N_{f} dependence and decoupling

- NP computations typically have only $2+1$ (or $2+1+1$) quark flavors
- What about charm, bottom, top?
- "decoupling"
- "matching at thresholds"
- "active flavors"
- "flavor number schemes"
- let us discuss what this means

Decoupling

basic example

$$
\begin{aligned}
\frac{1}{C_{\mathrm{F}}} r^{2} F(r)= & \alpha_{\mathrm{qq}}\left(1 / r,\left\{z_{i}\right\}\right) \\
= & \alpha_{\overline{\mathrm{MS}}}(1 / r)+\left[f_{1, g}+\sum_{i=1}^{N_{f}} f_{1, f}\left(z_{i}\right)\right] \alpha_{\overline{\mathrm{MS}}}^{2}(1 / r)+\mathrm{O}\left(\alpha_{\overline{\mathrm{MS}}}^{3}\right) \\
& z_{i}=\bar{m}_{i} r
\end{aligned}
$$

$$
f_{1, g}=\frac{3}{\pi}\left[-\frac{35}{36}+\frac{11}{6} \gamma_{E}\right]
$$

$$
f_{1, f}(z)=\frac{1}{2 \pi}\left[\frac{1}{3} \log \left(z^{2}\right)+\frac{2}{3} \int_{1}^{\infty} \mathrm{d} x \frac{1}{x^{2}} \sqrt{x^{2}-1}\left(1+\frac{1}{2 x^{2}}\right)(1+2 z x) e^{-2 z x}\right]
$$

Decoupling

- Naively one may think a heavy quark does not matter for large z and

$$
\lim _{z \rightarrow \infty} f_{1, f}(z)=0
$$

but

This is because a mass-independent renormalization scheme is used. Large mass physics and small mass physics enter together. Consider only $r \gg 1 / m$ physics:

$$
\left.r \partial_{r} \bar{g}_{\mathrm{qq}}^{2}\left(1 / r,\left\{z_{i}\right\}\right)\right|_{m_{i}}=\left.4 \pi r \partial_{r} \alpha_{\mathrm{qq}}\left(1 / r,\left\{z_{i}\right\}\right)\right|_{m_{i}}
$$

- Consider only $r \gg 1 / m$ physics:

$$
f_{1, f}(z) \stackrel{z \gg 1}{\sim} \frac{1}{6 \pi} \log \left(z^{2}\right)
$$

$$
\begin{aligned}
\left.r \partial_{r} \bar{g}_{\mathrm{qq}}^{2}\left(1 / r,\left\{z_{i}\right\}\right)\right|_{m_{i}}= & -2 \bar{g}_{\overline{\mathrm{MS}}}(1 / r) \beta_{\overline{\mathrm{MS}}}\left(\bar{g}_{\overline{\mathrm{MS}}}(1 / r)\right)+\bar{g}_{\overline{\mathrm{MS}}}^{4}(1 / r) r \partial_{r} \sum_{i=1}^{N_{f}} \frac{f_{1, f}\left(z_{i}\right)}{4 \pi} \\
& +\mathrm{O}\left(g^{6}\right) \\
= & 2 b_{0} \bar{g}_{\overline{\mathrm{MS}}}^{4}+\bar{g}_{\mathrm{MS}}^{4} r \partial_{r} \sum_{i=1}^{N_{f}} \frac{f_{1, f}\left(z_{i}\right)}{4 \pi}+\mathrm{O}\left(g^{6}\right) \\
& \text { now: } \quad z_{i}=0, \quad i=1, \ldots, N_{\ell}=N_{\mathrm{f}}-1, \quad z_{N_{\mathrm{f}}} \gg 1 \\
= & 2 \bar{g}_{\overline{\mathrm{MS}}}^{4} \frac{1}{(4 \pi)^{2}}\left[11-\frac{2}{3}\left(N_{\mathrm{f}}-1\right)\right]+\mathrm{O}\left(g^{6}\right) \\
= & -2 \bar{g}_{\overline{\mathrm{MS}}}(1 / r) \beta_{\overline{\mathrm{MS}}}^{\left(N_{\mathrm{f}}-1\right)}\left(\bar{g}_{\overline{\mathrm{MS}}}(1 / r, m=0)\right)+\ldots
\end{aligned}
$$

effectively

$$
\text { physics at } r \gg 1 / m_{N_{\mathrm{f}}}=: M \quad: \quad N_{\ell}=N_{\mathrm{f}}-1 \text { flavor QCD }=\mathrm{EFT}
$$

- Consider only $r \gg 1 / m$ physics:

$$
f_{1, f}(z) \stackrel{z \gg 1}{\sim} \frac{1}{6 \pi} \log \left(z^{2}\right)
$$

$$
\begin{aligned}
\left.r \partial_{r} \bar{g}_{\mathrm{qq}}^{2}\left(1 / r,\left\{z_{i}\right\}\right)\right|_{m_{i}}= & -2 \bar{g}_{\overline{\mathrm{MS}}}(1 / r) \beta_{\overline{\mathrm{MS}}}\left(\bar{g}_{\overline{\mathrm{MS}}}(1 / r)\right)+\bar{g}_{\overline{\mathrm{MS}}}^{4}(1 / r) r \partial_{r} \sum_{i=1}^{N_{f}} \frac{f_{1, f}\left(z_{i}\right)}{4 \pi} \\
& +\mathrm{O}\left(g^{6}\right) \\
= & 2 b_{0} \bar{g}_{\overline{\mathrm{MS}}}^{4}+\bar{g}_{\mathrm{MS}}^{4} r \partial_{r} \sum_{i=1}^{N_{f}} \frac{f_{1, f}\left(z_{i}\right)}{4 \pi}+\mathrm{O}\left(g^{6}\right) \\
& \text { now: } \quad z_{i}=0, \quad i=1, \ldots, N_{\ell}=N_{\mathrm{f}}-1, \quad z_{N_{\mathrm{f}}} \gg 1 \\
= & 2 \bar{g}_{\overline{\mathrm{MS}}}^{4} \frac{1}{(4 \pi)^{2}}\left[11-\frac{2}{3}\left(N_{\mathrm{f}}-1\right)\right]+\mathrm{O}\left(g^{6}\right) \\
= & -2 \bar{g}_{\overline{\mathrm{MS}}}(1 / r) \beta_{\overline{\mathrm{MS}}}^{\left(N_{\mathrm{f}}-1 *\right.}\left(\bar{g}_{\overline{\mathrm{MS}}}(1 / r, m=0)\right)+\ldots
\end{aligned}
$$

effectively

$$
\text { physics at } r \gg 1 / m_{N_{\mathrm{f}}}=: M \quad: \quad N_{\ell}=N_{\mathrm{f}}-1 \text { flavor QCD }=\mathrm{EFT}
$$

- Consider only $r \gg 1 / m$ physics: $f_{1, f}(z) \stackrel{z \gtrsim>}{ } \frac{1}{6 \pi} \log \left(z^{2}\right)$

$$
\left.r \partial_{r} \bar{g}_{\mathrm{qq}}^{2}\left(1 / r,\left\{z_{i}\right\}\right)\right|_{m_{i}}=-2 \bar{g}_{\overline{\mathrm{MS}}}(1 / r) \beta_{\overline{\mathrm{MS}}}^{\left(N_{\mathrm{f}}-1\right)}\left(\bar{g}_{\overline{\mathrm{MS}}}(1 / r, m=0)\right)+\ldots
$$

effectively

$$
\text { physics at } r \gg 1 / m_{N_{\mathrm{f}}}=: M \quad: \quad N_{\ell}=N_{\mathrm{f}}-1 \text { flavor QCD }=\mathrm{EFT}
$$

- The contribution from $f_{1, f}(z) \stackrel{z \gtrsim>1}{\sim} \frac{1}{6 \pi} \log \left(z^{2}\right)$ is exactly necessary such that the heavy quark decouples at large r
- From the discussion at this order it is not clear how the coupling of the $N_{\ell}=N_{\mathrm{f}}-1$ effective theory is related to the fundamental one $\overline{g_{\overline{\mathrm{MS}}}^{\left(N_{\mathrm{f}}\right)}}$, but it is clear they are related.
We will come back to how.

Decoupling

- In original (fundamental) theory the perturbative expression has

$$
\bar{g}^{2 n}[\log (z)]^{m}
$$

terms. It is unreliable/useless for $z \gg 1$.

- need to resum: done by EFT (\approx renormalisation group improvement for the leading order in $1 / m^{2}$)
- note that the need for resummation is a problem of perturbation theory only
- EFT description expected to hold beyond PT

Weinberg theorem (unproven but established) local effective Lagrangian $N_{\ell} \neq 1, M$ mass of the heavy quark

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD}_{N_{\ell}}}+\frac{1}{M^{2}} \sum_{i} \omega_{i} \Phi_{i}+\ldots
$$

$$
\Phi_{1}=\frac{1}{g_{0}^{2}} \operatorname{tr}\left(D_{\mu} F_{\nu \rho} D_{\mu} F_{\nu \rho}\right), \quad \Phi_{2}=i \sum_{r=1}^{N_{\ell}} m_{r} \bar{\psi}_{r} \sigma_{\mu \nu} F_{\mu \nu} \psi_{r}, \quad \ldots
$$

$\triangleright \mathcal{S} \in\{q, 1 / r, \Lambda\}, \quad \mathcal{S} \ll M: \mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {QCD }_{N_{\ell}}}$
up to small $(\mathcal{S} / M)^{2}$ corrections; drop them

Matching at "thresholds"

- Leading order EFT $\mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {QCD }_{N_{\ell}}}$
- neglecting light masses, only parameter is $\bar{g} \frac{\ell}{\mathrm{MS}}$
- it has to be a function of $\overline{\overline{M M S}} \mathrm{f}$ and $\bar{m}_{N_{\mathrm{f}}}=: \bar{m}$
- it is

$$
\left[\bar{g}_{\overline{\mathrm{MS}}}^{\ell}\left(m_{\star}\right)\right]^{2}=\left[\bar{g}_{\mathrm{MS}}^{\mathrm{f}}\left(m_{\star}\right)\right]^{2} \times C\left(\bar{g}_{\mathrm{MS}}^{\mathrm{f}}\left(m_{\star}\right)\right) .
$$

with

$$
C(x)=1+c_{2} x^{4}+c_{3} x^{6}+\ldots
$$

$c_{1}=0$ due to choice $\mu=m_{\star}$ with $\bar{m}_{\overline{\mathrm{MS}}}\left(m_{\star}\right)=m_{\star}$

- clearly

$$
\begin{aligned}
\bar{g}_{\overline{\mathrm{MS}}}^{\ell} & \Longleftrightarrow \bar{g}_{\overline{\mathrm{MS}}}^{\underline{\mathrm{f}}} \\
\Lambda_{\overline{\mathrm{MS}}}^{\ell} & \Longleftrightarrow \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}
\end{aligned}
$$

- therefore with $M=\phi_{m}(\bar{g}(\mu)) \bar{m}(\mu)$:

$$
\Lambda_{\overline{\mathrm{MS}}}^{\ell}=\Lambda_{\overline{\mathrm{MS}}}^{\ell}\left(M, \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}\right)=P_{\ell, \mathrm{f}}\left(M / \Lambda_{\mathrm{MS}}^{\mathrm{f}}\right) \Lambda_{\mathrm{MS}}^{\mathrm{f}}
$$

Matching at "thresholds"

$$
\Lambda_{\overline{\mathrm{MS}}}^{\ell}=P_{\ell, \mathrm{f}}\left(M / \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}\right) \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}
$$

- For completeness the formula for $P_{\ell, f}$ is

$$
P_{\ell, \mathrm{f}}\left(M / \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}\right)=\frac{\varphi_{\mathrm{MS}}\left(g_{\star} \sqrt{C\left(g_{\star}\right)}\right)}{\varphi_{\mathrm{MS}}^{\mathrm{M}}\left(g_{\star}\right)},
$$

$g_{\star}=\bar{g}_{\overline{\mathrm{MS}}}\left(m_{\star}\right)$ as solution of

$$
\begin{aligned}
\frac{\Lambda_{\mathrm{MS}}^{\mathrm{f}}}{M}= & \frac{\left(b_{0} g_{\star}^{2}\right)^{-b_{1} /\left(2 b_{0}^{2}\right)}}{\left(2 b_{0} g_{\star}^{2}\right)^{-d_{0} /\left(2 b_{0} \mathrm{e}\right.}} \mathrm{e}^{-1 /\left(2 b_{0} g_{\star}^{2}\right)} \\
& \times \exp \left\{-\int_{0}^{g_{\star}(M / \Lambda)} \mathrm{d} x\left[\frac{1-\tau_{\mathrm{f}}(x)}{\beta_{\mathrm{f}}(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}+\frac{d_{0}}{b_{0} x}\right]\right\}
\end{aligned}
$$

Accuracy of perturbation theory

$$
N_{\mathrm{f}}=4, N_{\mathrm{l}}=3
$$

$$
N_{\mathrm{f}}=4, N_{\mathrm{l}}=3
$$

- looking just at PT intrinsic error: 0.1\% at charm
- for ratio of \wedge-parameters
- But can PT be trusted at the charm? 1GeV
$=$ yes, for this case. I show a test later.

Therefore we can add in c, b, t-quarks by perturbation theory

add charm
$\alpha_{s}(\mu)$
$0.4-$
$0.35-$
$0.3-$
$0.25-$
$0.2-$
0.15
0.1
0.05
0
0
10

Weinberg (80),
Bernreuther\&Wetzel (82),

Chetyrkin, Kühn \& Sturm;
Schröder, Steinhauser (06)
5-loop β-fct:
Baikov, Chetyrkin, Kühn; Luthe, Maier, Marquard,
Schrl"oder (16)
add beauty

- 4-loop PT available
- adding fermion loops, "only"
- perturbative uncertainties are tiny

$$
\begin{array}{lcr}
\alpha_{\overline{\mathrm{MS}}}\left(m_{\mathrm{Z}}\right) & \text { 1-loop: } 0.11701 \\
& 2 & 0.00128 \\
& 3 & 0.00019 \\
& 4 & 0.00006
\end{array}
$$

uncertainty
estimate $=0.00025$

Therefore we can add in c, b, t-quarks by perturbation theory

add charm
$\alpha_{s}(\mu)$
$0.4-$
$0.35-$
$0.3-$
$0.25-$
$0.2-$
0.15
0.1
0.05
0
0
10

Weinberg (80),
Bernreuther\&Wetzel (82),

Chetyrkin, Kühn \& Sturm;
Schröder, Steinhauser (06)
5-loop β-fct:
Baikov, Chetyrkin, Kühn;
Luthe, Maier, Marquard,
Schrl"oder (16)
add beauty

- 4-loop PT available
- adding fermion loops, "only"
- perturbative uncertainties are tiny

$$
\begin{array}{lcr}
\alpha_{\overline{\mathrm{MS}}}\left(m_{\mathrm{Z}}\right) & \text { 1-loop: } 0.11701 \\
& 2 & 0.00128 \\
& 3 & 0.00019 \\
& 4 & 0.00006
\end{array}
$$

uncertainty
estimate $=0.00025$

Surprising factorization formula

Let us be very carful and put a mass-scale in to make things dimensionless.

$$
P_{\ell, \mathrm{f}}\left(M / \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}\right) \frac{\Lambda_{\mathrm{MS}}^{\mathrm{f}}}{\mathcal{S}^{\mathrm{f}}(M)}=\frac{\Lambda_{\mathrm{MS}}^{\ell}}{\mathcal{S}^{\ell}}
$$

- multiply with $\frac{\mathcal{S}^{\mathrm{f}}(0)}{\Lambda_{\frac{\mathrm{LS}}{}}^{\mathrm{MS}}}$
then

$$
P_{\ell, \mathrm{f}}\left(M / \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}\right) \frac{\mathcal{S}^{\mathrm{f}}(0)}{\mathcal{S}^{\mathrm{f}}(M)}=\frac{\Lambda_{\mathrm{MS}}^{\ell}}{\mathcal{S}^{\ell}} \frac{\mathcal{S}^{\mathrm{f}}(0)}{\Lambda_{\mathrm{MS}}^{\mathrm{MS}}}
$$

or

$$
\frac{\mathcal{S}^{\mathrm{f}}(M)}{\mathcal{S}^{\mathrm{f}}(0)}=Q_{\ell, \mathrm{f}}^{\mathcal{S}} \times P_{\ell, \mathrm{f}}\left(M / \Lambda_{\overline{\mathrm{MS}}}^{\mathrm{f}}\right), \quad Q_{\ell, \mathrm{f}}^{\mathcal{S}}=\frac{\Lambda_{\mathrm{MS}}^{\ell} / \mathcal{S}^{\ell}}{\Lambda_{\mathrm{MS}}^{\mathrm{MS}} / \mathcal{S}^{\mathrm{f}}(0)}
$$

- Now take as an example $\mathcal{S}=m_{\text {proton }}$, and $N_{\ell}=3, m_{4}=m_{\text {charm }}$, then we conclude that the charm-mass-dependence of the proton mass can be computed perturbatively and is the same as e.g. the charm-mass dependence of, e.g., F_{π}.
A little algebra yields
$\left.\eta \equiv \frac{M_{\text {charm }}}{m_{\text {proton }}} \frac{\partial m_{\text {proton }}}{\partial M_{\text {charm }}}\right|_{\Lambda_{\mathrm{MS}}^{\mathrm{f}}}=1-\frac{b_{0}\left(N_{\mathrm{f}}\right)}{b_{0}\left(N_{\ell}\right)}+\mathrm{O}\left(g^{2}\left(M_{\text {charm }}\right)\right)=0.074+\mathrm{O}\left(g^{2}\right)$,

Mass scaling function

$$
\begin{aligned}
& \begin{array}{c}
\left.\frac{M}{m_{\mathrm{f}}^{\text {had }}(M)} \frac{\partial m_{\mathrm{f}}^{\text {had }}(M)}{\partial M}\right|_{\Lambda_{\mathrm{f}}}=\eta^{\mathrm{M}} \\
\left.\eta^{\mathrm{M}}(M) \equiv \frac{M}{P} \frac{\partial P}{\partial M}\right|_{\Lambda_{\mathrm{f}}}=\frac{M}{\Lambda_{\mathrm{f}}} \frac{P^{\prime}}{P}
\end{array} \\
& N_{\mathrm{f}}=4, N_{\mathrm{l}}=3 \\
& N_{\mathrm{f}}=4, N_{\mathrm{l}}=3
\end{aligned}
$$

Mass scaling function

$$
\begin{gathered}
\left.\frac{M}{m_{\mathrm{f}}^{\text {had }}(M)} \frac{\partial m_{\mathrm{f}}^{\mathrm{had}}(M)}{\partial M}\right|_{\Lambda_{\mathrm{f}}}=\eta^{\mathrm{M}} \\
\left.\eta^{\mathrm{M}}(M) \equiv \frac{M}{P} \frac{\partial P}{\partial M}\right|_{\Lambda_{\mathrm{f}}}=\frac{M}{\Lambda_{\mathrm{f}}} \frac{P^{\prime}}{P} \\
N_{\mathrm{f}}=4, N_{\mathrm{l}}=3
\end{gathered}
$$

Mass scaling function evaluated by NP MC in a model: $\mathrm{N}_{\mathrm{f}}=2 \rightarrow>0$

$$
\eta^{\mathrm{M}}(\bar{M}) \approx \frac{\log \left(m^{\mathrm{had}}\left(M_{2}\right) / m^{\mathrm{had}}\left(M_{1}\right)\right)}{\log \left(M_{2} / M_{1}\right)}
$$

$$
\bar{M}=\sqrt{M_{2} M_{1}}
$$

$-\frac{\mu}{2 t_{0}} \frac{\mathrm{~d} t_{0}}{\mathrm{~d} \mu}=\eta^{\mathrm{M}}(M) \quad \mathrm{M}=\mathrm{Z} \mu$ $\mu=$ twisted mass

Athenodorou, Finkenrath, Knechtli,Korzec, Leder, Marinkovic, S.,

Mass scaling function: result

Mass scaling function: result

- precise confirmation of PT at charm

Mass scaling function: result

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)

Mass scaling function: result

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:
$\Delta \log \left[P_{1, \mathrm{f}}\left(M / \Lambda_{\mathrm{f}}\right)\right]=0.004$.

Mass scaling function: result

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

$$
\Delta \log \left[P_{1, \mathrm{f}}\left(M / \Lambda_{\mathrm{f}}\right)\right]=0.004
$$

0.4% precision for $\Lambda_{4} / \Lambda_{3}$
(decoupling two charm quarks)
$\sim 0.2 \%$ decoupling one charm q.

Mass scaling function: result

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

$$
\Delta \log \left[P_{1, \mathrm{f}}\left(M / \Lambda_{\mathrm{f}}\right)\right]=0.004
$$

from the determined
mass-effect in $\mathrm{Nf}=2$ can predict $\Lambda_{2} / \Lambda_{0} \mathrm{~W}$. precision

$$
\frac{\left.\Lambda_{\overline{\mathrm{MS}}} \sqrt{t_{0}(0)}\right|_{N_{\mathrm{f}}=2}}{\left.\Lambda_{\overline{\mathrm{MS}}} \sqrt{t_{0}}\right|_{N_{\mathrm{l}}=0}}=1.134(17)
$$

Mass scaling function: result

What about
power corrections?

- precise confirmation of PT at charm
- estimate of (~maximal NP contribution)
- leads to interesting statements:

$$
\Delta \log \left[P_{1, \mathrm{f}}\left(M / \Lambda_{\mathrm{f}}\right)\right]=0.004
$$

from the determined mass-effect in $\mathrm{Nf}=2$ can predict $\Lambda_{2} / \Lambda_{0}$ W. precision

$$
\frac{\left.\Lambda_{\overline{\mathrm{MS}}} \sqrt{t_{0}(0)}\right|_{N_{\mathrm{f}}=2}}{\left.\Lambda_{\overline{\mathrm{MS}}} \sqrt{t_{0}}\right|_{N_{\mathrm{l}}=0}}=1.134(17)
$$

Considered scales

- static potential

$$
\text { force } \begin{aligned}
& F(r)=V^{\prime}(r), \\
& r_{0} \text { defined by: }\left(r_{0}\right)^{2} F\left(r_{0}\right)=1.65 \\
& r_{1} \text { defined by: }\left(r_{1}\right)^{2} F\left(r_{1}\right)=1.0
\end{aligned}
$$

- Gradient flow observables: $\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{c}}$, wo

Simulations

NP O(a)-improved Wilson, standard mass term

$\frac{T}{a} \times\left(\frac{L}{a}\right)^{3}$	β	BC	κ	$a m$	M / Λ	r_{0} / a	t_{0} / a^{2}	kMDU
64×32^{3}	5.3	p	0.13550	$0.03405(8)$	$0.638(46)$	$5.903(36)$	$3.481(14)$	1
64×32^{3}	5.3	p	0.13450	$0.06979(7)$	$1.308(95)$	$5.193(20)$	$2.714(14)$	2
64×32^{3}	5.3	p	0.13270	$0.13873(8)$	$2.600(189)$	$4.270(6)$	$1.842(3)$	2
120×32^{3}	5.5	o	0.136020	$0.02467(4)$	$0.630(46)$	$8.49(12)$	$7.318(36)$	8
120×32^{3}	5.5	o	0.135236	$0.05022(3)$	$1.282(93)$	$7.580(44)$	$6.092(21)$	8
96×48^{3}	5.5	p	0.133830	$0.09614(2)$	$2.454(178)$	$6.787(19)$	$4.867(12)$	4
192×48^{3}	5.7	o	0.136200	$0.01691(2)$	$0.586(43)$	$11.48(24)$	$14.02(6)$	4
192×48^{3}	5.7	o	0.135570	$0.03683(2)$	$1.277(94)$	$10.53(12)$	$11.87(7)$	4
192×48^{3}	5.7	o	0.134450	$0.07209(2)$	$2.500(184)$	$9.50(5)$	$9.821(36)$	8

Simulations

NP O(a)-improved Wilson, at maximal (mass) twist (same lattice spacings as un-twisted)

$\frac{T}{a} \times\left(\frac{L}{a}\right)^{3}$	β	κ	$a \mu$	M / Λ	r_{0} / a	t_{0} / a^{2}	kMDU
120×32^{3}	5.300	0.136457	0.024505	0.5900	-	$4.174(13)$	4.3
120×32^{3}	5.500	0.1367749	0.018334	0.5900	$8.77(15)$	$7.917(82)$	8
192×48^{3}	5.700	0.136687	0.013713	0.5900	-	$14.40(10)$	5.8
120×32^{3}	5.500	0.1367749	0.039776	1.2800	$8.010(62)$	$6.871(33)$	8
192×48^{3}	5.700	0.136687	0.029751	1.2800	-	$12.668(39)$	16.2
120×32^{3}	5.500	0.1367749	0.077687	2.5000	$7.392(62)$	$5.836(27)$	8
192×48^{3}	5.700	0.136687	0.058108	2.5000	-	$10.916(38)$	9
192×48^{3}	5.600	0.136710	0.130949	4.8700	-	$6.561(12)$	16
120×32^{3}	5.700	0.136698	0.113200	4.8703	$9.123(57)$	$9.104(36)$	17.2
192×48^{3}	5.880	0.136509	0.087626	4.8700	$11.946(55)$	$15.622(62)$	23.1
192×48^{3}	6.000	0.136335	0.072557	4.8700	$14.34(10)$	$22.39(12)$	22.4
192×48^{3}	5.600	0.136710	0.155367	5.7781	-	$6.181(11)$	2.1
192×48^{3}	5.700	0.136687	0.1343	5.7781	-	$8.565(31)$	2.7
120×32^{3}	5.880	0.136509	0.103965	5.7781	-	$14.916(93)$	59.9

Simulations

NP O(a)-improved Wilson, at maximal (mass) twist (same lattice spacings as un-twisted)

$\frac{T}{a} \times\left(\frac{L}{a}\right)^{3}$	β	κ	$a \mu$	M / Λ	r_{0} / a	t_{0} / a^{2}	kMDU
120×32^{3}	5.300	0.136457	0.024505	0.5900	-	$4.174(13)$	4.3
120×32^{3}	5.500	0.1367749	0.018334	0.5900	$8.77(15)$	$7.917(82)$	8
192×48^{3}	5.700	0.136687	0.013713	0.5900	-	$14.40(10)$	5.8
120×32^{3}	5.500	0.1367749	0.039776	1.2800	$8.010(62)$	$6.871(33)$	8
192×48^{3}	5.700	0.136687	0.029751	1.2800	-	$12.668(39)$	16.2
120×32^{3}	5.500	0.1367749	0.077687	2.5000	$7.392(62)$	$5.836(27)$	8
192×48^{3}	5.700	0.136687	0.058108	2.5000	-	$10.916(38)$	9
192×48^{3}	5.600	0.136710	0.130949	4.8700	-	$6.561(12)$	16
120×32^{3}	5.700	0.136698	0.113200	4.8703	$9.123(57)$	$9.104(36)$	17.2
192×48^{3}	5.880	0.136509	0.087626	4.8700	$11.946(55)$	$15.622(62)$	23.1
192×48^{3}	6.000	0.136335	0.072557	4.8700	$14.34(10)$	$22.39(12)$	22.4
192×48^{3}	5.600	0.136710	0.155367	5.7781	-	$6.181(11)$	2.1
192×48^{3}	5.700	0.136687	0.1343	5.7781	-	$8.565(31)$	2.7
120×32^{3}	5.880	0.136509	0.103965	5.7781	-	$14.916(93)$	59.9

Autocorrelations (for lattice (non)-experts)

$t_{0} / a^{2}>5.5:$ open boundary conditions [Lüscher and Schaefer, arXiv:1206.2809], using openQCD
with statistics of 1 k MDU: 5-10 independent configurations \rightarrow doing 1.. 4 ... 20 ... 60 kMDU
error analysis with $\tau_{\exp }$ [Wolff, hep-lat/0306017;Schaefer, Sommer and
Virotta, arXiv:1009:5228]
original study:
Bruno, Finkenrath, Knechtli, Leder, Sommer, Phys.Rev.Lett. 114 (2015)
significant improvement:
Knechtli, Leder, Korzec, Phys.Lett. B774 (2017)
(twisted + untwisted quarks, higher masses,)
continuum limits

at charm: ~ 0.2 \% effects

original study:
Bruno, Finkenrath, Knechtli, Leder, Sommer, Phys.Rev.Lett. 114 (2015)
significant improvement:
Knechtli, Leder, Korzec, Phys.Lett. B774 (2017)
(twisted + untwisted quarks, higher masses,)
continuum limits

at charm: ~ 0.2 \% effects

EFT prediction ~1/M² favored Knechtli, Leder, Korzec, Moir, 2017

mass dependence in continuum at charm: ~ 0.2 \% effects

One can make use of this for obtaining higher precision in renormalization problems:

Decoupling as a tool. Presented in Wuhan:

Non-perturbative renormalization by decoupling

Alberto Ramos alberto.ramos@maths.tcd.ie

Decoupling as a tool

$$
P_{\ell, \mathrm{f}}\left(M / \Lambda \frac{\mathrm{f}}{\overline{\mathrm{MS}}}\right) \frac{\Lambda \frac{\mathrm{f}}{\mathrm{MS}}}{\mathcal{S}^{\mathrm{T}}(M)}=\frac{\Lambda \frac{\ell}{\mathrm{MS}}}{\mathcal{S}^{\ell}}
$$

where $\mathcal{S}^{\ell}=\mathcal{S}^{\mathrm{f}}(M)+\mathrm{O}\left(1 / M^{2}\right)$ is a mass-scale (e.g. $\left.1 / \sqrt{t_{0}}\right)$)
It is very practical to define the scale by

$$
\mathcal{S}=\mu_{\mathrm{dec}}, \text { with }\left[\bar{g}_{\mathrm{GF}}^{\mathrm{f}}\left(\mu_{\mathrm{dec}}, M / \mu_{\mathrm{dec}}\right)\right]^{2}=u_{\mathrm{M}}
$$

decoupling:

$$
\bar{g}_{\mathrm{GF}}^{\ell}\left(\mu_{\mathrm{dec}}\right)^{2}=u_{\mathrm{M}}
$$

and rewrite $\left(\Lambda=\mu \varphi_{g}\right)$:

$$
\frac{\Lambda_{\mathrm{MS}}^{\ell}}{\mu_{\mathrm{dec}}}=\frac{\Lambda_{\mathrm{MS}}^{\ell}}{\Lambda_{\mathrm{GF}}^{\ell}} \varphi_{\mathrm{g}, \mathrm{GF}}^{\ell}\left(\sqrt{u_{\mathrm{M}}}\right)
$$

function which relates the coupling in the full theory with the massive quarks and the one with all massless ones,

$$
u_{\mathrm{M}}=\Psi_{\mathrm{M}}\left(u_{0}, z\right), \text { with } u_{0}=\left[\bar{g}_{\mathrm{GF}}^{\mathrm{f}}(\mu, 0)\right]^{2}, \quad z=M / \mu
$$

Decoupling as a tool

$$
P_{\ell, \mathrm{f}}(M / \Lambda \overline{\mathrm{f}}) \frac{\Lambda \frac{\mathrm{f}}{\mathrm{mS}}}{\mathcal{S}^{\mathrm{f}}(M)}=\frac{\Lambda \frac{\ell}{\mathcal{M S}^{\ell}}}{\mathcal{S}^{\ell}}
$$

becomes

$$
\begin{equation*}
\underbrace{\rho P_{\ell, \mathrm{f}}(z / \rho)}_{\text {High order PT }}=\underbrace{\frac{\Lambda \frac{\ell}{\mathrm{MS}}}{\Lambda_{\mathrm{GF}}}}_{1 \text {-lp exact }} \underbrace{\varphi_{\mathrm{GF}}^{\ell}}_{\text {YM }}(\underbrace{\sqrt{\Psi_{\mathrm{M}}\left(u_{0}, z\right)}}_{\text {full }}) \tag{1}
\end{equation*}
$$

in terms of the dimensionless

$$
\rho=\frac{\Lambda \frac{\mathrm{f}}{\mathrm{MS}}}{\mu_{\mathrm{dec}}} .
$$

needed
$\Rightarrow N_{\mathrm{f}}=3$: fix coupling at $M=0$, determine coupling for $M \gg \mu_{\mathrm{dec}}$

$$
u_{\mathrm{M}}=\Psi_{\mathrm{M}}\left(u_{0}, z\right), \text { with } u_{0}=\left[\bar{g}_{\mathrm{GF}}^{\mathrm{f}}(\mu, 0)\right]^{2}, \quad z=M / \mu
$$

- $\quad N_{\mathrm{f}}=0$: very precise running of couplings to very lage μ step scaling functions
$\rightarrow \varphi_{\mathrm{GF}}^{\ell}$
done by м. Dalla Brida and A. Ramos. do not discuss further

Decoupling as a tool for renormalization

- Choose μ_{dec} relatively low. Here Schroedinger Functional, $\mu_{\mathrm{dec}}=1 / \mathrm{L}=0.8 \mathrm{GeV}$. Fixed by coupling in GF scheme, massless.

L / a	β	$\left.\bar{g}^{2}\left(\mu_{\operatorname{dec}}(M)\right)\right\|_{N_{\mathrm{f}}=3, M=0, T=L}$	$\mu_{\mathrm{dec}}(M)[\mathrm{GeV}]$
12	4.3020	$3.9533(59)$	$0.789(15)$
16	4.4662	$3.9496(77)$	$0.789(15)$
20	4.5997	$3.9648(97)$	$0.789(15)$
24	4.7141	$3.959(50)$	$0.789(15)$
32	4.90	$3.949(11)$	$0.789(15)$

Decoupling as a tool for renormalization

- Choose $\mu_{\text {dec }}$ relatively low. Here Schroedinger Functional, $\mu_{\mathrm{dec}}=1 / \mathrm{L}=0.8 \mathrm{GeV}$. Fixed by coupling in GF scheme, massless.
- Turn on heavy masses, 1.6 GeV ... 6.4 GeV (3 heavy degenerate quarks)
- Compute coupling with massive quarks

Example: $L / a=20$									
κ						$z=M / \mu_{\text {dec }}(M)$	$M[\mathrm{GeV}]$	$\left.\bar{g}^{2}\left(\mu_{\text {low }}(M)\right)\right\|_{N_{\mathrm{f}}=3, M, T=2 L}$	
β									
4.5997	0.1352889	0	0	$3.9648(97)$					
4.6083	0.133831710060	$1.972(18)$	1.6	$4.290(15)$					
4.6172	0.132345249425	$4.000(37)$	3.2	$4.458(14)$					
4.6266	0.130827894135	$6.000(58)$	4.7	$4.555(14)$					
4.6364	0.129273827559	$8.000(85)$	6.3	$4.717(14)$					

Continuum extrapolation

Continuum extrapolations with two cuts: $a M<0.40,0.35$

Preliminary result

$M[\mathrm{GeV}]$	$\mu_{\text {dec }}(M)[\mathrm{GeV}]$	$\left.\bar{g}^{2}\left(\mu_{\text {low }}(M)\right)\right\|_{N_{\mathrm{f}}=3, M, T=2 L}$	$\Lambda^{(0)} / \mu_{\text {low }}$	$\frac{1}{P(\Lambda / M)}$	$\Lambda^{(3)}[\mathrm{MeV}]$
1.6	$0.789(15)$	-	$0.689(11)$	$0.7662(44)$	$416(11)$
3.2	$0.789(15)$	-	$0.725(11)$	$0.6693(37)$	$382.7(96)$
4.7	$0.789(15)$	-	$0.741(12)$	$0.6198(34)$	$362.0(92)$
6.3	$0.789(15)$	-	$0.757(13)$	$0.5871(32)$	$350.3(92)$

nice and precise without that much effort $->$ improve further

Summary

- The Standard Model is (many feel: too) alive
- We need to push it to its limits in energy and precision
- Somewhat provocative but true: If we want a non-perturbative result, we need it renormalized non-perturbatively.
- The perturbative series is divergent, asymptotic (well understood! I recommend 't Hooft Erice lectures).
When one uses it $\alpha(\mu)$ better is small.
- For scale dependent renormalizations, $\alpha(\mu) m_{\mathrm{R}}(\mu), Z_{\mathrm{LL}}(\mu)$
step scaling with finite volume schemes
can be used to go to very large μ and connect to
Renormalization Group Invariants
- On the other hand, RI-sMOM is more genaral (automatic) is mostly used and dominant discretization errors can be removed perturbatively
Can the question of NP gauge fixing be better understood?

Summary

- The Standard Model is (many feel: too) alive
- We need to push it to its limits in energy and precision
- Somewhat provocative but true: If we want a non-perturbative result, we need it renormalized non-perturbatively.
- The perturbative series is divergent, asymptotic (well understood! I recommend 't Hooft Erice lectures).
When one uses it $\alpha(\mu)$ better is small.
- For scale dependent renormalizations, $\alpha(\mu) m_{\mathrm{R}}(\mu), Z_{\mathrm{LL}}(\mu)$
step scaling with finite volume schemes
can be used to go to very large μ and connect to
Renormalization Group Invariants
- On the other hand, RI-sMOM is more genaral (automatic) is mostly used and dominant discretization errors can be removed perturbatively
Can the question of NP gauge fixing be better understood?

Summary

- The Standard Model is (many feel: too) alive
- We need to push it to its limits in energy and precision
- Somewhat provocative but true: If we want a non-perturbative result, we need it renormalized non-perturbatively.
- The perturbative series is divergent, asymptotic (well understood! I recommend 't Hooft Erice lectures).
When one uses it $\alpha(\mu)$ better is small.
- For scale dependent renormalizations, $\alpha(\mu) m_{\mathrm{R}}(\mu), Z_{\mathrm{LL}}(\mu)$
step scaling with finite volume schemes
can be used to go to very large μ and connect to
Renormalization Group Invariants
- On the other hand, RI-sMOM is more genaral (automatic) is mostly used and dominant discretization errors can be removed perturbatively
Can the question of NP gauge fixing be better understood?
- There is a new trick: renormalization by decoupling
- There is also the Gradient flow \rightarrow-> Hiroshi Suzuki

Finally

Finally

- There are many omissions

Finally

- There are many omissions
- I would like to mention at least one: chirally rotated Schroedinger Functional has been used to obtain very precise renormalization factors.
S. Sint, M. Dalla Brida, T. Korzec

Finally

- There are many omissions
- I would like to mention at least one: chirally rotated Schroedinger Functional has been used to obtain very precise renormalization factors.
S. Sint, M. Dalla Brida, T. Korzec
- THANK YOU!

