N_f dependence and decoupling

- NP computations typically have only 2+1 (or 2+1+1) quark flavors
- What about charm, bottom, top?
 - "decoupling"
 - "matching at thresholds"
 - "active flavors"
 - "flavor number schemes"
- Iet us discuss what this means

$$\frac{1}{C_{\rm F}} r^2 F(r) = \alpha_{\rm qq} (1/r, \{z_i\}) = \alpha_{\rm \overline{MS}} (1/r) + [f_{1,g} + \sum_{i=1}^{N_f} f_{1,f}(z_i)] \alpha_{\rm \overline{MS}}^2 (1/r) + O(\alpha_{\rm \overline{MS}}^3) , z_i = \overline{m}_i r$$

$$f_{1,g} = \frac{3}{\pi} \left[-\frac{35}{36} + \frac{11}{6} \gamma_E \right],$$

$$f_{1,f}(z) = \frac{1}{2\pi} \left[\frac{1}{3} \log(z^2) + \frac{2}{3} \int_1^\infty dx \frac{1}{x^2} \sqrt{x^2 - 1} \left(1 + \frac{1}{2x^2} \right) \left(1 + 2zx \right) e^{-2zx} \right],$$

≣

Naively one may think a heavy quark does not matter for large z and

This is because a mass-independent renormalization scheme is used. Large mass physics and small mass physics enter together. Consider only $r \gg 1/m$ physics:

$$r\partial_r \bar{g}_{qq}^2(1/r, \{z_i\})\big|_{m_i} = 4\pi r\partial_r \alpha_{qq}(1/r, \{z_i\})\big|_{m_i}$$

• Consider only
$$r \gg 1/m$$
 physics:

$$f_{1,f}(z) \stackrel{z \gg 1}{\sim} \frac{1}{6\pi} \log(z^2)$$

$$r\partial_r \bar{g}_{qq}^2 (1/r, \{z_i\}) \Big|_{m_i} = -2\bar{g}_{\overline{MS}}(1/r)\beta_{\overline{MS}}(\bar{g}_{\overline{MS}}(1/r)) + \bar{g}_{\overline{MS}}^4 (1/r) r\partial_r \sum_{i=1}^{N_f} \frac{f_{1,f}(z_i)}{4\pi} + O(g^6)$$

$$= 2b_0 \bar{g}_{\overline{MS}}^4 + \bar{g}_{\overline{MS}}^4 r \partial_r \sum_{i=1}^{N_f} \frac{f_{1,f}(z_i)}{4\pi} + O(g^6)$$

now: $z_i = 0$, $i = 1, ..., N_\ell = N_f - 1$, $z_{N_f} \gg 1$

$$= 2\bar{g}_{\overline{MS}}^{4} \frac{1}{(4\pi)^{2}} \left[11 - \frac{2}{3}(N_{f} - 1)\right] + O(g^{6})$$

$$= -2\bar{g}_{\overline{MS}}(1/r)\beta_{\overline{MS}}^{(N_{f} - 1)}(\bar{g}_{\overline{MS}}(1/r, m = 0)) + \dots$$

effectively

physics at
$$r \gg 1/m_{N_{\rm f}} =: M$$
 : $N_{\ell} = N_{\rm f} - 1$ flavor QCD = EFT

• Consider only
$$r \gg 1/m$$
 physics:

$$f_{1,f}(z) \stackrel{z \gg 1}{\sim} \frac{1}{6\pi} \log(z^2)$$

$$r\partial_r \bar{g}_{qq}^2 (1/r, \{z_i\}) \Big|_{m_i} = -2\bar{g}_{\overline{MS}}(1/r)\beta_{\overline{MS}}(\bar{g}_{\overline{MS}}(1/r)) + \bar{g}_{\overline{MS}}^4 (1/r) r\partial_r \sum_{i=1}^{N_f} \frac{f_{1,f}(z_i)}{4\pi} + O(g^6)$$

$$= 2b_0 \bar{g}_{\overline{MS}}^4 + \bar{g}_{\overline{MS}}^4 r \partial_r \sum_{i=1}^{N_f} \frac{f_{1,f}(z_i)}{4\pi} + O(g^6)$$

now: $z_i = 0, \quad i = 1, \dots, N_\ell = N_f - 1, \quad z_{N_f} \gg 1$

$$= 2\bar{g}_{\overline{MS}}^4 \frac{1}{(4\pi)^2} [11 - \frac{2}{3}(N_f - 1)] + O(g^6)$$

$$= -2\bar{g}_{\overline{MS}}(1/r)\beta_{\overline{MS}}^{(N_f - 1)}(\bar{g}_{\overline{MS}}(1/r, m = 0)) + \dots$$

effectively

physics at
$$r \gg 1/m_{N_{\rm f}} =: M$$
 : $N_{\ell} = N_{\rm f} - 1$ flavor QCD = EFT

• Consider only $r \gg 1/m$ physics:

 $f_{1,f}(z) \stackrel{z \gg 1}{\sim} \frac{1}{6\pi} \log(z^2)$

 $r\partial_r \bar{g}_{qq}^2(1/r, \{z_i\})\Big|_{m_i} = -2\bar{g}_{\overline{MS}}(1/r)\beta_{\overline{MS}}^{(N_f-1)}(\bar{g}_{\overline{MS}}(1/r, m=0)) + \dots$

effectively

physics at $r \gg 1/m_{N_{\rm f}} =: M$: $N_{\ell} = N_{\rm f} - 1$ flavor QCD = EFT

The contribution from $f_{1,f}(z) \stackrel{z \gg 1}{\sim} \frac{1}{6\pi} \log(z^2)$ is exactly necessary such that the heavy quark decouples at large r

From the discussion at this order it is not clear how the coupling of the $N_{\ell} = N_{\rm f} - 1$ effective theory is related to the fundamental one $\bar{g}_{\overline{\rm MS}}^{(N_{\rm f})}$, but it is clear they are related. We will come back to how.

Ξ

In original (fundamental) theory the perturbative expression has

 $\bar{g}^{2n}[\log(z)]^m$

terms. It is unreliable/useless for $z \gg 1$.

- ▶ need to resum: done by EFT (\approx renormalisation group improvement for the leading order in $1/m^2$)
- note that the need for resummation is a problem of perturbation theory only
- EFT description expected to hold beyond PT Weinberg theorem (unproven but established)

local effective Lagrangian $N_{\ell} \neq 1$, M mass of the heavy quark

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}_{N_{\ell}}} + \frac{1}{M^2} \sum_{i} \omega_i \Phi_i + \dots$$
$$\Phi_1 = \frac{1}{g_0^2} \operatorname{tr} \left(D_{\mu} F_{\nu\rho} D_{\mu} F_{\nu\rho} \right), \quad \Phi_2 = i \sum_{r=1}^{N_{\ell}} m_r \overline{\psi}_r \sigma_{\mu\nu} F_{\mu\nu} \psi_r, \quad \dots$$

 $\begin{array}{ll} \blacktriangleright & \mathcal{S} \in \{q, 1/r, \Lambda\}, \quad \mathcal{S} \ll M : \mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{QCD}_{N_{\ell}}} \\ \text{up to small } (\mathcal{S}/M)^2 \text{ corrections; drop them} \end{array}$

Matching at "thresholds"

- Leading order EFT $\mathcal{L}_{eff} = \mathcal{L}_{QCD_{N_{\rho}}}$
- neglecting light masses, only parameter is $\overline{g}_{\overline{MS}}^{\ell}$
- it has to be a function of $\overline{g}_{\overline{MS}}^{\mathrm{f}}$ and $\overline{m}_{N_{\mathrm{f}}} =: \overline{m}$

it is

$$\left[\overline{g}_{\overline{\mathrm{MS}}}^{\ell}(m_{\star})\right]^{2} = \left[\overline{g}_{\overline{\mathrm{MS}}}^{\mathrm{f}}(m_{\star})\right]^{2} \times C(\overline{g}_{\overline{\mathrm{MS}}}^{\mathrm{f}}(m_{\star})).$$

with

$$C(x) = 1 + c_2 x^4 + c_3 x^6 + \dots$$

 $c_1 = 0$ due to choice $\mu = m_\star$ with $\overline{m}_{\overline{\mathrm{MS}}}(m_\star) = m_\star$ clearly

$$\begin{array}{ccc} \overline{g}_{\overline{\mathrm{MS}}}^{\ell} & \Longleftrightarrow & \overline{g}_{\overline{\mathrm{MS}}}^{\mathrm{f}} \\ & \updownarrow & & \updownarrow \\ & & \uparrow \\ & \Lambda_{\overline{\mathrm{MS}}}^{\ell} & \Longleftrightarrow & \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}} \end{array}$$

• therefore with $M = \phi_m(\overline{g}(\mu))\overline{m}(\mu)$:

$$\Lambda_{\overline{\mathrm{MS}}}^{\ell} = \Lambda_{\overline{\mathrm{MS}}}^{\ell}(M, \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}) = P_{\ell,\mathrm{f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}) \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}$$

$$\Lambda_{\overline{\mathrm{MS}}}^{\ell} = P_{\ell,\mathrm{f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}})\,\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}$$

For completeness the formula for $P_{\ell,f}$ is

$$P_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}) = \frac{\varphi_{\mathrm{\overline{MS}}}^{\ell} \left(g_{\star} \sqrt{C(g_{\star})}\right)}{\varphi_{\mathrm{\overline{MS}}}^{\mathrm{f}}(g_{\star})} ,$$

$$g_{\star} = \bar{g}_{\overline{\text{MS}}}(m_{\star}) \text{ as solution of}$$

$$\frac{\Lambda_{\overline{\text{MS}}}^{\text{f}}}{M} = \frac{(b_0 g_{\star}^2)^{-b_1/(2b_0^2)}}{(2b_0 g_{\star}^2)^{-d_0/(2b_0)}} e^{-1/(2b_0 g_{\star}^2)}$$

$$\times \exp\left\{-\int_0^{g_{\star}(M/\Lambda)} \mathrm{d}x \, \left[\frac{1-\tau_{\text{f}}(x)}{\beta_{\text{f}}(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} + \frac{d_0}{b_0 x}\right]\right\}$$

Accuracy of perturbation theory

- Iooking just at PT intrinsic error: 0.1% at charm
- for ratio of Λ-parameters
- But can PT be trusted at the charm? 1GeV
 - yes, for this case. I show a test later.

Therefore we can add in c, b, t - quarks by perturbation theory

Therefore we can add in c, b, t - quarks by perturbation theory

Surprising factorization formula

Let us be very carful and put a mass-scale in to make things dimensionless.

$$P_{\ell,\mathrm{f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}) \frac{\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}}{\mathcal{S}^{\mathrm{f}}(M)} = \frac{\Lambda_{\overline{\mathrm{MS}}}^{\ell}}{\mathcal{S}^{\ell}}$$

multiply with
$$\frac{S^{f}(0)}{\Lambda_{\overline{MS}}^{f}}$$
then

$$P_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}) \, \frac{\mathcal{S}^{\mathrm{f}}(0)}{\mathcal{S}^{\mathrm{f}}(M)} = \frac{\Lambda_{\mathrm{\overline{MS}}}^{\ell}}{\mathcal{S}^{\ell}} \frac{\mathcal{S}^{\mathrm{f}}(0)}{\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}}$$

or

$$\frac{\mathcal{S}^{\mathrm{f}}(M)}{\mathcal{S}^{\mathrm{f}}(0)} = Q_{\ell,\mathrm{f}}^{\mathcal{S}} \times P_{\ell,\mathrm{f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}), \qquad Q_{\ell,\mathrm{f}}^{\mathcal{S}} = \frac{\Lambda_{\overline{\mathrm{MS}}}^{\ell}/\mathcal{S}^{\ell}}{\Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}/\mathcal{S}^{\mathrm{f}}(0)}$$

Now take as an example $S = m_{\text{proton}}$, and $N_{\ell} = 3$, $m_4 = m_{\text{charm}}$, then we conclude that the charm-mass-dependence of the proton mass can be computed perturbatively and is the same as e.g. the charm-mass dependence of, e.g., F_{π} .

A little algebra yields

$$\eta \equiv \frac{M_{\text{charm}}}{m_{\text{proton}}} \left. \frac{\partial m_{\text{proton}}}{\partial M_{\text{charm}}} \right|_{\Lambda_{\overline{\text{MS}}}^{\text{f}}} = 1 - \frac{b_0(N_{\text{f}})}{b_0(N_{\ell})} + \mathcal{O}(g^2(M_{\text{charm}})) = 0.074 + \mathcal{O}(g^2) \,,$$

Rainer Sommer

Mass scaling function evaluated by NP MC in a model: $N_f=2 -> 0$

$$\eta^{\mathrm{M}}(\overline{M}) \approx \frac{\log(m^{\mathrm{had}}(M_2)/m^{\mathrm{had}}(M_1))}{\log(M_2/M_1)}$$
$$\overline{M} = \sqrt{M_2M_1}$$

$$-\frac{\mu}{2t_0}\frac{\mathrm{d}t_0}{\mathrm{d}\mu} = \eta^{\mathrm{M}}(M) \qquad \qquad \mathsf{M}=\mathsf{Z}\ \mu$$
$$\mu = \mathsf{twisted\ mass}$$

Athenodorou, Finkenrath, Knechtli, Korzec, Leder, Marinkovic, S.,

precise confirmation of PT at charm

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

 $\Delta \log \left[P_{\rm l,f}(M/\Lambda_{\rm f}) \right] = 0.004.$

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

 $\Delta \log \left[P_{\rm l,f}(M/\Lambda_{\rm f}) \right] = 0.004.$

0.4% precision for Λ_4 / Λ_3 (decoupling two charm quarks)

~0.2% decoupling one charm q.

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

 $\Delta \log \left[P_{\rm l,f}(M/\Lambda_{\rm f}) \right] = 0.004.$

from the determined mass-effect in Nf=2 can predict Λ_2 / Λ_0 w. precision

$$\frac{\Lambda_{\overline{\mathrm{MS}}}\sqrt{t_0(0)}\Big|_{N_{\mathrm{f}}=2}}{\Lambda_{\overline{\mathrm{MS}}}\sqrt{t_0}\Big|_{N_{\mathrm{l}}=0}} = 1.134(17)$$

What about power corrections?

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

 $\Delta \log \left[P_{\rm l,f}(M/\Lambda_{\rm f}) \right] = 0.004.$

from the determined mass-effect in Nf=2 can predict Λ_2 / Λ_0 w. precision

$$\frac{\Lambda_{\overline{\mathrm{MS}}}\sqrt{t_0(0)}\Big|_{N_{\mathrm{f}}=2}}{\Lambda_{\overline{\mathrm{MS}}}\sqrt{t_0}\Big|_{N_{\mathrm{l}}=0}} = 1.134(17)$$

Considered scales

static potential

force
$$F(r) = V'(r)$$
,
 r_0 defined by: $(r_0)^2 F(r_0) = 1.65$
 r_1 defined by: $(r_1)^2 F(r_1) = 1.0$

▶ Gradient flow observables: t₀, tc, w₀

Simulations

NP O(a)-improved Wilson, standard mass term

$\frac{T}{a} \times \left(\frac{L}{a}\right)^3$	eta	BC	κ	am	M/Λ	r_0/a	t_{0}/a^{2}	kMDU
64×32^3	5.3	р	0.13550	0.03405(8)	0.638(46)	5.903(36)	3.481(14)	1
64×32^3	5.3	р	0.13450	0.06979(7)	1.308(95)	5.193(20)	2.714(14)	2
64×32^3	5.3	р	0.13270	0.13873(8)	2.600(189)	4.270(6)	1.842(3)	2
120×32^3	5.5	0	0.136020	0.02467(4)	0.630(46)	8.49(12)	7.318(36)	8
120×32^3	5.5	0	0.135236	0.05022(3)	1.282(93)	7.580(44)	6.092(21)	8
96×48^3	5.5	р	0.133830	0.09614(2)	2.454(178)	6.787(19)	4.867(12)	4
192×48^3	5.7	0	0.136200	0.01691(2)	0.586(43)	11.48(24)	14.02(6)	4
192×48^3	5.7	0	0.135570	0.03683(2)	1.277(94)	10.53(12)	11.87(7)	4
192×48^3	5.7	0	0.134450	0.07209(2)	2.500(184)	9.50(5)	9.821(36)	8

Simulations

NP O(a)-improved Wilson, at maximal (mass) twist (same lattice spacings as un-twisted)

$\frac{T}{a} \times \left(\frac{L}{a}\right)^3$	eta	κ	$a\mu$	M/Λ	r_0/a	t_{0}/a^{2}	kMDU
120×32^3	5.300	0.136457	0.024505	0.5900	_	4.174(13)	4.3
120×32^3	5.500	0.1367749	0.018334	0.5900	8.77(15)	7.917(82)	8
192×48^3	5.700	0.136687	0.013713	0.5900	—	14.40(10)	5.8
120×32^3	5.500	0.1367749	0.039776	1.2800	8.010(62)	6.871(33)	8
192×48^3	5.700	0.136687	0.029751	1.2800	—	12.668(39)	16.2
120×32^3	5.500	0.1367749	0.077687	2.5000	7.392(62)	5.836(27)	8
192×48^3	5.700	0.136687	0.058108	2.5000	—	10.916(38)	9
192×48^3	5.600	0.136710	0.130949	4.8700	_	6.561(12)	16
120×32^3	5.700	0.136698	0.113200	4.8703	9.123(57)	9.104(36)	17.2
192×48^3	5.880	0.136509	0.087626	4.8700	11.946(55)	15.622(62)	23.1
192×48^3	6.000	0.136335	0.072557	4.8700	14.34(10)	22.39(12)	22.4
192×48^3	5.600	0.136710	0.155367	5.7781		6.181(11)	2.1
192×48^3	5.700	0.136687	0.1343	5.7781	—	8.565(31)	2.7
120×32^3	5.880	0.136509	0.103965	5.7781	_	14.916(93)	59.9

Simulations

NP O(a)-improved Wilson, at maximal (mass) twist (same lattice spacings as un-twisted)

$\frac{T}{a} \times \left(\frac{L}{a}\right)^3$	eta	κ	$a\mu$	M/Λ	r_0/a	t_{0}/a^{2}	kMDU
120×32^3	5.300	0.136457	0.024505	0.5900	_	4.174(13)	4.3
120×32^3	5.500	0.1367749	0.018334	0.5900	8.77(15)	7.917(82)	8
192×48^3	5.700	0.136687	0.013713	0.5900	_	14.40(10)	5.8
120×32^3	5.500	0.1367749	0.039776	1.2800	8.010(62)	6.871(33)	8
192×48^3	5.700	0.136687	0.029751	1.2800	—	12.668(39)	16.2
120×32^3	5.500	0.1367749	0.077687	2.5000	7.392(62)	5.836(27)	8
192×48^3	5.700	0.136687	0.058108	2.5000	_	10.916(38)	9
192×48^3	5.600	0.136710	0.130949	4.8700	_	6.561(12)	16
120×32^3	5.700	0.136698	0.113200	4.8703	9.123(57)	9.104(36)	17.2
192×48^3	5.880	0.136509	0.087626	4.8700	11.946(55)	15.622(62)	23.1
192×48^3	6.000	0.136335	0.072557	4.8700	14.34(10)	22.39(12)	22.4
192×48^3	5.600	0.136710	0.155367	5.7781		6.181(11)	2.1
192×48^3	5.700	0.136687	0.1343	5.7781	—	8.565(31)	2.7
120×32^3	5.880	0.136509	0.103965	5.7781	-	14.916(93)	59.9

Autocorrelations (for lattice (non)-experts)

 $t_0/a^2 > 5.5$: open boundary conditions [Lüscher and Schaefer, arXiv:1206.2809], using openQCD

with statistics of 1k MDU: 5-10 independent configurations —> doing 1 .. 4 ... 20 ...60 kMDU

error analysis with τ_{exp} [Wolff, hep-lat/0306017;Schaefer, Sommer and Virotta, arXiv:1009:5228]

original study: significant improvement: (twisted + untwisted quarks, higher masses,) Bruno, Finkenrath, Knechtli, Leder, Sommer, Phys.Rev.Lett. 114 (2015) Knechtli, Leder, Korzec, Phys.Lett. B774 (2017)

original study: significant improvement: (twisted + untwisted quarks, higher masses,) Bruno, Finkenrath, Knechtli, Leder, Sommer, Phys.Rev.Lett. 114 (2015) Knechtli, Leder, Korzec, Phys.Lett. B774 (2017)

EFT prediction ~1/M² favored Knechtli, Leder, Korzec, Moir, 2017

mass dependence in continuum at charm: ~0.2 % effects

One can make use of this for obtaining higher precision in renormalization problems:

Decoupling as a tool. Presented in Wuhan:

Non-perturbative renormalization by decoupling

Alberto Ramos <alberto.ramos@maths.tcd.ie>

Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin oil Átha Cliath | The University of Dublir

In collaboration with: M. Dalla Brida, T. Korzec, F. Knechtli, R. Höllwieser, S. Sint, R. Sommer

$$P_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}) \frac{\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}}{\mathcal{S}^{\mathrm{f}}(M)} = \frac{\Lambda_{\mathrm{\overline{MS}}}^{\ell}}{\mathcal{S}^{\ell}},$$

where $S^{\ell} = S^{f}(M) + O(1/M^{2})$ is a mass-scale (e.g. $1/\sqrt{t_{0}}$))

It is very practical to define the scale by

$$S = \mu_{\text{dec}}$$
, with $[\overline{g}_{\text{GF}}^{\text{f}}(\mu_{\text{dec}}, M/\mu_{\text{dec}})]^2 = u_{\text{M}}$.

decoupling:

$$\overline{g}_{\mathrm{GF}}^{\ell}(\mu_{\mathrm{dec}})^2 = u_{\mathrm{M}}$$
.

and rewrite ($\Lambda = \mu \varphi_g$):

$$\frac{\Lambda_{\overline{\mathrm{MS}}}^{\ell}}{\mu_{\mathrm{dec}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}^{\ell}}{\Lambda_{\mathrm{GF}}^{\ell}} \, \varphi_{\mathrm{g,GF}}^{\ell}(\sqrt{u_{\mathrm{M}}}) \, .$$

function which relates the coupling in the full theory with the massive quarks and the one with all massless ones,

$$u_{\rm M} = \Psi_{\rm M}(u_0, z)$$
, with $u_0 = \left[\bar{g}_{\rm GF}^{\rm f}(\mu, 0)\right]^2$, $z = M/\mu$,

Decoupling as a tool

(1)

$$P_{\ell,\mathrm{f}}(M/\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}) \frac{\Lambda_{\mathrm{\overline{MS}}}^{\mathrm{f}}}{\mathcal{S}^{\mathrm{f}}(M)} = \frac{\Lambda_{\mathrm{\overline{MS}}}^{\ell}}{\mathcal{S}^{\ell}},$$

becomes

in terms of the dimensionless

$$\rho = \frac{\Lambda_{\overline{MS}}^{f}}{\mu_{dec}}$$

needed

▶ $N_{\rm f} = 3$: fix coupling at M = 0, determine coupling for $M \gg \mu_{\rm dec}$

 $u_{\mathrm{M}} = \Psi_{\mathrm{M}}(u_{0}, z) \,, \text{ with } u_{0} = \left[ar{g}_{\mathrm{GF}}^{\mathrm{f}}(\mu, 0)
ight]^{2} \,, \quad z = M/\mu \,,$

N_f = 0: very precise running of couplings to very lage μ step scaling functions $ightarrow \varphi_{\rm GF}^\ell$ done by M.Dalla Brida and A. Ramos. do not discuss further

Rainer Sommer

Decoupling as a tool for renormalization

Choose μ_{dec} relatively low. Here Schroedinger Functional, μ_{dec} =1/L = 0.8GeV. Fixed by coupling in GF scheme, massless.

L/a	eta	$\bar{g}^2(\mu_{\text{dec}}(M))\Big _{N_{\text{f}}=3,M=0,T=L}$	$\mu_{\text{dec}}(M)$ [GeV]
12	4.3020	3.9533(59)	0.789(15)
16	4.4662	3.9496(77)	0.789(15)
20	4.5997	3.9648(97)	0.789(15)
24	4.7141	3.959(50)	0.789(15)
32	4.90	3.949(11)	0.789(15)

Decoupling as a tool for renormalization

- Choose µ_{dec} relatively low. Here Schroedinger Functional, µ_{dec} =1/L = 0.8GeV. Fixed by coupling in GF scheme, massless.
- Turn on heavy masses, 1.6 GeV ... 6.4 GeV (3 heavy degenerate quarks)
- Compute coupling with massive quarks

Examp	le: $L/a = 20$			
eta	κ	$z = M/\mu_{\rm dec}(M)$	<i>M</i> [GeV]	$\overline{g}^2(\mu_{\text{low}}(M))\Big _{N_{\text{f}}=3,M,T=2L}$
4.5997	0.1352889	0	0	3.9648(97)
4.6083	0.133831710060	1.972(18)	1.6	4.290(15)
4.6172	0.132345249425	4.000(37)	3.2	4.458(14)
4.6266	0.130827894135	6.000(58)	4.7	4.555(14)
4.6364	0.129273827559	8.000(85)	6.3	4.717(14)

Continuum extrapolation

Continuum extrapolations with two cuts: aM < 0.40, 0.35

Rainer Sommer | Beijing | July 2019

Preliminary result

<i>M</i> [GeV]	$\mu_{\text{dec}}(M)$ [GeV]	$\bar{g}^2(\mu_{\text{low}}(M))\Big _{N_{\text{f}}=3,M,T=2L}$	$\Lambda^{(0)}/\mu_{ m low}$	$\frac{1}{P(\Lambda/M)}$	$\Lambda^{(3)}$ [MeV]
1.6	0.789(15)	-	0.689(11)	0.7662(44)	416(11)
3.2	0.789(15)	-	0.725(11)	0.6693(37)	382.7(96)
4.7	0.789(15)	-	0.741(12)	0.6198(34)	362.0(92)
6.3	0.789(15)	-	0.757(13)	0.5871(32)	350.3(92)

nice and precise without that much effort —> improve further

0 /0

DES

Summary

- The Standard Model is (many feel: too) alive
- We need to push it to its limits in energy and precision
- Somewhat provocative but true: If we want a non-perturbative result, we need it renormalized non-perturbatively.
- The perturbative series is divergent, asymptotic (well understood! I recommend 't Hooft Erice lectures).
 When one uses it α(μ) better is small.
- For scale dependent renormalizations, $\alpha(\mu) m_{\rm R}(\mu)$, $Z_{\rm LL}(\mu)$

step scaling with finite volume schemes

can be used to go to very large μ and connect to

Renormalization Group Invariants

On the other hand, RI-sMOM is more genaral (automatic) is mostly used and dominant discretization errors can be removed perturbatively

Can the question of NP gauge fixing be better understood?

Ξ

Summary

- The Standard Model is (many feel: too) alive
- We need to push it to its limits in energy and precision
- Somewhat provocative but true: If we want a non-perturbative result, we need it renormalized non-perturbatively.
- The perturbative series is divergent, asymptotic (well understood! I recommend 't Hooft Erice lectures).
 When one uses it α(μ) better is small.
- For scale dependent renormalizations, $\alpha(\mu) m_{\rm R}(\mu)$, $Z_{\rm LL}(\mu)$

step scaling with finite volume schemes

can be used to go to very large μ and connect to

Renormalization Group Invariants

On the other hand, RI-sMOM is more genaral (automatic) is mostly used and dominant discretization errors can be removed perturbatively

Can the question of NP gauge fixing be better understood?

Ξ

Summary

- The Standard Model is (many feel: too) alive
- We need to push it to its limits in energy and precision
- Somewhat provocative but true: If we want a non-perturbative result, we need it renormalized non-perturbatively.
- The perturbative series is divergent, asymptotic (well understood! I recommend 't Hooft Erice lectures).
 When one uses it α(μ) better is small.
- For scale dependent renormalizations, $\alpha(\mu) m_{\rm R}(\mu)$, $Z_{\rm LL}(\mu)$

step scaling with finite volume schemes

can be used to go to very large μ and connect to

Renormalization Group Invariants

On the other hand, RI-sMOM is more genaral (automatic) is mostly used and dominant discretization errors can be removed perturbatively

Can the question of NP gauge fixing be better understood?

- There is a new trick: renormalization by decoupling
- There is also the Gradient flow –> Hiroshi Suzuki

重

Finally

There are many omissions

Rainer Sommer | Beijing | July 2019

Finally

- There are many omissions
- I would like to mention at least one: chirally rotated Schroedinger Functional has been used to obtain very precise renormalization factors. S. Sint, M. Dalla Brida, T. Korzec

Finally

- There are many omissions
- I would like to mention at least one: chirally rotated Schroedinger Functional has been used to obtain very precise renormalization factors. S. Sint, M. Dalla Brida, T. Korzec

