Non-perturbative Renormalization

Rainer Sommer
John von Neumann Institute for Computing, DESY
\&
Humboldt University, Berlin

Beijing, Lattice Field Theory school, June 2019

ASSOCIATION

References

a selection, to be completed

M. Lüscher, Advanced lattice QCD, hep-lat/9802029.
P. Weisz, Renormalization and lattice artifacts, in Modern perspectives in lattice QCD: Quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3-28, 2009, pp. 93-160, 2010, 1004. 3462.
R. Sommer, Non-perturbative QCD: Renormalization, $O(a)$-improvement and matching to heavy quark effective theory, In Perspectives in Lattice QCD, World Scientific 2008 (2006) [hep-lat / 0611020].
M. Testa, Some observations on broken symmetries, JHEP 04 (1998) 002 [hep-th/9803147].
A. Vladikas, Three Topics in Renormalization and Improvement, in Modern perspectives in lattice QCD: Quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3-28, 2009, pp. 161-222, 2011, 1103. 1323.
R. Sommer, Introduction to Non-perturbative Heavy Quark Effective Theory, in Modern perspectives in lattice QCD: Quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3-28, 2009, pp. 517-590, 2010, 1008.0710 .
A. Ramos, The Yang-Mills gradient flow and renormalization, PoS LATTICE2014 (2015) 017 [1506.00118].
M. Dalla Brida, T. Korzec, S. Sint and P. Vilaseca, High precision renormalization of the flavour non-singlet Noether currents in lattice QCD with Wilson quarks, Eur. Phys. J. C79 (2019) 23 [1808.09236].

Introduction：

What are we here interested in？

QCD without CP－violating term，quark masses are real

$$
\begin{gathered}
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{2 g_{0}^{2}} \operatorname{tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{f} \bar{\psi}_{f}\left\{D+m_{f}\right\} \psi_{f} \\
\overbrace{\left[\begin{array}{c}
m_{\text {proton }} \\
m_{\pi} \\
m_{\mathrm{K}} \\
m_{\mathrm{D}} \\
m_{\mathrm{B}}
\end{array}\right]}^{\text {Experiment }} \quad\left(m_{\mathrm{u}}=m_{\mathrm{d}}, \quad \text { ignore top }\right)
\end{gathered}
$$

bare parameters
\rightarrow
masses，observables theory parametrized in terms of observables

Introduction：

QCD without CP－violating term，quark masses are real

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}}=-\frac{1}{2 g_{0}^{2}} \operatorname{tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{f} \bar{\psi}_{f}\left\{D+m_{f}\right\} \psi_{f} \\
& \mathcal{L}_{\mathrm{QCD}}\left(g_{0}, m_{f}\right) \leftrightarrow \overbrace{\left[\begin{array}{c}
m_{\text {proton }} \\
m_{\pi} \\
m_{\mathrm{K}} \\
m_{\mathrm{D}} \\
m_{\mathrm{B}}
\end{array}\right]}^{\text {Experiment }} \quad\left(m_{\mathrm{u}}=m_{\mathrm{d}}, \quad \text { ignore top }\right)
\end{aligned}
$$

bare parameters $\rightarrow \quad$ masses，observables theory parametrized in terms of observables NP renormalization

What are we interested in?

Strong interactions at large energies

LHC (and other collider physics):

$$
p \bar{p} \rightarrow H \rightarrow \ldots
$$

SM (or MSSM) predictions depend on
renormalized perturbation theory (PT) in $\alpha_{\mathrm{s}}(\mu) \equiv \alpha_{\mathrm{R}}(\mu)$
$\mu=\mathrm{O}(10 \mathrm{GeV}) \ldots \mathrm{O}(300 \mathrm{GeV})$
What is $\alpha_{\mathrm{R}}(\mu)$ in a given renormalization scheme?
What is Λ_{QCD} :

$$
\begin{aligned}
& m_{\text {proton }}=\# \times \Lambda_{\mathrm{QCD}} \\
& \alpha_{\mathrm{R}}(\mu) \stackrel{\mu / \Lambda \gg 1}{\sim} \\
& \frac{1}{b_{0} \ln (\mu / \Lambda)}\left\{1-\frac{b_{1}}{b_{0}^{2} \ln (\mu / \Lambda)} \ln (\ln (\mu / \Lambda))+\mathrm{O}\left(\ln (\mu / \Lambda)^{-2}\right)\right\}
\end{aligned}
$$

What are we interested in?

Weak decays (search for BSM physics) of quarks:

$$
\begin{aligned}
& \text { low energy effective theory } \\
& \text { 2-quark op's, 4-quark op's }
\end{aligned} \leftarrow\left\{\begin{array}{l}
\mathrm{SM} \\
+\mathrm{BSM}
\end{array}\right.
$$

necessitates the renormalization of composite fields

What will we do?

- Renormalization in PT (repetition)
- RGE's, RGI
- NP renormalization (principle)
- Large scale ratios, step scaling functions (SSF)
- Finite volume schemes
- Gradient flow (recent development)
- very incomplete coverage of techniques concentrate on concepts
recommend to study yourself
- RI-sMOM
- chirally rotated SF

Consider continuum PT, $D=4-2 \epsilon$ dimensions as a regularisation
gauge-invariant, physical observable G
bare, regularised

$$
G_{0}\left(\epsilon, q, g_{0}, m_{0 i}\right)
$$

Example

force between static quarks $F(r)$

G_{0} is singular as $\epsilon \rightarrow 0$ at fixed $q, g_{0}, m_{0 i}$

Renormalization in PT

MS scheme

Renormalizability:

all observables G become finite after the
Renormalization:
dimensionful coupling in D dimensions

$$
\begin{aligned}
& g_{\mathrm{R}}^{2} \equiv g^{2} \quad=Z_{g}\left(\epsilon, g^{2}\right) \mu^{-2 \epsilon} g_{0}^{2} \\
& m_{\mathrm{R}, i} \equiv m_{i} \quad=Z_{m}\left(\epsilon, g^{2}\right) m_{0 i} \\
& \quad G_{\mathrm{R}}\left(\mu, q, g, m_{i}\right)=\lim _{\epsilon \rightarrow 0} G_{0}(\epsilon, q, \underbrace{Z_{g}^{-1 / 2} g \mu^{\epsilon}}_{g_{0}}, \underbrace{Z_{m}^{-1} m_{i}}_{m_{0 i}})
\end{aligned}
$$

The limit exists with

$$
Z_{x}=1+g^{2} z_{x, 1} \epsilon^{-1}+g^{4}\left[z_{x, 2} \epsilon^{-2}+z_{x, 3} \epsilon^{-1}\right]+\ldots
$$

"minimal subtraction" (of ϵ poles; only those)

Renormalization in PT

MS scheme

Renormalizability:

all observables G become finite after the
Renormalization:
dimensionful coupling in D dimensions

$$
\begin{array}{cc}
g_{\mathrm{R}}^{2} \equiv g^{2} \quad=Z_{g}\left(\epsilon, g^{2}\right) \mu^{-2 \epsilon} g_{0}^{2} & \text { mass-independent } \\
m_{\mathrm{R}, i} \equiv m_{i} \quad=Z_{m}\left(\epsilon, g^{2}\right) m_{0 i} & \text { renormalization scheme } \\
G_{\mathrm{R}}\left(\mu, q, g, m_{i}\right)=\lim _{\epsilon \rightarrow 0} G_{0}(\epsilon, q, \underbrace{Z_{g}^{-1 / 2} g \mu^{\epsilon}}_{g_{0}}, \underbrace{Z_{m}^{-1} m_{i}}_{m_{0 i}})
\end{array}
$$

The limit exists with

$$
Z_{x}=1+g^{2} z_{x, 1} \epsilon^{-1}+g^{4}\left[z_{x, 2} \epsilon^{-2}+z_{x, 3} \epsilon^{-1}\right]+\ldots
$$

"minimal subtraction" (of ϵ poles; only those)

Renormalization in PT

on the lattice: $G_{0}\left(a, q, g_{0}, m_{0 i}\right)$

$$
\begin{align*}
& g_{\mathrm{lat}}^{2} \equiv g^{2}=Z_{g}\left(\ln (a \mu), g^{2}\right) g_{0}^{2} \\
& m_{\mathrm{lat}, i} \equiv m_{i}=Z_{m}\left(\ln (a \mu), g^{2}\right) \hat{m}_{\mathrm{q}, i} \quad(*) \tag{*}\\
& G_{\mathrm{R}}^{\mathrm{lat}}\left(\mu, q, g_{\mathrm{lat}}, m_{i}\right)=\lim _{a \rightarrow 0} G_{0}(a, q, \underbrace{Z_{g}^{-1 / 2} g}_{g_{0}}, \underbrace{m_{0 i}}_{Z_{m}^{-1} m_{\mathrm{lat}, i}}) \\
& \text { when } r_{m}=1
\end{align*}
$$

The limit exists (continuum limit) with different Z_{x} !

$$
Z_{x}=1+g^{2} z_{x, 1} \ln (a \mu)+g^{4}\left[z_{x, 2}(\ln (a \mu))^{2}+z_{x, 3} \ln (a \mu)\right]+\ldots
$$

"lattice minimal subtraction" (of logs $\ln (a \mu)$; only those) $g=g_{\text {lat }}, m=m_{\text {lat }}$
Proven to all orders of PT for Wilson reg'n [T. Reisz].
Expected also non-perturbatively and for other regularisations (universality).
$\left(^{*}\right) \hat{m}_{\mathrm{q}, i}$ are bare subtracted masses,

$$
\begin{aligned}
\hat{m}_{\mathrm{q}, i} & =m_{\mathrm{q}, i}+\left(r_{m}\left(g_{0}\right)-1\right) \frac{1}{N_{\mathrm{f}}} \operatorname{tr} M_{\mathrm{q}} \\
m_{\mathrm{q}, i} & =m_{0 i}-m_{\mathrm{c}}\left(g_{0}\right), M_{\mathrm{q}}=\operatorname{diag}\left(m_{\mathrm{q}, 1}, m_{\mathrm{q}, 2}, \ldots\right)
\end{aligned}
$$

with sufficient chiral symmetry: $r_{m}=1, m_{c}=0$

Renormalization in PT

The limit is universal (does not depend on the regularisation) after changing the renormalization scheme: finite renormalization

$$
\begin{aligned}
g_{\mathrm{lat}}^{2} & =\chi_{g}\left(g_{\mathrm{MS}}\right) g_{\mathrm{MS}}^{2}, \quad \chi_{g}(g)=1+\chi_{g}^{(1)} g^{2}+\ldots \\
m_{\mathrm{lat}, i} & =\chi_{m}\left(g_{\mathrm{MS}}\right) m_{\mathrm{MS}, i}, \quad \chi_{m}(g)=1+\chi_{m}^{(1)} g^{2}+\ldots \\
G_{\mathrm{R}}\left(\mu, q, g_{\mathrm{MS}}, m_{\mathrm{MS}, i}\right) & =G_{\mathrm{R}}^{\mathrm{lat}}(\mu, q, \underbrace{\chi_{g}\left(g_{\mathrm{MS}}\right) g_{\mathrm{MS}}^{2}}_{g_{\mathrm{lat}}}, \underbrace{\chi_{m}\left(g_{\mathrm{MS}}\right) m_{\mathrm{MS}, i}}_{m_{\mathrm{lat}, i}})
\end{aligned}
$$

Renormalization in PT

μ-dependence

Renormalized masses and coupling depend on μ :

$$
\begin{aligned}
\left.\lim _{a \rightarrow 0} \mu \partial_{\mu} g_{\text {lat }}\right|_{g_{0}, m_{\mathrm{q}, i}} \equiv & \beta_{\text {lat }}\left(g_{\text {lat }}\right)=-g_{\text {lat }}^{3}\left(b_{0}+b_{1} g_{\text {lat }}^{2}+\ldots\right) \\
\left.\lim _{a \rightarrow 0} \mu \partial_{\mu} m_{\text {lat }, i}\right|_{g_{0}, m_{\mathrm{q}, i}} \equiv & \tau_{\text {lat }}\left(g_{\text {lat }}\right) m_{\text {lat }, i} \\
& \tau_{\text {lat }}\left(g_{\text {lat }}\right)=-g_{\text {lat }}^{2}\left(d_{0}+d_{1}^{\text {lat }} g_{\text {lat }}^{2}+\ldots\right) \\
& b_{0}=\frac{1}{(4 \pi)^{2}}\left(11-\frac{2}{3} N_{\mathrm{f}}\right), \quad d_{0}=\frac{8}{(4 \pi)^{2}} \\
& b_{1}=\frac{1}{(4 \pi)^{4}}\left(102-\frac{38}{3} N_{\mathrm{f}}\right)
\end{aligned}
$$

Renormalization in PT

Renormalized masses and coupling depend on μ :

$$
\begin{aligned}
\left.\lim _{a \rightarrow 0} \mu \partial_{\mu} g_{\mathrm{lat}}\right|_{g_{0}, m_{\mathrm{q}, i}} \equiv & \beta_{\mathrm{lat}}\left(g_{\mathrm{lat}}\right)=-g_{\mathrm{lat}}^{3}\left(b_{0}+b_{1} g_{\mathrm{lat}}^{2}+\ldots\right) \\
\left.\lim _{a \rightarrow 0} \mu \partial_{\mu} m_{\mathrm{lat}, i}\right|_{g_{0}, m_{\mathrm{q}, i}} \equiv & \tau_{\mathrm{lat}}\left(g_{\mathrm{lat}}\right) m_{\mathrm{lat}, i} \\
& \tau_{\mathrm{lat}}\left(g_{\mathrm{lat}}\right)=-g_{\mathrm{lat}}^{2}\left(d_{0}+d_{1}^{\mathrm{lat}} g_{\mathrm{lat}}^{2}+\ldots\right) \\
& b_{0}=\frac{1}{(4 \pi)^{2}}\left(11-\frac{2}{3} N_{\mathrm{f}}\right), \quad d_{0}=\frac{8}{(4 \pi)^{2}} \\
& b_{1}=\frac{1}{(4 \pi)^{4}}\left(102-\frac{38}{3} N_{\mathrm{f}}\right)
\end{aligned}
$$

or in the MS-scheme

$$
\begin{aligned}
\left.\lim _{\epsilon \rightarrow 0} \mu \partial_{\mu} g_{\mathrm{MS}}\right|_{g_{0}, m_{0, i}} \equiv & \beta_{\mathrm{MS}}\left(g_{\mathrm{MS}}\right)=-g_{\mathrm{MS}}^{3}\left(b_{0}+b_{1} g_{\mathrm{MS}}^{2}+\ldots\right) \\
\left.\lim _{\epsilon \rightarrow 0} \mu \partial_{\mu} m_{\mathrm{MS}, i}\right|_{g_{0}, m_{0, i}} \equiv & \tau_{\mathrm{MS}}\left(g_{\mathrm{MS}}\right) m_{\mathrm{MS}, i} \\
& \tau_{\mathrm{MS}}\left(g_{\mathrm{MS}}\right)=-g_{\mathrm{MS}}^{2}\left(d_{0}+d_{1}^{\mathrm{MS}} g_{\mathrm{MS}}^{2}+\ldots\right)
\end{aligned}
$$

Renormalization Group

A physical quantity G_{R} does not depend on μ, since G_{0} does not depend on μ :

$$
\begin{aligned}
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} G_{0}=0 \quad \rightarrow \quad \mu \frac{\mathrm{~d}}{\mathrm{~d} \mu} G_{\mathrm{R}}\left(\mu, q, g, m_{i}\right) & =0 \\
\left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}\right) G_{\mathrm{R}} & =0
\end{aligned}
$$

The general solution of the RGE can be expressed in terms of special solutions:

1. m_{i}, q-independent function $\Lambda(\mu, g): m_{i} \partial_{m_{i}} \Lambda=0$

$$
\begin{aligned}
& \left(\mu \partial_{\mu}+\beta(g) \partial_{g}\right) \Lambda=0 \\
& \Lambda=\mu \varphi_{g}(g), \quad \varphi_{g} \text { dimensionless } \\
& \left(1+\beta(g) \partial_{g}\right) \varphi_{g}=0 \\
& \varphi_{g}=\exp \left\{-\int^{g} \mathrm{~d} x \frac{1}{\beta(x)}\right\} \times \text { constant }
\end{aligned}
$$

Renormalization Group

A physical quantity G_{R} does not depend on μ, since G_{0} does not depend on μ :

$$
\begin{aligned}
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} G_{0}=0 \quad \rightarrow \quad \mu \frac{\mathrm{~d}}{\mathrm{~d} \mu} G_{\mathrm{R}}\left(\mu, q, g, m_{i}\right) & =0 \\
\left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}\right) G_{\mathrm{R}} & =0
\end{aligned}
$$

The general solution of the RGE can be expressed in terms of special solutions:

1. m_{i}, q-independent function $\Lambda(\mu, g): m_{i} \partial_{m_{i}} \Lambda=0$

$$
\begin{aligned}
& \left(\mu \partial_{\mu}+\beta(g) \partial_{g}\right) \Lambda=0 \\
& \Lambda=\mu \varphi_{g}(g), \quad \varphi_{g} \text { dimensionless } \\
& \left(1+\beta(g) \partial_{g}\right) \varphi_{g}=0 \\
& \varphi_{g}=\exp \left\{-\int^{g} \mathrm{~d} x \frac{1}{\beta(x)}\right\} \times \text { constant } \\
& \quad=\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\}
\end{aligned}
$$

Renormalization Group

A physical quantity G_{R} does not depend on an arbitrarily introduced μ :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \mu} G_{\mathrm{R}} & =0 \\
\left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}\right) G_{\mathrm{R}} & =0
\end{aligned}
$$

The general solution can be expressed in terms of special solutions:
2. m_{i} dependent functions, independent of μ and $q: M_{i}\left(m_{i}, g\right)$:

$$
\begin{aligned}
& \left(\tau(g) m_{i} \partial_{m_{i}}+\beta(g) \partial_{g}\right) M_{i}=0 \\
& M_{i}=m_{i} \varphi_{m}(g), \quad \varphi_{m} \text { dimensionless } \\
& \left(\tau(g)+\beta(g) \partial_{g}\right) \varphi_{m}=0 \\
& \varphi_{m}=\exp \left\{-\int^{g} \mathrm{~d} x \frac{\tau(x)}{\beta(x)}\right\} \times \text { constant }
\end{aligned}
$$

Renormalization Group

A physical quantity G_{R} does not depend on an arbitrarily introduced μ :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \mu} G_{\mathrm{R}} & =0 \\
\left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}\right) G_{\mathrm{R}} & =0
\end{aligned}
$$

The general solution can be expressed in terms of special solutions:
2. m_{i} dependent functions, independent of μ and $q: M_{i}\left(m_{i}, g\right)$:

$$
\begin{aligned}
& \left(\tau(g) m_{i} \partial_{m_{i}}+\beta(g) \partial_{g}\right) M_{i}=0 \\
& M_{i}=m_{i} \varphi_{m}(g), \quad \varphi_{m} \text { dimensionless } \\
& \left(\tau(g)+\beta(g) \partial_{g}\right) \varphi_{m}=0 \\
& \varphi_{m}=\exp \left\{-\int^{g} \mathrm{~d} x \frac{\tau(x)}{\beta(x)}\right\} \times \text { constant } \\
& \quad=\left(2 b_{0} g^{2}\right)^{-d_{0} /\left(2 b_{0}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{\tau(x)}{\beta(x)}-\frac{d_{0}}{b_{0} x}\right]\right\}
\end{aligned}
$$

Renormalization Group

Now take G_{R} independent of $q ; \quad$ example: $G_{\mathrm{R}}=m_{\text {hadron }}$

$$
\begin{aligned}
G_{\mathrm{R}} & =G_{\mathrm{R}}\left(\mu, g(\mu), m_{i}(\mu)\right) \\
\mu \text { independent }: & =G_{\mathrm{R}}(k \Lambda, \underbrace{g(k \Lambda)}_{\varphi_{g}^{-1}(1 / k)}, M_{i} / \underbrace{\varphi_{m}(g(k \Lambda))}_{\varphi_{m}\left(\varphi_{g}^{-1}(1 / k)\right)}) \\
\rightarrow \quad G_{\mathrm{R}} & =G^{\mathrm{RGI}}\left(\Lambda, M_{i}\right) \quad \text { any } k, \text { e.g. } k=1
\end{aligned}
$$

with mass dimension $1:\left[G_{\mathrm{R}}\right]=1$, e.g. $m_{\text {hadron }}$

$$
m_{\text {hadron }}=\Lambda \bar{f}_{h}\left(M_{i} / \Lambda\right)
$$

Λ, M_{i} : fundamental parameters of QCD ($N_{\mathrm{f}}+1$ parameters)
Renormalization Group Invariants (RGI)

Renormalization Group Invariants

Renormalization Group Invariants (RGI)

- non-perturbatively defined
with the standard (undoubted) assumtions:
NP "corrections" to RG functions vanish as $\mu^{-\eta}, \eta>0$
e.g. renormalons, instantons
- our job is to determine them

Renormalization Group

in the chiral limit $M_{i}=0$

$$
\begin{aligned}
m_{\text {hadron }}= & \Lambda \bar{f}_{h}(0)=\bar{f}_{h}(0) \mu \mathrm{e}^{-1 /\left(2 b_{0} g(\mu)^{2}\right)} \times \ldots \\
& \left.\partial_{g}^{n} m_{\text {hadron }}\right|_{g=0}=0 \\
\rightarrow & m_{\text {hadron }}=0 \text { to all orders of PT }
\end{aligned}
$$

$m_{\text {hadron }}, \Lambda, M_{i}$ are non－perturbative quantities

Renormalization Group

Exercises

－Show that

$$
M_{i}^{s}=M_{i}^{s^{\prime}}
$$

where s, s^{\prime} are different schemes．
－Show that

$$
\Lambda^{s}=k \Lambda^{s^{\prime}}
$$

Determine k in terms of $\chi_{g}^{(1)}, b_{0}$ ．
－What is needed to determine $\chi_{g}^{(1)}$ ？

Renormalization Group

Application: short distance behavior

$q=1 / r$ large: short (Euclidean) distances

$$
\begin{aligned}
G_{\mathrm{R}} & =G_{\mathrm{R}}\left(\mu, q, g(\mu), m_{i}(\mu)\right) \quad \text { dimensionless }\left(\text { e.g. } r^{2} F(r)\right) \\
= & P\left(q / \mu, g(\mu), m_{i}(\mu) / q\right) \\
= & P\left(1, g(q), m_{i}(q) / q\right), \quad \varphi_{g}(g(q))=\Lambda / q \\
& \quad m_{i}(q)=M_{i} / \varphi_{m}(g)
\end{aligned}
$$

- yields the RG improved prediction for P
- becomes more and more accurate for $q \rightarrow \infty$

$$
\begin{aligned}
g^{2}(q) & =\frac{1}{b_{0} t}\left\{1-\frac{b_{1}}{b_{0}^{2} t} \ln (t)+\mathrm{O}\left(t^{-2}\right)\right\} \\
& \rightarrow 0 \text { as } t \rightarrow \infty \quad t=2 \ln (q / \Lambda) \\
m_{i}(q) & =M_{i}\left(\frac{2}{t}\right)^{d_{0} / 2 b_{0}}\{1+\ldots\}
\end{aligned}
$$

- unphysical μ-dependence of the coupling turned into physical q dependence

Renormalization Group

$q=1 / r$ large: short (Euclidean) distances we also see that

$$
G_{\mathrm{R}}=P\left(1, g(q), m_{i}(q) / q\right) \stackrel{q \gg \Lambda, M_{i}}{\sim} P(1, g(q), 0)
$$

mass effects disappear at short distances

Renormalization of composite fields

For weak interactions, chiral symmetry breaking order parameter, ...
Local composite fields ("operators")

$$
\begin{aligned}
S^{r s}(x) & =\bar{\psi}_{r}(x) \psi_{s}(x), \quad P^{r s}(x)=\bar{\psi}_{r}(x) \gamma_{5} \psi_{s}(x) \quad r \neq s \text { flavor indices } \\
S(x) & =S^{r r}(x) \equiv \sum_{r=1}^{N_{f}} S^{r r}(x), \quad P(x)=P^{r r}(x) \\
A_{\mu}^{r s}(x) & =\bar{\psi}_{r}(x) \gamma_{\mu} \gamma_{5} \psi_{s}(x) \ldots \\
O_{\mathrm{LL}}^{r s}(x) & =\bar{\psi}_{r}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) \psi_{s}(x) \bar{\psi}_{r}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) \psi_{s}(x)
\end{aligned}
$$

In contrast to non-local composite fields

- Wilson loop
- smeared fields

$$
S_{t}^{r s}(x) \quad t \text { a proper smearing parameter }
$$

\rightarrow see the final lecture

Renormalization of composite fields

$\left\langle\phi_{\mathrm{R} 1}\left(x_{1}\right) \phi_{\mathrm{R} 2}\left(x_{2}\right) \phi_{\mathrm{R} 3}\left(x_{3}\right) \phi_{\mathrm{R} 4}\left(x_{4}\right) \ldots\right\rangle_{\text {path integral average }}$

is finite for $x_{i} \neq x_{j}$ for $i \neq j$ with
dimensional regularisation, MS

$$
\begin{gathered}
\phi_{\mathrm{R}, i}^{(D)}=\sum_{j} Z_{i j}\left(\epsilon, g^{2}\right) \Phi_{j}^{(D)}, \quad\left[\Phi_{j}^{(D)}\right]=\left[\Phi_{i}^{(D)}\right]=D \\
\text { e.g. }[S]=\left[P^{r s}\right]=3
\end{gathered}
$$

lattice MS

$$
\begin{aligned}
\phi_{\mathrm{R}, i}^{(D)} & =\sum_{j} Z_{i j}\left(\ln (a \mu), g^{2}\right) \Phi_{\mathrm{sub}, j}^{(D)}, \quad\left[\Phi_{\mathrm{sub}, j}^{(D)}\right]=\left[\Phi_{i}^{(D)}\right]=D \\
\Phi_{\mathrm{sub}, j}^{(D)} & =\Phi_{j}^{(D)}+\sum_{n \geq 1} \mathbf{a}^{-\mathbf{n}} \sum_{k} d_{j k}\left(g_{0}\right) \Phi_{k}^{(D-n)}
\end{aligned}
$$

Subtraction coefficients $d_{j k}$ can be chosen purely as functions of g_{0}, not $\ln (a \mu)$ [м. Testa, nep-th/9803147, Sect. 2]
Exercise: Go through the argument in hep-th/9803147. Does it hold beyond PT?

Renormalization of composite fields

$$
\begin{aligned}
\phi_{\mathrm{R}, i}^{(D)} & =\sum_{j} Z_{i j}\left(\ln (a \mu), g^{2}\right) \Phi_{\mathrm{sub}, j}^{(D)}, \quad\left[\Phi_{\mathrm{sub}, j}^{(D)}\right]=\left[\Phi_{i}^{(D)}\right]=D \\
\Phi_{\mathrm{sub}, j}^{(D)} & =\Phi_{j}^{(D)}+\sum_{n \geq 1} \mathbf{a}^{-\mathbf{n}} \sum_{k} d_{j k}\left(g_{0}\right) \Phi_{k}^{(D-n)}
\end{aligned}
$$

An example

$$
S_{\mathrm{R}}(x)=Z_{\mathrm{S}}^{\text {sing }}\left(\ln (a \mu), g^{2}\right)\left[\bar{\psi}(x) \psi(x)+\mathbf{a}^{-3} d_{1}\left(g_{0}\right)\right]
$$

- "mixing with the unit-operator"
- in theories without exact chiral symmetry
- in the chiral limit
otherwise: $\frac{m^{n}}{a^{3-n}}$ terms

Renormalization of composite fields

Just work with a simple example:

$$
\begin{aligned}
G_{0}\left(a, x, g_{0}\right) & =\left\langle P^{r s}(x) P^{s r}(0)\right\rangle \\
G_{\mathrm{R}}^{\mathrm{cont}}(\mu, x, g) & =\lim _{a \rightarrow 0} G_{\mathrm{R}}^{\text {lat }}(\mu, x, g, a \mu) \\
G_{\mathrm{R}}^{\text {lat }}(\mu, x, g, a \mu) & =\left\langle P_{\mathrm{R}}^{r s}(x) P_{\mathrm{R}}^{s r}(0)\right\rangle \\
& =Z_{\mathrm{P}}^{2}\left(a \mu, g_{0}\right) G\left(a, x, g_{0}\right)
\end{aligned}
$$

RGE:

$$
\begin{aligned}
& \mu \frac{\mathrm{d}}{\mathrm{~d} \mu} G_{0}\left(a, x, g_{0}\right)=0=\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} Z_{\mathrm{P}}^{-2} G_{\mathrm{R}} \\
\rightarrow \quad & Z_{\mathrm{P}}^{2} \mu \frac{\mathrm{~d}}{\mathrm{~d} \mu}\left[Z_{\mathrm{P}}^{-2} G_{\mathrm{R}}\right]=0 \\
& \left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}-2 \gamma\right) G_{\mathrm{R}}=0 \\
& \gamma=Z_{\mathrm{P}}^{-1} \mu \partial_{\mu} Z_{\mathrm{P}}\left(\mu a, g_{0}\right)
\end{aligned}
$$

Renormalization of composite fields

Now turn to a renormalization group invariant form:

$$
\begin{array}{ll}
& P_{\mathrm{RGI}}^{r s}=\varphi_{\mathrm{P}}(\mu, g) P_{\mathrm{R}}^{r s} \\
\text { with } \quad & \left(\mu \partial_{\mu}+\beta \partial_{g}\right) \varphi_{\mathrm{P}}=-\gamma \varphi_{\mathrm{P}}
\end{array}
$$

then

$$
\begin{gathered}
G_{\mathrm{RGI}}=\left\langle P_{\mathrm{RGI}}^{r s}(x) P_{\mathrm{RGI}}^{s r}(0)\right\rangle=\varphi_{\mathrm{P}}^{2} G_{\mathrm{R}} \\
\varphi_{\mathrm{P}}=\exp \left\{-\int^{g} \mathrm{~d} x \frac{\gamma(x)}{\beta(x)}\right\} \times \text { constant } \ldots
\end{gathered}
$$

Then we get the RGE for a renormalization group invariant (without an anomalous dimension term).

$$
\left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}\right) G_{\mathrm{RGI}}=0
$$

- We have the prediction for the short distance behavior as before.
$>G_{\mathrm{RGI}}\left(x, \Lambda, M_{i}\right)$: scheme-independent functions, uniquely given by QCD.

Renormalization of composite fields

Now turn to a renormalization group invariant form:

$$
\begin{array}{ll}
& P_{\mathrm{RGI}}^{r s}=\varphi_{\mathrm{P}}(\mu, g) P_{\mathrm{R}}^{r s} \\
\text { with } \quad & \left(\mu \partial_{\mu}+\beta \partial_{g}\right) \varphi_{\mathrm{P}}=-\gamma \varphi_{\mathrm{P}}
\end{array}
$$

then

$$
\begin{aligned}
G_{\mathrm{RGI}} & =\left\langle P_{\mathrm{RGI}}^{r s}(x) P_{\mathrm{RGI}}^{s r}(0)\right\rangle=\varphi_{\mathrm{P}}^{2} G_{\mathrm{R}} \\
\varphi_{\mathrm{P}} & =\exp \left\{-\int^{g} \mathrm{~d} x \frac{\gamma(x)}{\beta(x)}\right\} \times \text { constant } \ldots \\
& =\left(2 b_{0} g^{2}\right)^{-\gamma_{0} /\left(2 b_{0}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{\gamma(x)}{\beta(x)}-\frac{\gamma_{0}}{b_{0} x}\right]\right\}
\end{aligned}
$$

Then we get the RGE for a renormalization group invariant (without an anomalous dimension term).

$$
\left(\mu \partial_{\mu}+\beta(g) \partial_{g}+\tau(g) m_{i} \partial_{m_{i}}\right) G_{\mathrm{RGI}}=0
$$

- We have the prediction for the short distance behavior as before.
$>G_{\mathrm{RGI}}\left(x, \Lambda, M_{i}\right)$: scheme-independent functions, uniquely given by QCD.
- It is the job of lattice QCD to determine them.

Renormalization of composite fields

The general principle (lot's of evidence)

- Mixing with all local operators of same and lower dimensions, allowed by the symmetries in renormalizable theories (normal propagators, no couplings with negative mass dimension)

Renormalization in theories with boundaries

The general principle (lot's of evidence)

- Mixing with all local operators of same and lower dimensions, allowed by the symmetries

$$
\begin{aligned}
& S= a^{4} \sum_{\text {space-time }} \sum_{n=1}^{4} \sum_{i} g_{i n} \Phi_{i}^{(n)}(x)+a^{3} \sum_{\text {boundary }} \sum_{n=1}^{3} \sum_{i} c_{i n} \Phi_{i}^{(n)}(x) \\
& {\left[g_{\text {in }}\right]=4-n, \quad\left[c_{i n}\right]=3-n \quad \text { bare couplings and masses } }
\end{aligned}
$$

- adjust (= tune $=$ renormalize) all coefficienst $g_{i n}, c_{i n}$ such that the continuum limit exists
- no couplings with negative mass dimensions!
- Including theories with boundaries (Schrödinger functional , Gradient Flow) all-order proof for GF and for SF in ϕ^{4}.
- $\mathrm{O}(a)$ effects: go higher in powers of a and include $\left[g_{i n}\right]=5-n, \quad\left[c_{i n}\right]=4-n$ Symanzik effective theory

$$
S=a^{4} \sum_{\text {space-time }} \sum_{n=1}^{5} \sum_{i} g_{i n} \Phi_{i}^{(n)}(x)+a^{3} \sum_{\text {boundary }} \sum_{n=1}^{4} \sum_{i} c_{i n} \Phi_{i}^{(n)}(x)
$$

Quark mass renormalization on the lattice

Wilson fermions

We had:

$$
\begin{aligned}
m_{\mathrm{lat}, i} & =Z_{m}\left(\ln (a \mu), g^{2}\right) \hat{m}_{\mathrm{q}, i} \\
\hat{m}_{\mathrm{q}, i} & =m_{\mathrm{q}, i}+\left(r_{m}\left(g_{0}\right)-1\right) \frac{1}{N_{\mathrm{f}}} \operatorname{tr} M_{\mathrm{q}} \\
m_{\mathrm{q}, i} & =m_{0 i}-m_{\mathrm{c}}\left(g_{0}\right), M_{\mathrm{q}}=\operatorname{diag}\left(m_{\mathrm{q}, 1}, m_{\mathrm{q}, 2}, \ldots\right)
\end{aligned}
$$

Why is that?
Write the mass-term as

$$
\begin{aligned}
\mathcal{L}_{\text {mass }} & =\sum_{i} \bar{\psi}_{i} m_{0 i} \psi_{i} \\
& =\sum_{a=3,8, \ldots} \mu_{0}^{a} \underbrace{\bar{\psi} T^{a} \psi}_{S^{a}, \text { nonsinglet }}+\underbrace{\bar{\psi} \psi}_{S_{0} \text { singlet }} \frac{1}{N_{\mathrm{f}}} \operatorname{tr} M_{0}
\end{aligned}
$$

Therefore there is (in general) $Z_{m}=\left(Z_{\mathrm{S}}^{\mathrm{NS}}\right)^{-1}$ and $\left(r_{m}-1\right) Z_{m}=\left(Z_{\mathrm{S}}^{\text {sing }}\right)^{-1}$

Quark mass renormalization on the lattice

There is a non-anomalous chiral Ward identity: PCAC-relation

$$
\left\langle\left[\partial_{\mu} A_{\mu}^{r s}(x)-\left(m_{r}+m_{s}\right) P^{r s}(x)\right][\text { fields not at } x]\right\rangle=0
$$

- Can be obtained formally, performing a chiral rotation in the PI
- Can be obtained with lattice exact chiral symmetry (overlap)
- Is therefore (universality) a property of QCD in the continuum limit after renormalization

Quark mass renormalization on the lattice

Renormalized relation

$$
\begin{aligned}
& \left\langle\left[Z_{\mathrm{A}} \partial_{\mu} A_{\mu}^{r s}(x)-\left(m_{r}+m_{s}\right)_{\mathrm{R}} Z_{\mathrm{P}} P^{r s}(x)\right][\text { fields not at } x]\right\rangle=0 \\
& \left(m_{r}+m_{s}\right)_{\mathrm{R}}=\frac{Z_{\mathrm{A}}}{Z_{\mathrm{P}}}\left(m_{r}+m_{s}\right)
\end{aligned}
$$

$>$ defines $\left(m_{r}+m_{s}\right)_{\mathrm{R}} \longrightarrow$ with $N_{\mathrm{f}}>2$ enough combinations to define/determine $m_{r}, r=1 \ldots N_{\mathrm{f}}$

- $Z_{\mathrm{A}}, Z_{\mathrm{P}}$ standard problem which we will discuss
- RGI masses from μ-dependent masses as discussed. Unambiguous.
- $\mathrm{NB}: Z_{\mathrm{A}}$ is actually more simple

Quark mass renormalization on the lattice

Renormalized relation

$$
\begin{aligned}
& \left\langle\left[Z_{\mathrm{A}} \partial_{\mu} A_{\mu}^{r s}(x)-\left(m_{r}+m_{s}\right)_{\mathrm{R}} Z_{\mathrm{P}} P^{r s}(x)\right][\text { fields not at } x]\right\rangle=0 \\
& \left(m_{r}+m_{s}\right)_{\mathrm{R}}=\frac{Z_{\mathrm{A}}}{Z_{\mathrm{P}}}\left(m_{r}+m_{s}\right)
\end{aligned}
$$

$>$ defines $\left(m_{r}+m_{s}\right)_{\mathrm{R}} \longrightarrow$ with $N_{\mathrm{f}}>2$ enough combinations to define/determine $m_{r}, r=1 \ldots N_{\mathrm{f}}$

- $Z_{\mathrm{A}}, Z_{\mathrm{P}}$ standard problem which we will discuss
- RGI masses from μ-dependent masses as discussed. Unambiguous.
- $\mathrm{NB}: Z_{\mathrm{A}}$ is actually more simple
- This defines $M_{\mathrm{u}}=0$ independent of the regularization and conventions.

The only convention was to use $Z_{\mathrm{A}}, Z_{\mathrm{P}}$ with a regular perturbation theory: $P_{\mathrm{R}}^{r s}=P^{r s}+\mathrm{O}\left(g^{2}\right)$.

Quark mass renormalization on the lattice

Renormalized relation

$$
\begin{aligned}
& \left\langle\left[Z_{\mathrm{A}} \partial_{\mu} A_{\mu}^{r s}(x)-\left(m_{r}+m_{s}\right)_{\mathrm{R}} Z_{\mathrm{P}} P^{r s}(x)\right][\text { fields not at } x]\right\rangle=0 \\
& \left(m_{r}+m_{s}\right)_{\mathrm{R}}=\frac{Z_{\mathrm{A}}}{Z_{\mathrm{P}}}\left(m_{r}+m_{s}\right)
\end{aligned}
$$

\triangleright defines $\left(m_{r}+m_{s}\right)_{\mathrm{R}} \longrightarrow$ with $N_{\mathrm{f}}>2$ enough combinations to define/determine $m_{r}, r=1 \ldots N_{\mathrm{f}}$

- $Z_{\mathrm{A}}, Z_{\mathrm{P}}$ standard problem which we will discuss
- RGI masses from μ-dependent masses as discussed. Unambiguous.
- $\mathrm{NB}: Z_{\mathrm{A}}$ is actually more simple
- This defines $M_{\mathrm{u}}=0$ independent of the regularization and conventions. The only convention was to use $Z_{\mathrm{A}}, Z_{\mathrm{P}}$ with a regular perturbation theory: $P_{\mathrm{R}}^{r s}=P^{r s}+\mathrm{O}\left(g^{2}\right)$.
- This does not say that anything special happens at $M_{\mathrm{u}}=0$. There is no symmetry enhancement as explained by Mike Creutz.

