Non-perturbative Renormalization

Rainer Sommer
John von Neumann Institute for Computing, DESY
\&
Humboldt University, Berlin

Beijing, Lattice Field Theory school, June 2019

Nonperturbative Renormalization

First consider just the renormalization of the coupling, set

$$
m_{i}=0
$$

Properties of a renormalised coupling

a finite: $g=f\left(g_{0}, \mu a\right)$, such that $\left.\lim _{a \rightarrow 0} G_{0}\left(q a, g_{0}\right)\right|_{g}$ exists
b gauge invariant (physical)
most natural

$$
\begin{array}{ll}
& G_{0}=G_{0}\left(q a, g_{0}\right) \\
\rightarrow \quad & G_{\mathrm{R}}=G_{\mathrm{R}}\left(q / m_{\text {proton }}, q a\right), \quad a m_{\text {proton }}=f\left(g_{0}\right) \\
& G_{\mathrm{R}}^{\text {cont }}=G_{\mathrm{R}}\left(q / m_{\text {proton }}, 0\right)
\end{array}
$$

"hadronic scheme"

- but we want a coupling, i.e. the relation to the Λ - parameter, the relation to perturbative QCD

Nonperturbative Renormalization

First consider just the renormalization of the coupling, set

$$
m_{i}=0
$$

Properties of a renormalised coupling

a finite: $g=f\left(g_{0}, \mu a\right)$, such that $\left.\lim _{a \rightarrow 0} G_{0}\left(q a, g_{0}\right)\right|_{g}$ exists
b gauge invariant (physical)
C

$$
\begin{aligned}
& g_{\mathrm{NP}}^{2} \stackrel{g_{\mathrm{lat}} \rightarrow 0}{\sim} \quad g_{\mathrm{lat}}^{2} \chi_{g}^{\mathrm{NP}, \text { lat }}\left(g_{\mathrm{lat}}\right) \\
& \chi_{g}^{x, y}(g)= 1+\chi_{g, 1}^{x, y} g^{2}+\ldots \\
& \uparrow \\
& \\
& \text { convention, good idea }
\end{aligned}
$$

d It depends on a single scale $\mu \quad \rightarrow$ RGE! For $\mu \rightarrow \infty$ it is purely short distance

Nonperturbative Renormalization

Generic definition of a renormalized coupling

Take $G_{0}\left(\mu a, g_{0}\right)$ dimensionless (in the massless theory) satisfying a,b,d.
G_{0} has a regular PT

$$
\begin{align*}
G_{0}\left(q a, g_{0}\right)= & G_{0}^{(0)}(q a)+G_{0}^{(1)}(q a) g_{0}^{2}+G_{0}^{(2)}(q a) g_{0}^{4}+\ldots \\
\text { lat scheme: } & g_{0}^{2}=g_{\mathrm{lat}}^{2}+2 b_{0} \ln (a \mu) g_{\mathrm{lat}}^{4}+\ldots \\
\rightarrow \quad G_{0}=G_{\mathrm{R}}= & G_{\mathrm{R}}^{(0)}(q a)+G_{\mathrm{R}}^{(1)}(q a) g_{\mathrm{lat}}^{2}+G_{\mathrm{R}}^{(2)}(q / \mu, q a) g_{\mathrm{lat}}^{4}+\ldots \\
i=0,1: \quad & G_{\mathrm{R}}^{(i)}(q a)=G_{0}^{(i)}(q a)=C^{(i)}+\mathrm{O}\left(a^{2} q^{2}\right) \tag{*}\\
& G_{\mathrm{R}}^{(2)}(q / \mu, q a)=G_{0}^{(2)}(q a)+2 b_{0} \ln (a \mu) G_{0}^{(1)}(q a) \\
& =H(q a)+2 b_{0} \ln (\mu / q) G_{0}^{(1)}(q a) \tag{*}\\
& H(q a)=C^{(2)}+\mathrm{O}\left(a^{2} q^{2}\right)
\end{align*}
$$

(*): the continuum limit exists

Nonperturbative Renormalization

Generic definition of a renormalized coupling

Set $\mu=q$:

$$
\begin{aligned}
G_{0}\left(\mu a, g_{0}^{2}\right) & =G_{\mathrm{R}}^{(0)}(\mu a)+G_{\mathrm{R}}^{(1)}(\mu a) g_{\mathrm{lat}}^{2}(\mu)+G_{\mathrm{R}}^{(2)}(1, \mu a) g_{\mathrm{lat}}^{4}(\mu)+\ldots \\
& =G_{0}^{(0)}(\mu a)+G_{0}^{(1)}(\mu a) g_{\mathrm{lat}}^{2}(\mu)+\underbrace{G_{\mathrm{R}}^{(2)}(1, \mu a)}_{C^{(2)}+\mathrm{O}\left(a^{2} q^{2}\right)} g_{\mathrm{lat}}^{4}(\mu)+\ldots
\end{aligned}
$$

then

$$
\bar{g}_{G}^{2}(\mu) \equiv \frac{G_{0}\left(\mu a, g_{0}^{2}\right)-G_{0}^{(0)}(\mu a)}{G_{0}^{(1)}(\mu a)}
$$

satisfies a,b,c,d

Nonperturbative Renormalization

Generic definition of a renormalized coupling

Set $\mu=q$:

$$
\begin{aligned}
G_{0}\left(\mu a, g_{0}^{2}\right) & =G_{\mathrm{R}}^{(0)}(\mu a)+G_{\mathrm{R}}^{(1)}(\mu a) g_{\mathrm{lat}}^{2}(\mu)+G_{\mathrm{R}}^{(2)}(1, \mu a) g_{\mathrm{lat}}^{4}(\mu)+\ldots \\
& =G_{0}^{(0)}(\mu a)+G_{0}^{(1)}(\mu a) g_{\mathrm{lat}}^{2}(\mu)+\underbrace{G_{\mathrm{R}}^{(2)}(1, \mu a)}_{C^{(2)}+\mathrm{O}\left(a^{2} q^{2}\right)} g_{\mathrm{lat}}^{4}(\mu)+\ldots
\end{aligned}
$$

then

$$
\bar{g}_{G}^{2}(\mu) \equiv \frac{G_{0}\left(\mu a, g_{0}^{2}\right)-G_{0}^{(0)}(\mu a)}{G_{0}^{(1)}(\mu a)}
$$

satisfies a,b,c,d

"physical" coupling

note

$$
\begin{aligned}
\bar{g}_{G}^{2}(\mu)= & 1 \times g_{\text {lat }}^{2}+\mathrm{O}\left(g_{\mathrm{lat}}^{4}\right) \\
& \uparrow \\
& \text { no } a^{2} \text { effects here }
\end{aligned}
$$

Nonperturbative Renormalization

Example 1

$Q \bar{Q}$ potential, force:

$$
\begin{aligned}
G_{0}\left(\mu a, g_{0}^{2}\right)= & r^{2} F_{\mathrm{impr}}(r), \quad \mu=1 / r
\end{aligned} \quad \mathrm{q} \quad \overline{\mathrm{q}} .
$$

def. of $F_{\text {impr }}$ later

$$
\rightarrow \quad \bar{g}_{\mathrm{qq}}^{2}(\mu)=\frac{4 \pi}{C_{F}} r^{2} F_{\mathrm{impr}}(r)
$$

[there is a little caveat with this ... not 100% short distance ... but ok]

Nonperturbative Renormalization

Example 2

Two-point function of multiplicatively renormalisable field

$$
G_{0}\left(\mu a, g_{0}^{2}\right)=\frac{\left\langle P^{r s}(x) P^{s r}(0)\right\rangle_{x=(0,0,0,1 / \mu)}}{\left\langle P^{r s}(x) P^{s r}(0)\right\rangle_{x=(0,0,0,2 / \mu)}}
$$

- Factors Z_{P} cancel
- Theoretically fine, but not really recommended (by me) in practise

$$
\left.\left\langle P^{r s}(x) P^{s r}(0)\right\rangle\right\rangle^{x \rightarrow 0} x^{-6}
$$

steep function, large $(a / x)^{n}$ effects

Nonperturbative Renormalization

- case by case
- eg. (in principle)

$Z_{\mathrm{P}}^{2}\left(a \mu, g_{0}\right)\left\langle P^{r s}(x) P^{s r}(0)\right\rangle_{x=(0,0,0,1 / \mu)}=\left\langle P^{r s}(x) P^{s r}(0)\right\rangle_{x=(0,0,0,1 / \mu), g_{0}=0}$
this defines $Z_{\mathrm{P}}\left(a \mu, g_{0}\right)$
- many correlation functions of $P^{r s}$ can be used, as long as they are sufficiently short distance dominated
- but be careful with integrals, e.g.

$$
\int \mathrm{d}^{4} x\left\langle P^{r s}(x) P^{s r}(0)\right\rangle
$$

does not exist, since $\left\langle P^{r s}(x) P^{s r}(0)\right\rangle \stackrel{x \rightarrow 0}{\sim} x^{-6}$

Nonperturbative Renormalization

RI-MOM: the principle idea [©. Martinemli, c. P. Pitori, C. T. Sachrajida, M. Testa \& A. Vladikas 1995]

drop gauge invariance requirement (b): fix a gauge (e.g. Landau gauge) numerical evidence that this can be done non-perturbatively
then

$$
\begin{aligned}
& S(p)=a^{8} \sum_{x_{1}, x_{2}} \exp \left(-i p\left(x_{1}-x_{2}\right)\right)\left\langle\psi_{r}\left(x_{1}\right) \bar{\psi}_{r}\left(x_{2}\right)\right\rangle \\
& G_{P}\left(p_{1}, p_{2}\right)=a^{8} \sum_{x_{1}, x_{2}} \exp \left(-i p_{1} x_{1}+i p_{2} x_{2}\right)\left\langle\psi_{r}\left(x_{1}\right) P^{r s}(0) \bar{\psi}_{s}\left(x_{2}\right)\right\rangle \\
& \Lambda_{P}\left(p_{1}, p_{2}\right)=S^{-1}\left(p_{1}\right) G_{P}\left(p_{1}, p_{2}\right) S^{-1}\left(p_{2}\right) \\
& \Gamma_{P}\left(p_{1}, p_{2}\right)=\frac{1}{12} \operatorname{Tr}\left[\gamma_{5} \Lambda_{P}(p, p)\right], \quad \Gamma_{V}\left(p_{1}, p_{2}\right)=\ldots
\end{aligned}
$$

Define $\Gamma_{V}(p)$ similarly from the conserved vector current, then

$$
Z_{\mathrm{P}} \Gamma_{P}\left(p_{1}, p_{2}\right) / \Gamma_{V}\left(p_{1}, p_{2}\right)=\left[\Gamma_{P}\left(p_{1}, p_{2}\right) / \Gamma_{V}\left(p_{1}, p_{2}\right)\right]_{g_{0}=0}
$$

defines $Z_{\mathrm{P}}(\mu)$ [or use a similar condition for the quark propagator to define the quark field renormalization constant and divide it out in Λ_{P}]
symmetric point $p^{2}=p_{1}^{2}=p_{2}^{2}=\left(p_{1}-p_{2}\right)^{2}=\mu^{2}$
\rightarrow short distance dominated "RI-sMOM"
[C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda \& A. Soni, ARXIV:0901.2599]

Scale Problem

(α_{qq} as an example)
We need to reach large μ where perturbation theory is reliable to be able to use the perturbative relation (perturbative β-function) in

$$
\frac{\Lambda}{\mu}=\varphi_{g}(g(\mu))
$$

Let us see this in more detail

Scales, lattices

- L/a=32, ... 192, L=2fm (big enough in YM), open BC (no topology freezing)

Strategy to get to small r (see also arXiv:1711.01860)

- basic scale from t_{0} :

$$
\alpha_{\mathrm{qq}}\left(\mu, a^{2} \mu^{2}\right), \quad \mu=1 / r=\left(x \sqrt{8 t_{0}}\right)^{-1}
$$

on ensembles with $a>0.02 \mathrm{fm}$

- Then step scaling functions

$$
\Sigma(u, a / r)=\left.\bar{g}_{\mathrm{qq}}^{2}(s r)\right|_{\bar{g}_{\mathrm{qq}}^{2}(r)=u}
$$

with $s=3 / 4$ including $a=\{1.0,1.4,2.0\} \times 10^{-2} \mathrm{fm}$

Strategy to get to small r (see also arXiv:1711.01860)

- basic scale from t_{0} :

$$
\alpha_{\mathrm{qq}}\left(\mu, a^{2} \mu^{2}\right), \quad \mu=1 / r=\left(x \sqrt{8 t_{0}}\right)^{-1}
$$

on ensembles with $a>0.02 \mathrm{fm}$

$$
0.25 \leq x \leq 0.4
$$

- Then step scaling functions

$$
\Sigma(u, a / r)=\left.\bar{g}_{\mathrm{qq}}^{2}(s r)\right|_{\bar{g}_{\mathrm{qq}}^{2}(r)=u}
$$

with $s=3 / 4$ including $a=\{1.0,1.4,2.0\} \times 10^{-2} \mathrm{fm}$

Continuum limits

- Large r region ($r>0.1 \mathrm{fm}$)

- Gradient flow: log-corrections to a^{2} not yet known.

Force

perturbative prediction with known Λ

NIC

- perturbative prediction with known Λ
- Qualitative contact to PT is made

- perturbative prediction with known Λ
- Qualitative contact to PT is made
- But is this safe to determine the Λ-parameter?

Lambda parameter from $\alpha_{q q}$

$$
\Lambda / \mu=\varphi_{g}(g)==\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\}
$$

approximations：

$$
\begin{aligned}
& \left.\frac{\Lambda}{\mu}\right|_{n-\text { loop }} ^{\text {eff }}=\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta_{n-l o p}(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\} \\
& \left.\frac{\Lambda}{\mu}\right|_{2-\text {-loop }} ^{\text {eff }}=\frac{\Lambda}{\mu}+\mathrm{O}\left(\alpha_{\mathrm{qq}}\right) \\
& \left.\frac{\Lambda}{\mu}\right|_{n-\text { loop }} ^{\text {eff }}=\frac{\Lambda}{\mu}+\mathrm{O}\left(\alpha_{\mathrm{qq}}^{n-1}\right)
\end{aligned}
$$

Lambda parameter from α_{qq}

$$
\Lambda / \mu=\varphi_{g}(g)==\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\}
$$

approximations:

$$
\begin{aligned}
& \left.\frac{\Lambda}{\mu}\right|_{n-\text { loop }} ^{\text {eff }}=\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta_{n-l o o p}(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\} \\
& \left.\frac{\Lambda}{\mu}\right|_{2-\text { loop }} ^{\text {eff }}=\frac{\Lambda}{\mu}+\mathrm{O}\left(\alpha_{\mathrm{qq}}\right) \\
& \left.\frac{\Lambda}{\mu}\right|_{n-\text { loop }} ^{\mathrm{eff}}=\frac{\Lambda}{\mu}+\mathrm{O}\left(\alpha_{\mathrm{qq}}^{n-1}\right)
\end{aligned}
$$

A specialty of qq-coupling: at high orders there are infrared divergencies, need to be resummed, produce $\log (\boldsymbol{\alpha})$ terms $\rightarrow>$

Lambda parameter from α_{qq}

$$
\Lambda / \mu=\varphi_{g}(g)==\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\}
$$

approximations:

$$
\left.\frac{\Lambda}{\mu}\right|_{n-\text { loop }} ^{\mathrm{eff}}=\left(b_{0} g^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \mathrm{e}^{-1 /\left(2 b_{0} g^{2}\right)} \exp \left\{-\int_{0}^{g} \mathrm{~d} x\left[\frac{1}{\beta_{n-\operatorname{loop}(x)}}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\}
$$

$$
\left.\frac{\Lambda}{\mu}\right|_{2-\mathrm{loop}} ^{\mathrm{eff}}=\frac{\Lambda}{\mu}+\mathrm{O}\left(\alpha_{\mathrm{qq}}\right)
$$

computed from
Peter 97; Schröder 99

$$
\left.\frac{\Lambda}{\mu}\right|_{n-\mathrm{loop}} ^{\mathrm{eff}}=\frac{\Lambda}{\mu}+\mathrm{O}\left(\alpha_{\mathrm{qq}}^{n-1}\right)
$$

Anzai, Kiyo, Sumino, 10
Smirnov, Smirnov, Steinhauser, 10
Brambilla, Pineda, Soto, Vairo, 99
Kniehl, Penin, 99
Brambilla, Garcia i Tormo, Soto, Vairo, 07, 09

A specialty of qq-coupling: at high orders there are infrared divergencies, need to be resummed, produce $\log (\boldsymbol{\alpha})$ terms $\rightarrow>$

$$
\begin{aligned}
\beta_{3 \text {-loop }}(g)=-g^{3}[& \left.b_{0}+b_{1} g^{2}+b_{2} g^{4}\right] \\
\text { 4-loop: } & +b_{3} g^{6}+b_{3 \mathrm{~L}} g^{6} \log (\alpha) \\
\text { 4-loop LL: } & +b_{4 \mathrm{~L}} g^{8} \log (\alpha)+b_{4 \mathrm{LL}} g^{8}[\log (\alpha)]^{2}
\end{aligned}
$$

Results (from 2-stage continuum limit, standard derivative)

NIC
kaıner sommer | Lat ıy | June I/

Results (from 2-stage continuum limit, standard derivative)

Results (from 2-stage continuum limit, standard derivative)

Results (from 2-stage continuum limit, standard derivative)

NIC
kaıner sommer | Lat Iy | June ।/

Results (from 2-stage continuum limit, standard derivative)

NIC
Kaıner sommer | Lat Iy | June ।/

Results (from 2-stage continuum limit, standard derivative)

Scale Problem

NIC

```
( \(\alpha_{\mathrm{qq}}\) as an example)
```


$$
\begin{array}{ccccc}
L \\
\text { box size }
\end{array}>\begin{array}{ccc}
\frac{1}{0.2 \mathrm{GeV}} & \gg \hat{\uparrow} & \sim \frac{1}{10 \mathrm{GeV}}
\end{array} \begin{gathered}
\uparrow \\
\\
\end{gathered}
$$

Scale Problem

$$
\text { Solution: } L=1 / \mu \longrightarrow \text { left with }
$$

$$
L / a \gg 1 \quad \text { Liseser, Wess, wotf] }
$$

Finite size effect as a physical observable; finite size scaling!

Strategy

finite volume coupling $\alpha_{\mathrm{SF}}(\mu), \mu=1 / L$ defined at zero quark mass

$$
\begin{array}{cc}
L_{\max }=\text { const. } / m_{\mathrm{prot}}=\mathrm{O}\left(\frac{1}{2} \mathrm{fm}\right): & \alpha_{\mathrm{SF}}\left(\mu=1 / L_{\max }\right) \\
\downarrow \\
\text { always } a / L \ll 1 & \alpha_{\mathrm{SF}}\left(\mu=2 / L_{\max }\right) \\
\downarrow \\
\bullet \\
\bullet \\
\bullet \\
& \downarrow \\
& \alpha_{\mathrm{SF}}\left(\mu=2^{n} / L_{\max }=1 / L_{\min }\right) \\
& \mathrm{PT}: \quad \downarrow \\
\Lambda_{\mathrm{SF}} L_{\max }=\#
\end{array}
$$

Result is a value for $\Lambda_{\mathrm{SF}} / m_{\text {prot }}=\#$

The step scaling function

We leave the discussion of a finite volume coupling for later. Discuss first the

Step scaling function

- It is a discrete β function:

$$
\sigma\left(s, \bar{g}^{2}(L)\right)=\bar{g}^{2}(s L) \quad \text { mostly } s=2
$$

The step scaling function

We leave the discussion of a finite volume coupling for later. Discuss first the

Step scaling function

- It is a discrete β function:

$$
\sigma\left(s, \bar{g}^{2}(L)\right)=\bar{g}^{2}(s L) \quad \text { mostly } s=2
$$

- determines the non-perturbative running:

$$
\begin{aligned}
u_{0} & =\bar{g}^{2}\left(L_{\max }\right) \\
& \downarrow \\
\sigma\left(2, u_{k+1}\right) & =u_{k} \\
& \downarrow \\
u_{k} & =\bar{g}^{2}\left(2^{-k} L_{\max }\right)
\end{aligned}
$$

The step scaling function

On the lattice:
additional dependence on the resolution a / L g_{0} fixed, L / a fixed:

$\Sigma(2, \mathrm{u}, 1 / 6)$

continuum limit:

$$
\Sigma(s, u, a / L)=\sigma(s, u)+\mathrm{O}(a / L)
$$

in the following always $s=2$

$$
\overline{\mathrm{g}}^{2}=\mathrm{u}
$$

everywhere: $m=0$ (PCAC mass defined in $(L / a)^{4}$ lattice)

The step scaling function

L / a	β	κ	\bar{g}^{2}	$d \bar{g}^{2}$	m	$d m$
$u=1.1814$						
4	8.2373	0.1327957	1.1814	0.0005	0.00100	0.00011
5	8.3900	0.1325800	1.1807	0.0012	-0.00018	0.00009
6	8.5000	0.1325094	1.1814	0.0015	-0.00036	0.00003
8	8.7223	0.1322907	1.1818	0.0029	-0.00115	0.00004
8	8.2373	0.1327957	1.3154	0.0055	0.00020	0.00005
10	8.3900	0.1325800	1.3287	0.0059	0.00097	0.00007
12	8.5000	0.1325094	1.3253	0.0067	-0.00102	0.00002
16	8.7223	0.1322907	1.3347	0.0061	-0.00194	0.00002
L / a			$\Sigma(1.1814, a / L)$	$\delta \Sigma$		
4			1.3154	0.0055		
5			1.3296	0.0061		
6			1.3253	0.0070		
8			1.3342	0.0071		

- tune κ, g_{0} to have desired $m \approx 0$, fixed $\bar{g}^{2}(L)$
- propagate errors from $\bar{g}^{2}(L)$, shift mean values if necessary
$\longrightarrow \Sigma, \delta \Sigma$

Example continuum extrapolation of step scaling functions

Continuum extrapolations of $\sigma(u)=\Sigma(u, 0), N_{\mathrm{f}}=3$

The β-function from the step scaling function

$$
\int_{g(\mu)}^{\sigma(g(\mu))} \frac{-1}{\beta(x)} \mathrm{d} x=\log (2)
$$

The β-function from the step scaling function

$$
\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} \frac{-1}{\beta(x)} \mathrm{d} x=\log (2)
$$

The β-function from the step scaling function

$$
\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} \frac{-1}{\beta(x)} \mathrm{d} x=\log (2)
$$

- smooth fit function for $\beta(\mathbf{x})$

Non-perturbative β-functions for $\mathrm{N}_{\mathrm{f}}=3$ QCD

Non-perturbative β-functions for $\mathrm{N}_{\mathrm{f}}=3$ QCD

Non-perturbative β-functions for $\mathrm{N}_{\mathrm{f}}=3$ QCD

Overall strategy

$\alpha_{s}(\mu)$
$f_{\mathrm{K}}: K \rightarrow \ell \nu$ $f_{\pi}: \pi \rightarrow \ell \nu$
hadronic (low energy) scale

Overall strategy

$\alpha_{s}(\mu)$
$f_{K}: K \rightarrow \ell \nu$
$f_{\pi}: \mathbb{T} \rightarrow \ell \nu$$\quad$ hadronic (low energy) scale

Overall strategy

$$
\begin{gathered}
\alpha_{\mathrm{s}}(\mu) \mid \\
f_{\mathrm{K}}: K \rightarrow \ell \nu \\
f_{\pi}: \pi \rightarrow \ell \nu
\end{gathered}
$$

Overall strategy

Overall strategy

Overall strategy

$\alpha_{s}(\mu) \mid$ 1. hadronic (low energy) scale

1. Determination of hadronic scale: CLS Ensembles

- CLS Ensembles
- Large volume, large scale simulations, with theoretically well founded improved Wilson action
- coordinated between

CERN
MADRID
MAINZ
MILANO + ROMA
REGENSBURG
DESY, Standort ZEUTHEN

coordinated by S. Schaefer, Data management H. Simma

1. Determination of hadronic scale: CLS Ensembles

- finite L ...

simulated at common $\mathrm{g}_{0} \Leftrightarrow$ common lattice spacing a

Adding in c, b, t - quarks by perturbation theory (see later)

add charm
$\alpha_{s}(\mu)$
$0.4-$
$0.35-$
$0.3-$
$0.25-$
$0.2-$
$0.15-$
0.1
0.05
0
0
10

Weinberg (80),
Bernreuther\&Wetzel (82),

Chetyrkin, Kühn \& Sturm;
Schröder, Steinhauser (06)
5-loop β-fct:
Baikov, Chetyrkin, Kühn; Luthe, Maier, Marquard,
Schrl"oder (16)
add beauty

- 4-loop PT available
- adding fermion loops, "only"
- perturbative uncertainties are tiny

$$
\begin{array}{lll}
\alpha_{\overline{\mathrm{MS}}}\left(m_{\mathrm{Z}}\right) & \text { 1-loop: } 0.11701 \\
& 2 & 0.00128 \\
& 3 & 0.00019 \\
& 4 & 0.00006
\end{array}
$$

uncertainty
estimate $=0.00025$

Adding in c, b, t - quarks by perturbation theory (see later)

add charm
$\alpha_{\mathrm{s}}(\mu)$
0.4
$0.35-$
$0.3-$
$0.25-$
$0.2-$
$0.15-$
0.1
0.05
0
0
10

Weinberg (80),
Bernreuther\&Wetzel (82),

Chetyrkin, Kühn \& Sturm;
Schröder, Steinhauser (06)
5-loop β-fct:
Baikov, Chetyrkin, Kühn;
Luthe, Maier, Marquard,
Schrl"oder (16)
add beauty

- 4-loop PT available
- adding fermion loops, "only"
- perturbative uncertainties are tiny

$$
\begin{array}{ccc}
\alpha_{\overline{\mathrm{MS}}}\left(m_{\mathrm{Z}}\right) & \text { 1-loop: } 0.11701 \\
& 2 & 0.00128 \\
& 3 & 0.00019 \\
& 4 & 0.00006
\end{array}
$$

uncertainty
estimate $=0.00025$

Non-perturbative running of $\alpha_{S F}$

Finite volume schemes

Boundary conditions matter in finite volume. Which ones?
A most relevant criterion is zero modes

- Zero modes of gauge fields
\rightarrow perturbative expansion (+ MC)
- Zero modes of Dirac operator
\rightarrow HMC stability

Finite volume schemes

Gauge field zero modes

Path integral w.o. fermions

$$
\begin{aligned}
\langle O(U)\rangle & =\frac{1}{\mathcal{Z}} \int \mathrm{D}[U] \mathrm{e}^{-\beta \bar{S}(U)} O(U) \\
\bar{S}(U) & =\sum_{p} \operatorname{tr}(1-U(p)), \quad \beta=\frac{6}{g_{0}^{2}}
\end{aligned}
$$

PT, sketchy

$$
\begin{aligned}
\beta \rightarrow \infty \quad & U \approx U_{\min } \equiv V \text { dominates (classical solution) } \\
& U(x, \mu)=V(x, \mu) \mathrm{e}^{\overline{\mathrm{b}}_{\mu}(x) T^{b}}, \quad \bar{q}_{\mu}^{b}(x) \ll 1, \quad \int \mathrm{D}[U] \rightarrow \int \mathrm{D}[\bar{q}] \\
\bar{S}(U)= & \bar{S}(V)+\sum_{n, m} q_{m} K_{m n} q_{n}+\mathrm{O}\left(q^{3}\right), \quad q_{n}=\bar{q}_{\mu}^{b}(x), n=\left(\frac{x}{a}, \mu, b\right) \\
O(U)= & O(V)+\ldots
\end{aligned}
$$

Gauss intergrals \rightarrow Wick contractions ... IFF K has no zero modes ($K v=\lambda v, \lambda>0$)

Finite volume schemes

Generically there are zero modes
gauge modes \rightarrow gauge fixing

- finite volume modes (gauge invariant)
"Ground state metamorhosis"[Gonzales Arroyo, Jurkiewicz, Korthals-Ates] with periodic BC's

Finite volume schemes

Ground state metamorphosis

Toy example: $\mathrm{SU}(2), L^{4}, L=a$ lattice, $\mathrm{PBC}, d=2$, single point

- $\bar{S}=2-\operatorname{tr}\left(U_{2} U_{1} U_{2}^{\dagger} U_{1}^{\dagger}\right)$
- $\operatorname{tr} U_{i}$ is gauge invariant, U_{i} can't be gauged away
- minima: $U_{1}=U_{2}=V \ldots$ pick $U_{1}=U_{2}=1$.
- fluctuations $U_{i}=\mathrm{e}^{i \sigma^{b} q_{i}^{b}}$

$$
\bar{S}=2-\operatorname{tr}^{i \sigma^{b} q_{2}^{b}} \mathrm{e}^{i \sigma^{b} q_{1}^{b}} \mathrm{e}^{-i \sigma^{b} q_{2}^{b}} \mathrm{e}^{-i \sigma^{b} q_{1}^{b}}=\mathrm{O}\left(q^{4}\right) \quad \rightarrow K=0
$$

- $q=\mathrm{O}\left(\beta^{-1 / 4}\right)=\mathrm{O}\left(g_{0}^{1 / 2}\right)$

PT in powers of g_{0}, not g_{0}^{2} NOT regular

- In general: mixture of gaussian and non-gaussian modes integrate over non-gaussian ones exactly ... complicated, non-universal β-function it can be worse, divergent behavior, $1 / \log (g)$ terms , see [Nogradi etal. 2012]
- think of these U_{i} as Polyakov loops \rightarrow relevant for 4-d gauge theory. "Ground state metamorhosis" $[$ Gonzales Arrove, Jurkiewicz, Korthals-Altes]

Finite volume schemes

$$
V(x, \mu)=1, \quad \text { PBC: } \psi(x+L \hat{\mu})=\psi(x)
$$

massless Dirac operator has a zero mode (constant mode, $p=0$) easily fixed by

$$
\psi(x+L \hat{\mu})=\mathrm{e}^{i \alpha} \psi(x)
$$

e.g. $\alpha=\pi / 2$ in $\operatorname{SU}(2), \alpha=\pi / 3$ in $\operatorname{SU}(3)$

Exercise: why these values of α ?

Finite volume schemes

Schrödinger functional

Boundary conditions

- Space: PBC
- Time: Dirichlet, breaks translation invariance!

Yang Mills theory [Luscher, Narayanan, Weisz \& Wolff]:

$$
\begin{aligned}
\mathcal{Z}\left(V, V^{\prime}\right) & =\int \mathrm{D}(U)_{\text {inside }} \mathrm{e}^{-S_{\mathrm{SF}}(U)} \\
S_{\mathrm{SF}}(U) & =\sum_{p \text { inside }} \beta \operatorname{tr}(1-U(p)), \quad U(x, k)= \begin{cases}V(\mathbf{x}, k) & x_{0}=0 \\
V^{\prime}(\mathbf{x}, k) & x_{0}=T\end{cases}
\end{aligned}
$$

Standard introduction of Hilbert space, transfer matrix:

$$
\mathcal{Z}\left(V, V^{\prime}\right)=\left\langle V^{\prime}\right| \underbrace{e^{-\hat{H} T}}_{\mathbb{T}^{T} / a} \underbrace{\mathbb{P}_{0}}_{\substack{\uparrow \\ \text { projector onto gauge invariant states }}}|V\rangle, \quad \hat{U}(\mathbf{x}, k)|U\rangle=U(\mathbf{x}, k)|U\rangle
$$

$\mathcal{Z}\left(V, V^{\prime}\right)=$ Euclidean time propagation kernel by time $T=$ Schrödinger functional

Finite volume schemes

Schrödinger functional : quarks

Wilson Dirac operator (also others are possible)

$$
\begin{aligned}
& D_{\mathrm{W}}=\frac{1}{2}\left\{\gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-a \nabla_{\mu}^{*} \nabla_{\mu}\right\} \\
& \nabla_{\mu} \psi(x)=\frac{1}{a}[U(x, \mu) \psi(x+a \hat{\mu})-\psi(x)] \\
& \nabla_{\mu}^{*} \psi(x)=\frac{1}{a}\left[\psi(x)-U(x-a \hat{\mu}, \mu)^{-1} \psi(x-a \hat{\mu})\right]
\end{aligned}
$$

Schrödinger functional action

$$
\begin{aligned}
S_{\mathrm{F}}= & a^{4} \sum_{x} \bar{\psi}(x)\left[m_{0}+D_{\mathrm{W}}\right] \psi(x), \\
\text { with } & \psi(x)=0, \bar{\psi}(x)=0 \text { for } x_{0} \leq 0, \text { and } x_{0} \geq T
\end{aligned}
$$

In the continuum theory this corresponds to BC's [sint, 1994]

$$
\begin{array}{lll}
\left.P_{+} \psi(x)\right|_{x_{0}=0}=0 & \left.\bar{\psi}(x) P_{-}\right|_{x_{0}=0}=0 & P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0}\right) \\
\left.P_{-} \psi(x)\right|_{x_{0}=T}=0 & \left.\bar{\psi}(x) P_{+}\right|_{x_{0}=T}=0
\end{array}
$$

These BC's are stable: emerge in the cont. limit without fine-tuning. Universality! [Luscher, 2006] The Universality class is characterised by Parity invariance, discrete rot. invariance (not chiral symm).

Finite volume schemes

Correlation functions can be formed with the usual fields in the interior (bulk) and the boundary quark fields

$$
\begin{array}{cl}
\zeta(\mathbf{x})=\left.P_{-} U(x, 0) \psi(x+a \hat{0})\right|_{x_{0}=0} & \bar{\zeta}(\mathbf{x})=\left.\bar{\psi}(x+a \hat{0}) P_{+} U(x, 0)^{-1}\right|_{x_{0}=0} \\
\zeta^{\prime}(\mathbf{x})=\left.P_{+} U(x-a \hat{0}, 0)^{-1} \psi(x-a \hat{0})\right|_{x_{0}=T} & \bar{\zeta}^{\prime}(\mathbf{x})=\left.\bar{\psi}(x-a \hat{0}) P_{-} U(x-a \hat{0}, 0)\right|_{x_{0}=T}
\end{array}
$$

A very interesting feature of these is that one can form correlation functions where the quark fields are projected to $\mathbf{p}=0$. (Note that the gauge fields at the boundaries are fixed).

$$
\begin{aligned}
f_{\mathrm{P}}^{r s}\left(x_{0}\right) & =a^{6} \sum_{\mathbf{v}, \mathbf{y}}\left\langle\bar{\zeta}_{s}(\mathbf{v}) \gamma_{5} \zeta_{r}(\mathbf{y}) P^{r s}(x)\right\rangle \\
P^{r s}(x) & =\bar{\psi}_{r}(x) \gamma_{5} \psi_{s}(x)
\end{aligned}
$$

Finite volume schemes

boundary quark fields

$$
\begin{array}{cl}
\zeta(\mathbf{x})=\left.P_{-} U(x, 0) \psi(x+a \hat{0})\right|_{x_{0}=0} & \bar{\zeta}(\mathbf{x})=\left.\bar{\psi}(x+a \hat{0}) P_{+} U(x, 0)^{-1}\right|_{x_{0}=0} \\
\zeta^{\prime}(\mathbf{x})=\left.P_{+} U(x-a \hat{0}, 0)^{-1} \psi(x-a \hat{0})\right|_{x_{0}=T} & \bar{\zeta}^{\prime}(\mathbf{x})=\left.\bar{\psi}(x-a \hat{0}) P_{-} U(x-a \hat{0}, 0)\right|_{x_{0}=T}
\end{array}
$$

These boundary quark fields renormalize multiplicatively.

$$
\zeta_{\mathrm{R}}(\mathbf{x})=Z_{\zeta} \zeta(\mathbf{x}), \ldots, \bar{\zeta}_{\mathrm{R}}^{\prime}=Z_{\zeta} \bar{\zeta}^{\prime}(\mathbf{x})
$$

Define also boundary-to-boundary correlation functions

$$
f_{1}^{r s}=\frac{a^{12}}{L^{6}} \sum_{\mathbf{v}, \mathbf{y}, \mathbf{u}, \mathbf{x}}\left\langle\bar{\zeta}_{s}(\mathbf{v}) \gamma_{5} \zeta_{r}(\mathbf{y}) \bar{\zeta}_{r}^{\prime}(\mathbf{u}) \gamma_{5} \zeta_{s}^{\prime}(\mathbf{x})\right\rangle
$$

Then

$$
\left(f_{1}^{r s}\right)_{\mathrm{R}}=Z_{\zeta}^{4}\left(f_{1}^{r s}\right), \quad\left(f_{\mathrm{P}}^{r s}\left(x_{0}\right)\right)_{\mathrm{R}}=Z_{\zeta}^{2} Z_{\mathrm{P}}\left(f_{\mathrm{P}}^{r s}\left(x_{0}\right)\right)
$$

Finite volume schemes

- Regular PT (no gauge field zero modes)
- Gap for Dirac operators
- Momentum zero boundary quark fields (spatially one takes pbc up to a phase, cf "flavor twisted bc")
- Schrödinger functional coupling defined with non-trivial V, V^{\prime} β-function known to 3-loops [Lnww: Lw; Bode, Weisz, Wolfi]

Finite volume schemes

- Regular PT (no gauge field zero modes)
- Gap for Dirac operators
- Momentum zero boundary quark fields (spatially one takes pbc up to a phase, cf "flavor twisted bc")
- Schrödinger functional coupling defined with non-trivial V, V^{\prime} β-function known to 3-loops [Lnww; Lw; Bode, Weisz, Wolff]
- We can define Z-factors (schemes) for composite fields, e.g.

$$
Z_{\mathrm{P}}=\frac{1}{c(a / L)} \frac{\sqrt{f_{1}^{r s}}}{f_{\mathrm{P}}^{r s}(T / 2)}, \quad c(a / L)=\left.\frac{\sqrt{f_{1}^{r s}}}{f_{\mathrm{P}}^{r(T / 2)}}\right|_{g_{0}=0}
$$

Finite volume schemes

- Regular PT (no gauge field zero modes)
- Gap for Dirac operators
- Momentum zero boundary quark fields (spatially one takes pbc up to a phase, cf "flavor twisted bc")
- Schrödinger functional coupling defined with non-trivial V, V^{\prime} β-function known to 3-loops [Lnww; Lw; Bode, Weisz, Wolff]
- We can define Z-factors (schemes) for composite fields, e.g.

$$
Z_{\mathrm{P}}=\frac{1}{c(a / L)} \frac{\sqrt{f_{1}^{r s}}}{f_{\mathrm{P}}^{f_{s}^{s}}(T / 2)}, \quad c(a / L)=\left.\frac{\sqrt{f_{1}^{r s}}}{f_{\mathrm{P}}^{r s}(T / 2)}\right|_{g_{0}=0}
$$

- There is also a new SF coupling ...

Exercise

Consider the free Schrödinger functional , i.e. $U(x, \mu)=1$ with pbc in space for the fermions.

- Show that $f_{\mathrm{P}}\left(x_{0}\right)=$ constant for mass-less quarks. hints:
- write down the Wick-contraction in terms of the Schrödinger functional propagator
- note that it is apropriate to go to momentum space concerning the space components, but to remain in coordinate space concerning the time coordinates
- what is the the equation for the spatial $\mathbf{p}=0$ contribution to the propagator? note how it splits into $P_{ \pm}$pieces
- solve the equation by "inspection", iteration
- obtain the result for arbitrary quark mass
- Could this result be guessed by dimensional reasoning?

Gradient Flow and SF-coupling

- Gradient flow [Luscher, 2010; Luscher \& Weisz, 2011]
new observables
- UV finite (proven to all orders of PT)
- excellent numerical precision
- renormalized coupling in finite volume with pbc [вмш, 2012]
- Flow in finite volume, SF [p. Fritzsch \& Ramos, arxiv: 1301.4388]
- lowest order PT to define a new coupling
- numerical investigation shows excellent precision
- Flow with gauge fields AND quark fields [Lüscher,arxiv: 1302.5246]
- General idea

$$
\begin{aligned}
& x=\left(x_{0}, \mathbf{x}\right), \quad t=\text { flow time } \\
& A_{\mu}(x)=\text { quantum gauge fields : } \mathcal{Z}=\int \mathrm{D}\left[A_{\mu}(x)\right] \ldots \\
& B_{\mu}(x, t)=\text { smoothed gauge fields }, \quad B_{\mu}(x, 0)=A_{\mu}(x) \\
& \frac{\mathrm{d} B_{\mu}(x, t)}{\mathrm{d} t}=D_{\nu} G_{\nu \mu}(x, t)+\text { gauge fixing } \\
& \sim-\frac{\delta S_{Y M}[B]}{\delta B_{\mu}}
\end{aligned}
$$

correlation functions of B-fields at arbitrary points are finite

Gradient Flow

- in PT: $A_{\mu}(x)=g_{0} \bar{A}_{\mu}(x)$

$$
\begin{aligned}
B_{\mu}(x, t)= & B_{\mu, 1}(x, t) g_{0}+B_{\mu, 2}(x, t) g_{0}^{2}+\ldots \\
& G_{\nu \mu}=\left[\partial_{\nu} B_{\mu, 1}-\partial_{\mu} B_{\nu, 1}\right] g_{0}+\mathrm{O}\left(g_{0}^{2}\right), \quad D_{\nu}=\partial_{\nu}+\mathrm{O}\left(g_{0}\right) \\
\rightarrow \quad \dot{B}_{\mu, 1}(x, t)= & \partial_{\nu} \partial_{\nu} B_{\mu, 1}(x, t)
\end{aligned}
$$

- heat equation

$$
\begin{aligned}
B_{\mu, 1}(x, t)= & \int \mathrm{d}^{D} p \mathrm{e}^{i p x} b_{\mu}(p, t) \\
& \dot{b}_{\mu}=-p^{2} b_{\mu} \rightarrow b_{\mu}(p, t)=b_{\mu}(p, 0) \mathrm{e}^{-p^{2} t} \\
B_{\mu, 1}(x, t)= & \int \mathrm{d}^{D} y K_{t}(x-y) \bar{A}_{\mu}(y), \quad K_{t}(z)=(4 \pi t)^{-D / 2} \mathrm{e}^{-z^{2} /(4 t)}
\end{aligned}
$$

- smoothing over a radius of $\sqrt{8 t}$
- gaussian damping of large momenta

Gradient Flow

\Rightarrow in PT: $A_{\mu}(x)=g_{0} \bar{A}_{\mu}(x)$

$$
\begin{aligned}
B_{\mu}(x, t)= & B_{\mu, 1}(x, t) g_{0}+B_{\mu, 2}(x, t) g_{0}^{2}+\ldots \\
& G_{\nu \mu}=\left[\partial_{\nu} B_{\mu, 1}-\partial_{\mu} B_{\nu, 1}\right] g_{0}+\mathrm{O}\left(g_{0}^{2}\right), \quad D_{\nu}=\partial_{\nu}+\mathrm{O}\left(g_{0}\right) \\
\rightarrow \quad \dot{B}_{\mu, 1}(x, t)= & \partial_{\nu} \partial_{\nu} B_{\mu, 1}(x, t)
\end{aligned}
$$

- heat equation

$$
\begin{aligned}
B_{\mu, 1}(x, t)= & \int \mathrm{d}^{D} p \mathrm{e}^{i p x} b_{\mu}(p, t) \\
& \dot{b}_{\mu}=-p^{2} b_{\mu} \rightarrow b_{\mu}(p, t)=b_{\mu}(p, 0) \mathrm{e}^{-p^{2} t} \\
B_{\mu, 1}(x, t)= & \int \mathrm{d}^{D} y K_{t}(x-y) \bar{A}_{\mu}(y), \quad K_{t}(z)=(4 \pi t)^{-D / 2} \mathrm{e}^{-z^{2} /(4 t)}
\end{aligned}
$$

- smoothing over a radius of $\sqrt{8 t}$
- gaussian damping of large momenta
- all correlation functions of B_{μ} are finite $(t>0)$ [Luscher \& Weisz, 2011] in particular $\langle E(t)\rangle, \quad E(t)=-\frac{1}{2} \operatorname{tr} G_{\mu \nu} G_{\mu \nu}$

Gradient Flow

Yang-Mills theory

- order by order iteration:

$$
\begin{aligned}
& B_{\mu}(x, t)=\sum_{k} B_{\mu, n}(x, t) g_{0}^{k} \\
& \dot{B}_{\mu, k}(x, t)-\partial_{\nu} \partial_{\nu} B_{\mu, k}(x, t)=R_{\mu, k} \\
& R_{\mu, 1}=0, \quad B_{\mu, 1}(x, t)=\int \mathrm{d}^{D} y K_{t}(x-y) \bar{A}_{\mu}(y) \\
& R_{\mu, 2}=2\left[B_{\nu, 1}, \partial_{\nu} B_{\mu, 1}\right]-\left[B_{\nu, 1}, \partial_{\mu} B_{\nu, 1}\right] \\
& R_{\mu, 3}=2\left[B_{\nu, 2}, \partial_{\nu} B_{\mu, 1}\right]+2\left[B_{\nu, 1}, \partial_{\nu} B_{\mu, 2}\right] \\
& \quad \quad-\left[B_{\nu, 2}, \partial_{\mu} B_{\nu, 1}\right]-\left[B_{\nu, 1}, \partial_{\mu} B_{\nu, 2}\right]+\left[B_{\nu, 1},\left[B_{\nu, 1}, B_{\mu, 1}\right]\right], \\
& \ldots \\
& B_{\mu, k}(t, x)=\int_{0}^{t} \mathrm{~d} s \int \mathrm{~d}^{D} y K_{t-s}(x-y) R_{\mu, k}(s, y) \quad k>1
\end{aligned}
$$

Gradient Flow

Yang－Mills theory

－order by order iteration：

$$
\begin{aligned}
& B_{\mu}(x, t)=\sum_{k} B_{\mu, n}(x, t) g_{0}^{k} \\
& \dot{B}_{\mu, k}(x, t)-\partial_{\nu} \partial_{\nu} B_{\mu, k}(x, t)=R_{\mu, k} \\
& R_{\mu, 1}=0, \quad B_{\mu, 1}(x, t)=\int \mathrm{d}^{D} y K_{t}(x-y) \bar{A}_{\mu}(y) \\
& R_{\mu, 2}=2\left[B_{\nu, 1}, \partial_{\nu} B_{\mu, 1}\right]-\left[B_{\nu, 1}, \partial_{\mu} B_{\nu, 1}\right], \\
& R_{\mu, 3}=2\left[B_{\nu, 2}, \partial_{\nu} B_{\mu, 1}\right]+2\left[B_{\nu, 1}, \partial_{\nu} B_{\mu, 2}\right] \\
& \quad \quad-\left[B_{\nu, 2}, \partial_{\mu} B_{\nu, 1}\right]-\left[B_{\nu, 1}, \partial_{\mu} B_{\nu, 2}\right]+\left[B_{\nu, 1},\left[B_{\nu, 1}, B_{\mu, 1}\right]\right], \\
& \ldots \\
& B_{\mu, k}(t, x)=\int_{0}^{t} \mathrm{~d} s \int \mathrm{~d}^{D} y K_{t-s}(x-y) R_{\mu, k}(s, y) \quad k>1
\end{aligned}
$$

－For $\langle E\rangle, E=-\frac{1}{2} \operatorname{tr} G_{\mu \nu} G_{\mu \nu}$

$$
\begin{aligned}
\langle E\rangle= & E_{0} g_{0}^{2}+E_{0} g_{0}^{4}+\ldots \\
E_{0}= & \left\langle\operatorname{tr}\left[\partial_{\mu} B_{\nu, 1} \partial_{\mu} B_{\nu, 1}-\partial_{\mu} B_{\nu, 1} \partial_{\nu} B_{\mu, 1}\right]\right\rangle \\
& \sim \int_{p} \mathrm{e}^{-p^{2} 2 t}\left[p^{2} \delta_{\mu \nu}-p_{\mu} p_{\nu}\right] D_{\mu \nu}(p) \text { finite (also with cutoff reg'n)! }
\end{aligned}
$$

Gradient Flow and SF-coupling

use the flow in SF: $T \times L^{3}$ world with Dirichlet BC in time, $T=L$ define

$$
\begin{aligned}
\langle E(t)\rangle & \equiv-\frac{1}{2}\left\langle\operatorname{tr} G_{\mu \nu} G_{\mu \nu}(x, t)\right\rangle_{x_{0}=T / 2}=\frac{\mathcal{N}}{t^{2}} \bar{g}_{\mathrm{MS}}^{2}(\mu)\left(1+c_{1} \bar{g}_{\mathrm{MS}}^{2}+\ldots\right) \\
\bar{g}_{\mathrm{GF}}^{2}(L) & \left.\equiv \mathcal{N}^{-1} t^{2}\langle E(t)\rangle\right|_{t=c^{2} L^{2} / 8}
\end{aligned}
$$

This is a family of schemes characterized by c (dimensionless)

Gradient Flow and SF-coupling

use the flow in SF: $T \times L^{3}$ world with Dirichlet BC in time, $T=L$ define

$$
\begin{aligned}
\langle E(t)\rangle & \equiv-\frac{1}{2}\left\langle\operatorname{tr} G_{\mu \nu} G_{\mu \nu}(x, t)\right\rangle_{x_{0}=T / 2}=\frac{\mathcal{N}}{t^{2}} \bar{g}_{\mathrm{MS}}^{2}(\mu)\left(1+c_{1} \bar{g}_{\mathrm{MS}}^{2}+\ldots\right) \\
\bar{g}_{\mathrm{GF}}^{2}(L) & \left.\equiv \mathcal{N}^{-1} t^{2}\langle E(t)\rangle\right|_{t=c^{2} L^{2} / 8}
\end{aligned}
$$

This is a family of schemes characterized by c (dimensionless)

$$
\begin{aligned}
\mathcal{N}(c)= & \frac{c^{4}\left(N^{2}-1\right)}{128} \sum_{\mathbf{n}, n_{0}} e^{-c^{2} \pi^{2}\left(\mathbf{n}^{2}+\frac{1}{4} n_{0}^{2}\right)} \\
& \times \frac{2 \mathbf{n}^{2} s_{n_{0}}^{2}(T / 2)+\left(\mathbf{n}^{2}+\frac{3}{4} n_{0}^{2}\right) c_{n_{0}}^{2}(T / 2)}{\mathbf{n}^{2}+\frac{1}{4} n_{0}^{2}}
\end{aligned}
$$

- the lattice version is known (and needed)

Gradient Flow and SF-coupling

statistical precision: variance

$$
\text { relative variance }=\frac{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}}{\langle E\rangle^{2}}
$$

should be finite as $a \rightarrow 0, L / a \rightarrow \infty$
Numerically, Fritzsch \& Ramos:

Gradient Flow and SF-coupling

statistical precision

autocorrelations scale as expected: $\tau_{\text {int }} \propto a^{-2}$

Statistical precision is good and theoretically understood. There will be no surprises on the way to the continuum limit.

