g = 0

'g = exp

⇢
�
Z g

dx 1

�(x)

�
⇥ constant

=
�
b0g

2
��b1/(2b

2
0) e�1/(2b0g

2
) exp

⇢
�
Z g

0

dx
h

1

�(x) +
1

b0x3 � b1
b20x

i�
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Renormalization Group
RGE

A physical quantity GR does not depend on an arbitrarily introduced µ:

d

dµ
GR = 0

(µ@µ + �(g)@g + ⌧(g)mi@mi)GR = 0

The general solution can be expressed in terms of special solutions:

2. mi dependent functions, independent of µ and q: Mi(mi, g):

(⌧(g)mi@mi + �(g) @g)Mi = 0

Mi = mi 'm(g) , 'm dimensionless
(⌧(g) + �(g)@g)'m = 0

'm = exp

⇢
�
Z g

dx ⌧(x)
�(x)

�
⇥ constant

=
�
2b0g

2
��d0/(2b0) exp

⇢
�
Z g

0

dx
h
⌧(x)
�(x) �

d0
b0x

i�
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Renormalization Group
Invariants

Now take GR independent of q; example: GR = mhadron

GR = GR(µ, g(µ),mi(µ))

µ independent : = GR(k⇤, g(k⇤)| {z }
'�1

g (1/k)

,Mi/ 'm(g(k⇤))| {z }
'm('�1

g (1/k))

)

! GR = GRGI(⇤,Mi) any k, e.g. k = 1

with mass dimension 1: [GR] = 1, e.g. mhadron

mhadron = ⇤f̄h(Mi/⇤)

⇤,Mi: fundamental parameters of QCD (Nf + 1 parameters)

Renormalization Group Invariants (RGI)

Rainer Sommer Beijing 2019 15
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Renormalization Group Invariants

Renormalization Group Invariants (RGI)
I non–perturbatively defined

with the standard (undoubted) assumtions:
NP “corrections” to RG functions vanish as µ�⌘, ⌘ > 0

e.g. renormalons, instantons
I our job is to determine them
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Renormalization Group

in the chiral limit Mi = 0

mhadron = ⇤f̄h(0) = f̄h(0) µ e�1/(2b0g(µ)
2
) ⇥ . . .

@n
gmhadron

��
g=0

= 0

! mhadron = 0 to all orders of PT

mhadron,⇤,Mi are non-perturbative quantities
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Renormalization Group
Exercises

Exercises

I Show that
Ms

i = Ms0

i

where s, s0 are different schemes.

I Show that
⇤s = k⇤s0

Determine k in terms of �(1)

g , b0.

I What is needed to determine �(1)

g ?

Rainer Sommer Beijing 2019 18
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Renormalization Group
Application: short distance behavior

q = 1/r large: short (Euclidean) distances

GR = GR(µ, q, g(µ),mi(µ)) dimensionless (e.g. r2F (r))
= P (q/µ, g(µ),mi(µ)/q)

= P (1, g(q),mi(q)/q) , 'g(g(q)) = ⇤/q

mi(q) = Mi/'m(g)

I yields the RG improved prediction for P
I becomes more and more accurate for q ! 1

g2(q) =
1

b0t

⇢
1� b1

b2
0
t
ln(t) + O(t�2)

�

! 0 as t ! 1 t = 2 ln(q/⇤)

mi(q) = Mi

�
2

t

�d0/2b0 {1 + . . .}

I unphysical µ-dependence of the coupling turned into physical q dependence
Rainer Sommer Beijing 2019 19
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Renormalization Group
Application: short distance behavior

q = 1/r large: short (Euclidean) distances
we also see that

GR = P (1, g(q),mi(q)/q)
q�⇤,Mi⇠ P (1, g(q), 0)

mass effects disappear at short distances
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Renormalization of composite fields

For weak interactions, chiral symmetry breaking order parameter, . . .

Local composite fields (“operators”)

Srs(x) =  r(x) s(x) , P rs(x) =  r(x)�5 s(x) r 6= s flavor indices

S(x) = Srr(x) ⌘
NfX

r=1

Srr(x) , P (x) = P rr(x)

Ars
µ (x) =  r(x)�µ�5 s(x) . . .

Ors
LL

(x) =  r(x)�µ(1� �5) s(x) r(x)�µ(1� �5) s(x)

In contrast to non-local composite fields

I Wilson loop
I smeared fields

Srs
t (x) t a proper smearing parameter

! see the final lecture
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Renormalization of composite fields
mixing with operators of same dimension

h�R1(x1)�R2(x2)�R3(x3)�R4(x4)...ipath integral average

is finite for xi 6= xj for i 6= j with

dimensional regularisation, MS

�(D)
R,i

=

X

j

Zij(✏, g
2
)�

(D)
j

, [�
(D)
j

] = [�
(D)
i

] = D

e.g. [S] = [P rs
] = 3

lattice MS

�(D)
R,i

=

X

j

Zij(ln(aµ), g
2
)�

(D)
sub,j , [�

(D)
sub,j ] = [�

(D)
i

] = D

�
(D)
sub,j = �

(D)
j

+

X

n�1

a�n
X

k

djk(g0)�
(D�n)
k

Subtraction coefficients djk can be chosen purely as functions of g0, not ln(aµ) [M. Testa,

hep-th/9803147, Sect. 2 ]

Exercise: Go through the argument in hep-th/9803147. Does it hold beyond PT?
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Renormalization of composite fields

�(D)

R,i =
X

j

Zij(ln(aµ), g
2)�(D)

sub,j , [�(D)

sub,j ] = [�(D)

i ] = D

�(D)

sub,j = �(D)

j +
X

n�1

a�n
X

k

djk(g0)�
(D�n)
k

An example

SR(x) = Zsing

S
(ln(aµ), g2)

⇥
 (x) (x) + a�3d1(g0)

⇤

I “mixing with the unit-operator”
I in theories without exact chiral symmetry
I in the chiral limit

otherwise: mn

a3�n terms
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Renormalization of composite fields
RGI fields and short distance behavior

Just work with a simple example:

G0(a, x, g0) = hP rs
(x)P sr

(0)i
Gcont

R (µ, x, g) = lim
a!0

Glat
R (µ, x, g, aµ)

Glat
R (µ, x, g, aµ) = hP rs

R (x)P sr

R (0)i
= Z2

P(aµ, g0)G(a, x, g0)

P sr P rs

0 x

RGE:

µ
d

dµ
G0(a, x, g0) = 0 = µ

d

dµ
Z�2

P GR

! Z2
Pµ

d

dµ
[Z�2

P GR] = 0

(µ@µ + �(g)@g + ⌧(g)mi@mi � 2�)GR = 0

� = Z�1
P µ@µZP(µa, g0)
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Renormalization of composite fields
RGI

Now turn to a renormalization group invariant form:

P rs

RGI = 'P(µ, g)P
rs

R

with (µ@µ + �@g)'P = �� 'P

then

GRGI = hP rs

RGI(x)P
sr

RGI(0)i = '2
P GR

'P = exp

⇢
�

Z g

dx �(x)
�(x)

�
⇥ constant . . .

=

⇣
2b0g

2
⌘��0/(2b0)

exp

⇢
�

Z g

0
dx

h
�(x)
�(x) � �0

b0x

i�

Then we get the RGE for a renormalization group invariant (without an anomalous
dimension term).

(µ@µ + �(g)@g + ⌧(g)mi@mi)GRGI = 0

I We have the prediction for the short distance behavior as before.
I GRGI(x,⇤,Mi): scheme-independent functions, uniquely given by QCD.

I It is the job of lattice QCD to determine them.
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Renormalization of composite fields

The general principle (lot’s of evidence)

I Mixing with all local operators of same and lower dimensions, allowed by
the symmetries
in renormalizable theories (normal propagators, no couplings with
negative mass dimension)
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Renormalization in theories with boundaries
The general principle (lot’s of evidence)

I Mixing with all local operators of same and lower dimensions, allowed by the
symmetries

S = a4
X

space�time

4X

n=1

X

i

gin�
(n)
i

(x) + a3
X

boundary

3X

n=1

X

i

cin�
(n)
i

(x)

[gin] = 4� n , [cin] = 3� n bare couplings and masses

I adjust (= tune = renormalize) all coefficienst gin, cin such that the continuum limit
exists

I no couplings with negative mass dimensions!
I Including theories with boundaries (Schrödinger functional , Gradient Flow)

all-order proof for GF and for SF in �4.
I O(a) effects: go higher in powers of a and include [gin] = 5� n , [cin] = 4� n

Symanzik effective theory

S = a4
X

space�time

5X

n=1

X

i

gin�
(n)
i

(x) + a3
X

boundary

4X

n=1

X

i

cin�
(n)
i

(x)

gi5 ⇠ a ci4 ⇠ a
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Quark mass renormalization on the lattice
more details ...

Wilson fermions

We had:

mlat,i = Zm(ln(aµ), g2) m̂q,i

m̂q,i = mq,i + (rm(g0)� 1) 1

Nf
trMq

mq,i = m0i �mc(g0) , Mq = diag(mq,1,mq,2, . . .)

Why is that?

Write the mass-term as

Lmass =
X

i

 im0i i

=
X

a=3,8,...

µa
0

 T a | {z }
Sa , nonsinglet

+   |{z}
S0 singlet

1

Nf
trM0

Therefore there is (in general) Zm = (ZNS

S
)�1 and (rm � 1)Zm = (Zsing

S
)�1

Rainer Sommer Beijing 2019 28



Rainer Sommer | Beijing | July 2019

Quark mass renormalization on the lattice
In general, for Nf > 2, any regularisation

There is a non–anomalous chiral Ward identity: PCAC–relation

h [@µA
rs

µ (x)� (mr +ms)P
rs
(x)] [fields not at x] i = 0

I Can be obtained formally, performing a chiral rotation in the PI
I Can be obtained with lattice exact chiral symmetry (overlap)
I Is therefore (universality) a property of QCD in the continuum limit

after renormalization
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Quark mass renormalization on the lattice
In general, for Nf > 2, any regularisation

Renormalized relation

h [ZA@µA
rs

µ (x)� (mr +ms)RZPP
rs
(x)] [fields not at x] i = 0

(mr +ms)R =
ZA

ZP
(mr +ms)

I defines (mr +ms)R �! with Nf > 2 enough combinations to define/determine
mr , r = 1 . . . Nf with Nf = 2 use also PCVC

I ZA, ZP standard problem which we will discuss
I RGI masses from µ-dependent masses as discussed. Unambiguous.
I NB: ZA is actually more simple

I This defines Mu = 0 independent of the regularization and conventions.
The only convention was to use ZA, ZP with a regular perturbation theory:
P rs

R = P rs
+O(g2).

I This does not say that anything special happens at Mu = 0. There is no
symmetry enhancement as explained by Mike Creutz.
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