
Nf dependence and decoupling

‣ NP computations typically have only 2+1 (or 2+1+1) 
quark flavors

‣ What about charm, bottom, top? 

• “decoupling” 

• “matching at thresholds” 

• “active flavors”  

• “flavor number schemes” 

‣ let us discuss what this means
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Decoupling
basic example

1
CF

r2F (r) = ↵qq(1/r, {zi})

= ↵MS(1/r) + [f1,g +

NfX

i=1

f1,f (zi)]↵
2
MS(1/r) + O(↵3

MS) ,

zi = mir

f1,g =
3

⇡

⇥
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Decoupling
basic example, continued

I Naively one may think a heavy quark does not matter for large z and

lim
z!1

f1,f (z) = 0

but
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Figure 1: The one-loop fermionic force contribution f1,f (z, 0).

which are derived from the ones for the potential [28–31]. The integral in eq. (3.6) is
evaluated numerically. We show the fermion contribution in Fig. 1.

The gluonic correction at finite a/r is not our main concern. For reference we
will just cite numbers from [32]. However, we performed a re–evaluation of f1,f(z, a/r)
following Ref. [17]. For each value of r/a the potential is given by a seven-dimensional
integral over the Brillouin zone. At fixed am0 and r/a we evaluated these momentum
integrals by discretizing the Brillouin zone with a regular momentum lattice with spacing
�k = 2�/l, applying the trapezoidal rule. This procedure was carried out for r/a �
[1.358, 15.467] and for more than thirty values of am0 � [�0.05, 1.5]. The force was
then extrapolated in the momentum spacings, i.e. we took the limit l � �. It is
advantageous to extrapolate the force and not the potential since the large unphysical
self-energy contribution is then avoided. The numerical results for the force at fixed
r/a were then interpolated in am0, and the interpolations were subsequently used at
the desired values of z. Interpolation and extrapolation errors form the uncertainties
visible in our figures below.

Following our definition of the relative lattice artifacts, we have

F � Fcont

Fcont

����
ḡMS,(mi)R

= �(1)
F (z, a/r)ḡ2

MS
(1/r), (3.7)

�(1)
F (z, a/r) = �(1,g)

F (a/r) +
Nf�

i=1

�(1,f)
F (zi, a/r), (3.8)

and, for example,

4��(1,f)
F (z, a/r) = f1,f (z, a/r) � f1,f (z, 0) . (3.9)

7

z=Mr 

. f1,f (z)
z�1⇠ 1

6⇡ log(z
2
)

I This is because a mass-independent renormalization scheme is used. Large
mass physics and small mass physics enter together. Consider only r � 1/m
physics:

r@r ḡ
2
qq(1/r, {zi})

��
mi

= 4⇡r@r↵qq(1/r, {zi})|mi
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Decoupling
basic example, continued

I Consider only r � 1/m physics: f1,f (z)
z�1⇠ 1

6⇡ log(z
2
)

r@r ḡ
2
qq(1/r, {zi})

��
mi

= �2ḡMS(1/r)�MS(ḡMS(1/r)) + ḡ4
MS(1/r) r@r

NfX

i=1

f1,f (zi)

4⇡

+O(g6
)

= 2b0ḡ
4
MS + ḡ4

MS r@r

NfX

i=1

f1,f (zi)

4⇡ +O(g6
)

now: zi = 0, i = 1, . . . , N` = Nf � 1 , zNf � 1

= 2ḡ4
MS

1
(4⇡)2

[11� 2
3 (Nf�1)] + O(g6

)

= �2ḡMS(1/r)�
(Nf�1)

MS
(ḡMS(1/r,m = 0)) + . . .

effectively

physics at r � 1/mNf =: M : N` = Nf � 1 flavor QCD = EFT
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Decoupling
basic example, continued
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Decoupling
basic example, continued

I Consider only r � 1/m physics: f1,f (z)
z�1⇠ 1

6⇡ log(z
2
)

r@r ḡ
2
qq(1/r, {zi})

��
mi

= �2ḡMS(1/r)�
(Nf�1)

MS
(ḡMS(1/r,m = 0)) + . . .

effectively

physics at r � 1/mNf =: M : N` = Nf � 1 flavor QCD = EFT

I The contribution from f1,f (z)
z�1⇠ 1

6⇡ log(z
2
) is exactly necessary such that the

heavy quark decouples at large r

I From the discussion at this order it is not clear how the coupling of the
N` = Nf � 1 effective theory is related to the fundamental one ḡ(Nf )

MS
,

but it is clear they are related.
We will come back to how.
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Decoupling
Lessons and generalizations

I In original (fundamental) theory the perturbative expression has

ḡ2n
[log(z)]m

terms. It is unreliable/useless for z � 1.
I need to resum: done by EFT (⇡ renormalisation group improvement for the

leading order in 1/m2)
I note that the need for resummation is a problem of perturbation theory only
I EFT description expected to hold beyond PT

Weinberg theorem (unproven but established)

local effective Lagrangian N` 6= 1, M mass of the heavy quark

Le↵ = LQCDN`
+

1
M2

X

i

!i�i + . . .

�1 =
1

g2
0

tr (DµF⌫⇢DµF⌫⇢) , �2 = i
NX̀

r=1

mr r�µ⌫Fµ⌫ r , . . .

I S 2 {q, 1/r,⇤} , S ⌧ M : Le↵ = LQCDN`

up to small (S/M)2 corrections; drop them
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Matching at “thresholds”
I Leading order EFT Le↵ = LQCDN`

I neglecting light masses, only parameter is g`
MS

I it has to be a function of gf
MS

and mNf =: m

I it is

[g`
MS(m?)]

2
= [gf

MS(m?)]
2 ⇥ C(gf

MS(m?)).

with

C(x) = 1 + c2x
4
+ c3x

6
+ . . .

c1 = 0 due to choice µ = m? with mMS(m?) = m?

I clearly

g`
MS () gf

MS

m m
⇤

`
MS () ⇤

f
MS

I therefore with M = �m(ḡ(µ))m(µ) :

⇤
`
MS = ⇤

`
MS(M,⇤f

MS) = P`,f(M/⇤f
MS)⇤

f
MS
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Matching at “thresholds”

⇤
`
MS = P`,f(M/⇤f

MS)⇤
f
MS

I For completeness the formula for P`,f is

P`,f(M/⇤f
MS) =

'`
MS

⇣
g?

p
C(g?)

⌘

'f
MS

(g?)
,

g? = ḡMS(m?) as solution of

⇤
f
MS

M
=

(b0g2
?)

�b1/(2b20)

(2b0g2
?)�d0/(2b0) e

�1/(2b0g2
?)

⇥ exp

(
�
Z g?(M/⇤)

0

dx


1�⌧f (x)

�f (x) +
1

b0x3
� b1

b20x
+

d0

b0x

�)
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Accuracy of perturbation theory

‣ looking just at PT intrinsic error: 0.1% at charm 
‣ for ratio of Λ-parameters 
‣ But can PT be trusted at the charm? 1GeV 

➡ yes, for this case. I show a test later. 
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Figure 5: The mass-dependence P at 1-loop formula and at 4-loop (left) as well as 2,3,4-loop
correction normalised to the 1-loop approximation (right) for the case Nf = 2, Nl = 0.

0 10 20 30 40
1

1.1

1.2

1.3

1.4

Mc/⇤

M/⇤

P

Nf = 4 Nl = 3

0 10 20 30 40
0

0.02

0.04

Mc/⇤

M/⇤

P
(1

)

Nf = 4 Nl = 3

Figure 6: The mass-dependence P at 1-loop formula and at 4,5-loop (left) as well as 2,3,4,5-
loop correction normalised to the 1-loop approximation (right) for the case Nf = 4, Nl = 3.

2-loop accuracy means dropping b2, d1 and higher in this expansion, e.g.

1� ⌧(x)

�(x)
= �

1

b0x
3
+

b1

b20x
�

d0

b0x
+O(x) . (3.35)

The function C(g) only enters at 3-loop precision since c1 = 0.
In the numerical results we observe in particular that for the phenomenologically

relevant case of Nf = 5, Nl = 4, the 3-loop contribution (difference 3-loop to 2-loop) is
around 2% while the 4- and 5-loop ones are then nice and small, see the right plot in
figure 7. Judging by perturbation theory alone, the perturbative predicition for decoupling
the b-quark should be very reliable. Also for the other phenomenologically relevant case of
decoupling the c-quark (Nf = 4, Nl = 3) perturbation theory appears to work quite well.

These curves suggest that perturbative decoupling introduces only errors at the sub-
percent level for the ratios of Lambda parameters, once perturbation theory applies at

12
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Surprising factorization formula
Let us be very carful and put a mass-scale in to make things dimensionless.

P`,f(M/⇤f
MS)

⇤f
MS

Sf (M)
=

⇤`
MS
S`

I multiply with Sf (0)

⇤f
MS

then

P`,f(M/⇤f
MS)

Sf (0)
Sf (M)

=
⇤`
MS
S`

Sf (0)

⇤f
MS

or
Sf (M)
Sf (0)

= QS
`,f ⇥ P`,f(M/⇤f

MS) , QS
`,f =

⇤`
MS

/S`

⇤f
MS

/Sf (0)

I Now take as an example S = mproton, and N` = 3, m4 = mcharm, then we
conclude that the charm-mass-dependence of the proton mass can be computed
perturbatively and is the same as e.g. the charm-mass dependence of, e.g., F⇡.

A little algebra yields

⌘ ⌘ Mcharm

mproton

@mproton

@Mcharm

����
⇤f
MS

= 1� b0(Nf)

b0(N`)
+ O(g2

(Mcharm)) = 0.074 + O(g2
) ,
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the meaning is not that perturbation theory gives the complete answer but that it yields
an asymptotic expansion.

In all the above, we may replace hadron masses by the inverse of hadronic low energy
length scales such as r0,

p
t0, w0 [1,13,14] which are often used for scale setting [15] or to

investigate the dependence of QCD on the number of flavors [16]. We will explain them in
more detail in section 4.1.

To simplify the notation, we will from now on omit the subscripts l, f when referring
to the quantities Q, P .

An interesting consequence of these considerations ((3.8) and (3.12)) is that the mass-
scaling function (P 0

(x) =
d
dxP (x))

⌘
M
(M) ⌘

M

P

@P

@M

����
⇤f

=
M

⇤f

P
0

P
(3.14)

can be computed in perturbation theory when M is sufficiently large, cf. [17]. A completely
non-perturbative information only remains in the factor Q in eq. (3.12).

We can estimate ⌘
M from the mass dependence of hadronic quantities by taking the

logarithmic derivative in eq. (3.12) with respect to the logarithm of the mass

M

mhad
f (M)

@m
had
f (M)

@M

����
⇤f

= ⌘
M
, (3.15)

where m
had
f (0) drops out. Of course the ⇤

2
/M

2 dependence on Q in eq. (3.9) are inherited
by ⌘

M.

3.2 Perturbation theory

3.2.1 Matching of couplings

We consider a mass-independent renormalization scheme; whenever we insert perturbative
coefficients, it will be in the MS-scheme.

Since the heavy quarks contribute through loops, there is a relation between the
MS-couplings gf(µ/⇤f) of the fundamental theory and gdec(µ/⇤dec) of the leading order
effective theory. To simplify the notation we use ḡ(µ/⇤) ⌘ gf(µ/⇤f). The relation is

g
2
dec(µ/⇤dec) = ḡ

2
(µ/⇤) + O(ḡ

4
(µ/⇤)) . (3.16)

In perturbation theory, power corrections can be separated from the logarithmic ḡ
2 terms

and the relation is universal, i.e. independent of the matching condition. Choosing the
particular scale µ = m⇤ [2, 3], the first correction vanishes and we have [4, 18]

g
2
dec(m⇤/⇤dec) = ḡ

2
(m⇤/⇤)C(ḡ(m⇤/⇤)) (3.17)

C(g) = 1 + c2g
4
+ c3g

6
+ c4g

8
+ . . . . (3.18)

The scale m⇤ is defined such that the renormalised quark mass fulfills m(m⇤) = m⇤. The
two loop coefficient is then given by c2 = (Nf �Nl)

11
72 (4⇡

2
)
�2. The coefficients c3 and c4

are known for Nf �Nl = 1, 2 and Nf �Nl = 1, respectively. They are listed in Appendix
A.
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Figure 1: The functions ⌘
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corresponds to the highest loop order of the � function which is used.
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where

exp(I
i
g(ḡ)) =

�
b0(Ni)ḡ

2
��b1(Ni)/(2b0(Ni)2)

e
�1/(2b0(Ni)ḡ2) (3.31)

⇥ exp

⇢
�

Z ḡ

0
dx


1

�i(x)
+

1

b0(Ni)x
3
�

b1(Ni)

b0(Ni)
2x

��
. (3.32)

The coupling g⇤ = ḡ(m⇤) is obtained from inverting

⇤

M
= exp

(
�

Z g⇤(M/⇤)

dx
1� ⌧f(x)

�f(x)

)
, (3.33)

where M is the RGI mass corresponding to m⇤. For this equation we have combined eqs.
(3.1) and (3.4) using µ = m = m⇤. For reference the resulting relation is plotted in the
left panel of figure 4 together with the values for Mc/⇤ and Mb/⇤ which were obtained
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where

exp(I
i
g(ḡ)) =

�
b0(Ni)ḡ

2
��b1(Ni)/(2b0(Ni)2)

e
�1/(2b0(Ni)ḡ2) (3.31)

⇥ exp

⇢
�

Z ḡ

0
dx


1

�i(x)
+

1

b0(Ni)x
3
�

b1(Ni)

b0(Ni)
2x

��
. (3.32)

The coupling g⇤ = ḡ(m⇤) is obtained from inverting

⇤

M
= exp

(
�

Z g⇤(M/⇤)

dx
1� ⌧f(x)

�f(x)

)
, (3.33)

where M is the RGI mass corresponding to m⇤. For this equation we have combined eqs.
(3.1) and (3.4) using µ = m = m⇤. For reference the resulting relation is plotted in the
left panel of figure 4 together with the values for Mc/⇤ and Mb/⇤ which were obtained
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Mass scaling function evaluated by NP MC in
a model: Nf=2 —> 0

M/⇤
p

t0(M)/t0(0)

0.5900 0.9048( 43)
1.2800 0.8458( 74)
2.5000 0.7880( 73)
4.8700 0.7287(127)
5.7781 0.7151(102)

Table 3: The values of
p

t0(M)/t0(0) computed through eq. (5.2). The errors are obtained
from error propagation which takes into account the correlation between the two factors
in eq. (5.2).

in figure 10 the magenta line to the right shows the mass dependence in the chiral limit
estimated from [15,16], cf. [58].

From figure 10 we see that there is agreement between the Monte Carlo data of table 3
and the factorization formula eq. (5.1) for quark masses at the charm quark mass value Mc.
Thus within our precision of 10% due to the uncertainty of the factor Q in eq. (5.3), the data
match the upper error band of the perturbative prediction. In [11] we presented results for
the ratio r0(M)/r0(0) and reached similar conclusions albeit with less precise data covering
only the region below the charm quark mass. Our new results for

p
t0(M)/t0(0) are much

more precise than the value of Q extracted from the literature. This allows to turn the
tables and predict

Q

p
t0

0,2 = 1.134(17) , (5.4)

obtained by taking M/⇤ = 5.7781 in eq. (5.1). For
p

t0(M)/t0(0) we use our result in
the last line of table 3. We evaluate the factor P0,2(M/⇤ = 5.7781) = 1.2328 and assign
to it a 0.4% error as it will be estimated in section 6. This determination avoids entirely
the computation of the running of the coupling at high energy [40, 57]. In a nutshell it is
replaced by perturbation theory for the difference of the running. The essential point is
that the latter is given by the contribution of quark loops for which we non-perturbatively
confirm that perturbation theory is very accurate. We will comment more on this in the
conclusions.

5.2 The mass-scaling function ⌘
M

By discretizing the derivative in eq. (3.15) we obtain from our simulations numerical esti-
mates of the mass-scaling function

⌘
M
(M) ⇡

log(m
had

(M2)/m
had

(M1))

log(M2/M1)
, M =

p
M2M1 . (5.5)

We use this definition to compute ⌘
M
(M) at M =

p
1.28⇥ 0.59 and

p
2.50⇥ 1.28 using

m
had

= 1/
p
t0, 1/

p
tc and 1/w0. As emphasized before, these estimates differ by 1/M

2

effects. We have data at three values of the lattice coupling � = 6/g
2
0 = 5.3, 5.5 and 5.7

for both standard Wilson and twisted mass discretizations. We can also compute a value
of ⌘M(M) at M =

p
4.87⇥ 5.7781 but its statistical errors are large.
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Figure 11: Examples of continuum limits of ⌘
M
(M) extracted from m

had
= 1/

p
t0 us-

ing a linear extrapolation in a
2
/t0(M). In the left plot ⌘

M
(M) is computed at M/⇤ =

p
1.28⇥ 0.59 using the definition eq. (5.5). Shown are data for standard Wilson (black

circles) and twisted mass (red squares) and their combined continuum extrapolation. In
the right plot ⌘M(M) is computed at M = Mc (M/⇤ = 4.87) using the definition eq. (5.6).

single quark mass. Using the twisted mass discretization we can rewrite eq. (3.15), for
example taking m

had
= 1/

p
t0, as

�
µ

2t0

dt0

dµ
= ⌘

M
(M) . (5.6)

The derivative dt0
dµ is computed as explained in section 4.2.4. Using m

had
= 1/

p
tc or 1/w0

results in determinations of ⌘M(M) similar to eq. (5.6).
In the right plot of figure 11 we show the data for the quantity on the left-hand side

of eq. (5.6) computed from our simulations at M = Mc (M/⇤ = 4.87) with twisted mass
fermions at four values of the lattice coupling � = 6/g

2
0 = 5.6, 5.7, 5.88 and 6.0. Our

fine lattices are needed to control the cut-off effects at this large value of the mass. We
perform continuum extrapolations by “fits” to a constant. Taking three, two or just the
last point yields results which are in agreement. We settle for the two-point average which
of course has a larger error than the three-point one. The continuum values are plotted in
figure 12, together with similar determinations of ⌘M(Mc) from m

had
= 1/

p
tc and 1/w0.

At M = Mc the different determinations agree well with each other signaling the smallness
of the 1/M

2 corrections [33].
For our model with two charm quarks we see from figure 12 that ⌘

M is about 1/10,
both in perturbation theory and non-perturbatively. For a single charm quark there is an
additional factor 1/2. Thus a 2% shift of the charm quark mass leads only to a 1‰ change
of a low energy hadronic quantity of mass-dimension one.

The precision of ⌘M(Mc) that we can achieve is around 10%. Within this error the non-
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Mass scaling function: result 
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Figure 12: The mass dependence of the mass-scaling function ⌘
M in the theory with two

mass-degenerate quarks. ⌘
M is obtained from the hadronic scales 1/

p
t0, 1/

p
tc and 1/w0

and the data for a given mass M are slightly diplaced horizontally for clarity. The Monte
Carlo data are compared to the perturbative curves. The vertical dotted lines mark the
values of the quark mass Mc, Mc/2 and Mc/4.

perturbative values agree with the perturbative one. This does not look very precise, but
in absolute terms this is �⌘

M
= 0.01. We put this into the perspective of phenomenology

in the following section.

6 How big are the effects of charm loops?

We recapitulate that the effects of charm loops at low energies come in two classes. One
is when we are concerned with dimensionless low energy observables which do not refer to
quantities at energies around or above the charm mass. In lattice slang: the quantity is
long distance and the lattice spacing a is set through long distance physics in the theory
with the heavy quark. In this case the value of the ⇤-parameter drops out and the only
effects of the heavy quark mass are due to the power corrections originating from L2 studied
in [11,33]. These effects are very small. To be specific, when decoupling two charm quarks,
the power corrections in ratios of hadronic scales eq. (4.8) were found to be approximately
0.4%.

The prototype for the second class is given by the connection of the fundamental scales

24
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of the four-flavor and the three-flavor theory. In our model it is the connection between
the two-flavor theory and the zero-flavor theory. The very relevant question is what the
uncertainty is when one uses the perturbatively computed Pl,f(M/⇤f). In section 3.3 we
have seen that 3,4,5-loop corrections are very small. How big can non-perturbative effects
be? The close agreement of our non-perturbative ⌘M (section 5.2) with perturbation theory
and the dashed curve in figure 10 with the non-perturbative points shows that they are
small. We now put this into numbers.

In figure 12 we included a dashed curve corresponding to ⌘
M

= ⌘0 + c
⇤2

M2 as a very
crude model for non-perturbative effects. The term ⇤2

M2 is the leading non-perturbative
effect due to L2 and we add ⌘0 to have the correct asymptotics. Adding higher order
perturbative terms seems beyond this semiquantitative consideration. We chose c = �1/5,
which is a relatively large coefficient if the behavior at ⇤2

M2 ⇡ 0.3 can be compared to the
charm region; Covering the end of the error bars at the charm would require a somewhat
larger |c|. The effect of the ⇤2

M2 term on Pl,f(M/⇤f) is easily evaluated. We write

⌘
M

= ⌘
M
pert + ⌘

M
NP , (6.1)

where ⌘
M
pert may be the 4-loop expression and ⌘

M
NP the rest, which depends on Q. We want

to estimate its effect on Pl,f(M/⇤f) and for that purpose choose

⌘
M
NP = c

⇤
2

M2
. (6.2)

We then have log(P ) =
R log(M/⇤)

h(x)dx with x = log(M/⇤) and ⌘
M

= h(x). The non-
perturbative part is hNP(x) = c e

�2x. Fixing the integration constant by the perturbative
expression (at arbitrarily high M), we find

� log [Pl,f(M/⇤f)] ⌘ log [Pl,f(M/⇤f)]� log

h
Pl,f(M/⇤f)|pert

i
= �

c

2

⇤
2

M2
. (6.3)

Inserting our sensical c = �1/5 and the approximate charm mass value ⇤2

M2
c
⇡ 1/25 yields

� log [Pl,f(M/⇤f)] = 0.004.
This means a 0.4% change (or better uncertainty) due to non-perturbative effects of

the described form and magnitude. In other words a 0.4% precision for perturbation theory
in the conversion of the ⇤-parameter!

6.1 Heavy quark content of the nucleon

The matrix element of the scalar heavy quark density between nucleon states is a relevant
contribution to the cross-section for the scalar interaction of dark matter with ordinary
matter [59]. It can be related, by the Hellmann–Feynman theorem, to the derivative of
the nucleon mass mN with respect to the heavy quark mass. In the chiral limit for the up,
down and strange quark and up to O(⇤

2
/M

2
q ) this derivative is the mass-scaling function

⌘
M, see eq. (3.15),

1

mN
hN |mq,0(q̄q)0|Ni =

1

mN
hN |Mq(q̄q)RGI|Ni = ⌘

M
+O(⇤

2
/M

2
q ) , (6.4)

where mq,0 is the bare heavy quark mass and (q̄q)0 is the bare scalar density of quark q, and
(q̄q)RGI is the RGI-renormalized scalar heavy quark density. Our result in figure 12 shows
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values of the quark mass Mc, Mc/2 and Mc/4.

perturbative values agree with the perturbative one. This does not look very precise, but
in absolute terms this is �⌘

M
= 0.01. We put this into the perspective of phenomenology

in the following section.

6 How big are the effects of charm loops?

We recapitulate that the effects of charm loops at low energies come in two classes. One
is when we are concerned with dimensionless low energy observables which do not refer to
quantities at energies around or above the charm mass. In lattice slang: the quantity is
long distance and the lattice spacing a is set through long distance physics in the theory
with the heavy quark. In this case the value of the ⇤-parameter drops out and the only
effects of the heavy quark mass are due to the power corrections originating from L2 studied
in [11,33]. These effects are very small. To be specific, when decoupling two charm quarks,
the power corrections in ratios of hadronic scales eq. (4.8) were found to be approximately
0.4%.

The prototype for the second class is given by the connection of the fundamental scales
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of the four-flavor and the three-flavor theory. In our model it is the connection between
the two-flavor theory and the zero-flavor theory. The very relevant question is what the
uncertainty is when one uses the perturbatively computed Pl,f(M/⇤f). In section 3.3 we
have seen that 3,4,5-loop corrections are very small. How big can non-perturbative effects
be? The close agreement of our non-perturbative ⌘M (section 5.2) with perturbation theory
and the dashed curve in figure 10 with the non-perturbative points shows that they are
small. We now put this into numbers.

In figure 12 we included a dashed curve corresponding to ⌘
M

= ⌘0 + c
⇤2

M2 as a very
crude model for non-perturbative effects. The term ⇤2

M2 is the leading non-perturbative
effect due to L2 and we add ⌘0 to have the correct asymptotics. Adding higher order
perturbative terms seems beyond this semiquantitative consideration. We chose c = �1/5,
which is a relatively large coefficient if the behavior at ⇤2

M2 ⇡ 0.3 can be compared to the
charm region; Covering the end of the error bars at the charm would require a somewhat
larger |c|. The effect of the ⇤2

M2 term on Pl,f(M/⇤f) is easily evaluated. We write

⌘
M

= ⌘
M
pert + ⌘

M
NP , (6.1)

where ⌘
M
pert may be the 4-loop expression and ⌘

M
NP the rest, which depends on Q. We want

to estimate its effect on Pl,f(M/⇤f) and for that purpose choose

⌘
M
NP = c

⇤
2

M2
. (6.2)

We then have log(P ) =
R log(M/⇤)

h(x)dx with x = log(M/⇤) and ⌘
M

= h(x). The non-
perturbative part is hNP(x) = c e

�2x. Fixing the integration constant by the perturbative
expression (at arbitrarily high M), we find

� log [Pl,f(M/⇤f)] ⌘ log [Pl,f(M/⇤f)]� log

h
Pl,f(M/⇤f)|pert

i
= �

c

2

⇤
2

M2
. (6.3)

Inserting our sensical c = �1/5 and the approximate charm mass value ⇤2

M2
c
⇡ 1/25 yields

� log [Pl,f(M/⇤f)] = 0.004.
This means a 0.4% change (or better uncertainty) due to non-perturbative effects of

the described form and magnitude. In other words a 0.4% precision for perturbation theory
in the conversion of the ⇤-parameter!

6.1 Heavy quark content of the nucleon

The matrix element of the scalar heavy quark density between nucleon states is a relevant
contribution to the cross-section for the scalar interaction of dark matter with ordinary
matter [59]. It can be related, by the Hellmann–Feynman theorem, to the derivative of
the nucleon mass mN with respect to the heavy quark mass. In the chiral limit for the up,
down and strange quark and up to O(⇤

2
/M

2
q ) this derivative is the mass-scaling function

⌘
M, see eq. (3.15),

1

mN
hN |mq,0(q̄q)0|Ni =

1

mN
hN |Mq(q̄q)RGI|Ni = ⌘

M
+O(⇤

2
/M

2
q ) , (6.4)

where mq,0 is the bare heavy quark mass and (q̄q)0 is the bare scalar density of quark q, and
(q̄q)RGI is the RGI-renormalized scalar heavy quark density. Our result in figure 12 shows

25

0.4% precision for Λ4 / Λ3  
(decoupling two charm quarks) 
 
~0.2% decoupling one charm q.



Mass scaling function: result 
‣ precise confirmation of PT 

at charm 

‣ estimate of (~maximal NP 
contribution)

‣ leads to interesting  
statements:

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 12: The mass dependence of the mass-scaling function ⌘
M in the theory with two

mass-degenerate quarks. ⌘
M is obtained from the hadronic scales 1/

p
t0, 1/

p
tc and 1/w0

and the data for a given mass M are slightly diplaced horizontally for clarity. The Monte
Carlo data are compared to the perturbative curves. The vertical dotted lines mark the
values of the quark mass Mc, Mc/2 and Mc/4.

perturbative values agree with the perturbative one. This does not look very precise, but
in absolute terms this is �⌘

M
= 0.01. We put this into the perspective of phenomenology

in the following section.

6 How big are the effects of charm loops?

We recapitulate that the effects of charm loops at low energies come in two classes. One
is when we are concerned with dimensionless low energy observables which do not refer to
quantities at energies around or above the charm mass. In lattice slang: the quantity is
long distance and the lattice spacing a is set through long distance physics in the theory
with the heavy quark. In this case the value of the ⇤-parameter drops out and the only
effects of the heavy quark mass are due to the power corrections originating from L2 studied
in [11,33]. These effects are very small. To be specific, when decoupling two charm quarks,
the power corrections in ratios of hadronic scales eq. (4.8) were found to be approximately
0.4%.

The prototype for the second class is given by the connection of the fundamental scales
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of the four-flavor and the three-flavor theory. In our model it is the connection between
the two-flavor theory and the zero-flavor theory. The very relevant question is what the
uncertainty is when one uses the perturbatively computed Pl,f(M/⇤f). In section 3.3 we
have seen that 3,4,5-loop corrections are very small. How big can non-perturbative effects
be? The close agreement of our non-perturbative ⌘M (section 5.2) with perturbation theory
and the dashed curve in figure 10 with the non-perturbative points shows that they are
small. We now put this into numbers.

In figure 12 we included a dashed curve corresponding to ⌘
M

= ⌘0 + c
⇤2

M2 as a very
crude model for non-perturbative effects. The term ⇤2

M2 is the leading non-perturbative
effect due to L2 and we add ⌘0 to have the correct asymptotics. Adding higher order
perturbative terms seems beyond this semiquantitative consideration. We chose c = �1/5,
which is a relatively large coefficient if the behavior at ⇤2

M2 ⇡ 0.3 can be compared to the
charm region; Covering the end of the error bars at the charm would require a somewhat
larger |c|. The effect of the ⇤2

M2 term on Pl,f(M/⇤f) is easily evaluated. We write

⌘
M

= ⌘
M
pert + ⌘
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NP , (6.1)

where ⌘
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pert may be the 4-loop expression and ⌘
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NP the rest, which depends on Q. We want

to estimate its effect on Pl,f(M/⇤f) and for that purpose choose
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We then have log(P ) =
R log(M/⇤)

h(x)dx with x = log(M/⇤) and ⌘
M

= h(x). The non-
perturbative part is hNP(x) = c e

�2x. Fixing the integration constant by the perturbative
expression (at arbitrarily high M), we find
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Inserting our sensical c = �1/5 and the approximate charm mass value ⇤2

M2
c
⇡ 1/25 yields

� log [Pl,f(M/⇤f)] = 0.004.
This means a 0.4% change (or better uncertainty) due to non-perturbative effects of

the described form and magnitude. In other words a 0.4% precision for perturbation theory
in the conversion of the ⇤-parameter!

6.1 Heavy quark content of the nucleon

The matrix element of the scalar heavy quark density between nucleon states is a relevant
contribution to the cross-section for the scalar interaction of dark matter with ordinary
matter [59]. It can be related, by the Hellmann–Feynman theorem, to the derivative of
the nucleon mass mN with respect to the heavy quark mass. In the chiral limit for the up,
down and strange quark and up to O(⇤

2
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2
q ) this derivative is the mass-scaling function

⌘
M, see eq. (3.15),
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hN |Mq(q̄q)RGI|Ni = ⌘

M
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where mq,0 is the bare heavy quark mass and (q̄q)0 is the bare scalar density of quark q, and
(q̄q)RGI is the RGI-renormalized scalar heavy quark density. Our result in figure 12 shows
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from the determined  
mass-effect in Nf=2 can  
predict Λ2 / Λ0 w. precisionperturbation theory with ⇡ 0.2%⇥ (Nf �Nl) accuracy. This allows to predict

⇤MS

p
t0(0)

���
Nf=2

⇤MS

p
t0

��
Nl=0

= 1.134(17) . (7.1)

Moreover we estimate that the non-perturbative effects in ⌘
M are below 0.004 for the charm

quark.
On the other hand, in the direct comparison of

p
t0(Mc)/t0(0) to the product QP ,

eq. (3.12) we presently have only 10% accuracy because in the literature the ratio, Q is
not known more precisely.

Our most important conclusion concerns phenomenology: the ratio of three-flavor
and four-flavor ⇤-parameters can be computed in perturbation theory with an about 0.2%
precision. Power corrections ⇠ 1/M

2
c were found to be at the same level in low energy

observables [11,33]. Adding a safety margin, this means that the ⇤-parameter of the five-
flavor theory is safely predicted at the percent level from three-flavor low energy physics
once the running of the coupling is under control [63], see section 6.2 for details. Note
that the present precision of �↵MS(MZ) = 0.0008 of [63] corresponds to 3.5% in the ⇤-
parameter. Thus, there is plenty of room for relevant improvement within the three-flavour
theory.

Similarly we conclude that non-perturbative effects to the charm quark content of the
nucleon, eq. (6.4) are below 0.01.
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A Expansion of the matching condition and the mass scaling function

The coefficients of the matching of the coupling (3.17) can be found in [4,18,64]. We collect
here all known coefficients for convenience. Note that we use the particular scale µ = m⇤,
for which logarithms log(µ/m(µ)) vanish and c1 = 0. The two loop coefficient is known
for arbitrary Nf , Nl

c2 = (Nf �Nl)
11
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perturbative values agree with the perturbative one. This does not look very precise, but
in absolute terms this is �⌘

M
= 0.01. We put this into the perspective of phenomenology

in the following section.

6 How big are the effects of charm loops?

We recapitulate that the effects of charm loops at low energies come in two classes. One
is when we are concerned with dimensionless low energy observables which do not refer to
quantities at energies around or above the charm mass. In lattice slang: the quantity is
long distance and the lattice spacing a is set through long distance physics in the theory
with the heavy quark. In this case the value of the ⇤-parameter drops out and the only
effects of the heavy quark mass are due to the power corrections originating from L2 studied
in [11,33]. These effects are very small. To be specific, when decoupling two charm quarks,
the power corrections in ratios of hadronic scales eq. (4.8) were found to be approximately
0.4%.

The prototype for the second class is given by the connection of the fundamental scales
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of the four-flavor and the three-flavor theory. In our model it is the connection between
the two-flavor theory and the zero-flavor theory. The very relevant question is what the
uncertainty is when one uses the perturbatively computed Pl,f(M/⇤f). In section 3.3 we
have seen that 3,4,5-loop corrections are very small. How big can non-perturbative effects
be? The close agreement of our non-perturbative ⌘M (section 5.2) with perturbation theory
and the dashed curve in figure 10 with the non-perturbative points shows that they are
small. We now put this into numbers.
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M2 as a very
crude model for non-perturbative effects. The term ⇤2

M2 is the leading non-perturbative
effect due to L2 and we add ⌘0 to have the correct asymptotics. Adding higher order
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Inserting our sensical c = �1/5 and the approximate charm mass value ⇤2

M2
c
⇡ 1/25 yields

� log [Pl,f(M/⇤f)] = 0.004.
This means a 0.4% change (or better uncertainty) due to non-perturbative effects of

the described form and magnitude. In other words a 0.4% precision for perturbation theory
in the conversion of the ⇤-parameter!

6.1 Heavy quark content of the nucleon

The matrix element of the scalar heavy quark density between nucleon states is a relevant
contribution to the cross-section for the scalar interaction of dark matter with ordinary
matter [59]. It can be related, by the Hellmann–Feynman theorem, to the derivative of
the nucleon mass mN with respect to the heavy quark mass. In the chiral limit for the up,
down and strange quark and up to O(⇤
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where mq,0 is the bare heavy quark mass and (q̄q)0 is the bare scalar density of quark q, and
(q̄q)RGI is the RGI-renormalized scalar heavy quark density. Our result in figure 12 shows
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Moreover we estimate that the non-perturbative effects in ⌘
M are below 0.004 for the charm

quark.
On the other hand, in the direct comparison of

p
t0(Mc)/t0(0) to the product QP ,

eq. (3.12) we presently have only 10% accuracy because in the literature the ratio, Q is
not known more precisely.

Our most important conclusion concerns phenomenology: the ratio of three-flavor
and four-flavor ⇤-parameters can be computed in perturbation theory with an about 0.2%
precision. Power corrections ⇠ 1/M

2
c were found to be at the same level in low energy

observables [11,33]. Adding a safety margin, this means that the ⇤-parameter of the five-
flavor theory is safely predicted at the percent level from three-flavor low energy physics
once the running of the coupling is under control [63], see section 6.2 for details. Note
that the present precision of �↵MS(MZ) = 0.0008 of [63] corresponds to 3.5% in the ⇤-
parameter. Thus, there is plenty of room for relevant improvement within the three-flavour
theory.

Similarly we conclude that non-perturbative effects to the charm quark content of the
nucleon, eq. (6.4) are below 0.01.

Acknowledgement. We thank M. Bruno and J. Heitger for their inputs for our
analyses. We thank M. Dalla Brida and A. Ramos for providing valuable feedback on the
manuscript. We gratefully acknowledge the computer resources granted by the John von
Neumann Institute for Computing (NIC) and provided on the supercomputer JUROPA at
Jülich Supercomputing Centre (JSC) and by the Gauss Centre for Supercomputing (GCS)
through the NIC on the GCS share of the supercomputer JUQUEEN at JSC, with funding
by the German Federal Ministry of Education and Research (BMBF) and the German
State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and
Nordrhein-Westfalen (MIWF). We are further grateful for computer time allocated for our
project on the Konrad and Gottfried computers at the North-German Supercomputing
Alliance HLRN, on the CHEOPS, a scientific supercomputer sponsored by the DFG of
the regional computing centre of the University of Cologne (RRZK), the Stromboli cluster
at the University of Wuppertal and the PAX cluster at DESY, Zeuthen. This work is
supported by the Deutsche Forschungsgemeinschaft in the SFB/TR 55 and is based on
previous work [11] supported also by the SFB/TR 09. FK thanks CERN for hospitality.

A Expansion of the matching condition and the mass scaling function

The coefficients of the matching of the coupling (3.17) can be found in [4,18,64]. We collect
here all known coefficients for convenience. Note that we use the particular scale µ = m⇤,
for which logarithms log(µ/m(µ)) vanish and c1 = 0. The two loop coefficient is known
for arbitrary Nf , Nl

c2 = (Nf �Nl)
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Considered scales

‣ static potential  
 
force F(r) = V’(r),   
               r0 defined by: (r0)2 F(r0) = 1.65 
               r1 defined by: (r1)2 F(r1) = 1.0 

‣ Gradient flow observables: t0, tc, w0 



Simulations 

Taking the logarithm on both sides yields log(`) = � log(x) +O(x log(x)). Inverting gives
the result

1

x
= `+

d0

2b0(Nf)
log(`)�

b1(Nf)

2b0(Nf)
2
log(`/2) + O

✓
log(`)

`

◆
. (B.6)

Using these relations g⇤ can be eliminated from (B.3)-(B.4) and one arrives at eq. (3.28).

C Simulation parameters

Table 4 and table 5 summarize the parameters of our simulations of Nf = 2 mass-degenerate
quarks using O(a) improved standard Wilson fermions and twisted mass Wilson fermions
at maximal twist respectively.

T
a ⇥

�
L
a

�3
� BC  am M/⇤ r0/a t0/a

2 kMDU

64⇥ 32
3

5.3 p 0.13550 0.03405(8) 0.638(46) 5.903(36) 3.481(14) 1
64⇥ 32

3
5.3 p 0.13450 0.06979(7) 1.308(95) 5.193(20) 2.714(14) 2

64⇥ 32
3

5.3 p 0.13270 0.13873(8) 2.600(189) 4.270(6) 1.842(3) 2

120⇥ 32
3

5.5 o 0.136020 0.02467(4) 0.630(46) 8.49(12) 7.318(36) 8
120⇥ 32

3
5.5 o 0.135236 0.05022(3) 1.282(93) 7.580(44) 6.092(21) 8

96⇥ 48
3

5.5 p 0.133830 0.09614(2) 2.454(178) 6.787(19) 4.867(12) 4

192⇥ 48
3

5.7 o 0.136200 0.01691(2) 0.586(43) 11.48(24) 14.02(6) 4
192⇥ 48

3
5.7 o 0.135570 0.03683(2) 1.277(94) 10.53(12) 11.87(7) 4

192⇥ 48
3

5.7 o 0.134450 0.07209(2) 2.500(184) 9.50(5) 9.821(36) 8

Table 4: Overview of the ensembles generated with Nf = 2 O(a) improved Wilson fermions.
The columns show the lattice sizes, the gauge coupling � = 6/g

2
0, the boundary conditions

(periodic (p) or open (o)), the hopping parameter  (which is related to the bare mass m0

through  = 1/(2am0 + 8)), the PCAC mass am, the ratio of the RGI mass M to the ⇤

parameter (computed using eq. (4.10)), the scales r0/a and t0/a
2 and the total statistics

in molecular dynamics units.

In table 6 we list the values of the hadronic scale L1/a [21, 34]. At � = 5.3, 5.5 they
are taken from Table 7 of [21]. At the other � values they are obtained from a quadratic
fit in � of ln(L1/a), where data for the latter are taken from Table 13 of [21]. The lattice
spacing for � > 5.5 (not covered by the simulations in [21]) can be inferred from the value
L1 = 0.400(10)fm determined in [21].

C.1 Mass corrections

The data for a hadronic scale m
had such as r

�1
0 , t�1/2

0 obtained from the simulations with
standard Wilson fermions are corrected for small mismatches of the values M/⇤ compared
to the target values Mt/⇤ given in eq. (4.1), see table 4. This is done by fitting the � = 5.7

data to the form
am

had
(M) = s1 ⇥ (M/⇤)

↵
, (C.1)

with fit coefficients s1 and ↵. This fit formula is motivated by eq. (3.12) taking the
asymptotic expression P = (M/⇤f)

⌘0 . For example for mhad
= 1/

p
t0 we get ↵ = 0.123(2)
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Simulations 
NP O(a)-improved Wilson, at maximal (mass) twist

(same lattice spacings as un-twisted )
T
a ⇥

�
L
a

�3
�  aµ M/⇤ r0/a t0/a

2 kMDU

120⇥ 32
3 5.300 0.136457 0.024505 0.5900 – 4.174(13) 4.3

120⇥ 32
3 5.500 0.1367749 0.018334 0.5900 8.77(15) 7.917(82) 8

192⇥ 48
3 5.700 0.136687 0.013713 0.5900 – 14.40(10) 5.8

120⇥ 32
3 5.500 0.1367749 0.039776 1.2800 8.010(62) 6.871(33) 8

192⇥ 48
3 5.700 0.136687 0.029751 1.2800 – 12.668(39) 16.2

120⇥ 32
3 5.500 0.1367749 0.077687 2.5000 7.392(62) 5.836(27) 8

192⇥ 48
3 5.700 0.136687 0.058108 2.5000 – 10.916(38) 9

192⇥ 48
3 5.600 0.136710 0.130949 4.8700 – 6.561(12) 16

120⇥ 32
3 5.700 0.136698 0.113200 4.8703 9.123(57) 9.104(36) 17.2

192⇥ 48
3 5.880 0.136509 0.087626 4.8700 11.946(55) 15.622(62) 23.1

192⇥ 48
3 6.000 0.136335 0.072557 4.8700 14.34(10) 22.39(12) 22.4

192⇥ 48
3 5.600 0.136710 0.155367 5.7781 – 6.181(11) 2.1

192⇥ 48
3 5.700 0.136687 0.1343 5.7781 – 8.565(31) 2.7

120⇥ 32
3 5.880 0.136509 0.103965 5.7781 – 14.916(93) 59.9

Table 5: Overview of the ensembles generated with Nf = 2 twisted mass fermions at
maximal twist. The columns show the lattice sizes, the gauge coupling � = 6/g

2
0, the

hopping parameter  (for maximal twist), the twisted mass parameter aµ, the ratio of the
RGI mass M to the ⇤ parameter (computed using eq. (4.10)), the scales r0/a (where it is
measured) and t0/a

2 and the total statistics in molecular dynamics units.

and for mhad
= 1/r0 we get ↵ = 0.139(12) which are close to ⌘0 = 0.121212. The corrected

values m
had

(Mt) are computed as

ln(am
had

(Mt)) = ln(am
had

(M)) + ↵ ln(Mt/M) . (C.2)

Note that eq. (C.2) being a small correction is applied for all lattice spacings a. Moreover
the ⇤ parameter drops out in eq. (C.2). Since the main contribution to the error on
M/⇤ comes from ⇤L1, it does not affect the mass corrections. In order to determine the
final error of amhad

(Mt), we propagate the error of the exponent ↵ and linearly add its
contribution (for a conservative estimate) multiplied by a factor of two.

No corrections is needed for the hadronic scales from twisted mass simulations since
their parameters are tuned for the target mass values, see section 4.2.3.

References

[1] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010)
071 [1006.4518].

[2] S. Weinberg, Effective gauge theories, Phys.Lett. B91 (1980) 51.

[3] W. Bernreuther and W. Wetzel, Decoupling of Heavy Quarks in the Minimal
Subtraction Scheme, Nucl.Phys. B197 (1982) 228.

[4] K. Chetyrkin, J. H. Kühn and C. Sturm, QCD decoupling at four loops, Nucl.Phys.
B744 (2006) 121 [hep-ph/0512060].

30



Simulations 
NP O(a)-improved Wilson, at maximal (mass) twist

(same lattice spacings as un-twisted )
T
a ⇥

�
L
a

�3
�  aµ M/⇤ r0/a t0/a

2 kMDU

120⇥ 32
3 5.300 0.136457 0.024505 0.5900 – 4.174(13) 4.3

120⇥ 32
3 5.500 0.1367749 0.018334 0.5900 8.77(15) 7.917(82) 8

192⇥ 48
3 5.700 0.136687 0.013713 0.5900 – 14.40(10) 5.8

120⇥ 32
3 5.500 0.1367749 0.039776 1.2800 8.010(62) 6.871(33) 8

192⇥ 48
3 5.700 0.136687 0.029751 1.2800 – 12.668(39) 16.2

120⇥ 32
3 5.500 0.1367749 0.077687 2.5000 7.392(62) 5.836(27) 8

192⇥ 48
3 5.700 0.136687 0.058108 2.5000 – 10.916(38) 9

192⇥ 48
3 5.600 0.136710 0.130949 4.8700 – 6.561(12) 16

120⇥ 32
3 5.700 0.136698 0.113200 4.8703 9.123(57) 9.104(36) 17.2

192⇥ 48
3 5.880 0.136509 0.087626 4.8700 11.946(55) 15.622(62) 23.1

192⇥ 48
3 6.000 0.136335 0.072557 4.8700 14.34(10) 22.39(12) 22.4

192⇥ 48
3 5.600 0.136710 0.155367 5.7781 – 6.181(11) 2.1

192⇥ 48
3 5.700 0.136687 0.1343 5.7781 – 8.565(31) 2.7

120⇥ 32
3 5.880 0.136509 0.103965 5.7781 – 14.916(93) 59.9

Table 5: Overview of the ensembles generated with Nf = 2 twisted mass fermions at
maximal twist. The columns show the lattice sizes, the gauge coupling � = 6/g

2
0, the

hopping parameter  (for maximal twist), the twisted mass parameter aµ, the ratio of the
RGI mass M to the ⇤ parameter (computed using eq. (4.10)), the scales r0/a (where it is
measured) and t0/a

2 and the total statistics in molecular dynamics units.

and for mhad
= 1/r0 we get ↵ = 0.139(12) which are close to ⌘0 = 0.121212. The corrected

values m
had

(Mt) are computed as

ln(am
had

(Mt)) = ln(am
had

(M)) + ↵ ln(Mt/M) . (C.2)
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Autocorrelations (for lattice (non)-experts)
Introduction Simulations Results Conclusions and outlook
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t0/a2 > 5.5: open boundary conditions [Lüscher and Schaefer,

arXiv:1206.2809], using openQCD

a = 0.034 fm: ⌧exp ' 250
4-8 kMDU statistics moderate but ok

error analysis with ⌧exp [Wol↵, hep-lat/0306017;Schaefer, Sommer and

Virotta, arXiv:1009:5228]

F. Knechtli, E↵ects of heavy charm-like quarks 5/13
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Figure 8: Autocorrelation times derived from observables which are expected to have large
overlap with the slowest modes in the simulation are plotted as a function of t0(M)/a

2.
The dotted line represents eq. (4.15).

µ. Maximal twist means that m0 is set to its critical value mc which corresponds to the
vanishing of the current (PCAC) quark mass. We extracted the critical mass from table
13 in [21], interpolating the data to the desired � values by a Padé fit in g

2
0 = 6/� of the

form

amc(g0) = u1 g
2
0 + g

4
0

3P
k=0

u2+k g
2k
0

1 + ud g
2
0

(4.14)

where the coefficients u1 and u2 coincide with two-loop perturbation theory [54]. The
values of the hopping parameter  = 1/(2amc + 8) are listed in table 5.

4.2.6 Autocorrelation times and error analysis

We measure the integrated autocorrelation time ⌧int for all measured quantities including
the hadronic scales, the PCAC mass and additionally the topological susceptibility. We
find the largest ⌧int for the scale t0 and for the topological susceptibility �

corr as defined
in [48], see figure 8, which we use as a rough estimate of the exponential autocorrelation
time ⌧exp, cf. [47].

At the smallest lattice spacing a = 0.036 fm that we reach with standard Wilson
fermions we estimate ⌧exp ' 200 � 300 MDU (Molecular Dynamics Units). Our statistics
of 4000 � 8000 MDU is therefore adequate but does require a particularly careful error
analysis. With twisted mass fermions at maximal twist we reach a smallest lattice spacing
of a = 0.023 fm (� = 6.0). There we estimate ⌧exp = 357 MDU and have a statistics of

18

with statistics of 1k MDU:  5-10 independent configurations  
—> doing 1 .. 4 … 20 …60 kMDU                                    



652 

 

 

 

 

 

 

 

 ALPHA Collaboration / Physics Letters B 774 (2017) 

 

 

 

 

 

 

 

 649–655

Fig. 1. Combined continuum extrapolations. On the the left,  ratio

o

o

o

o

o

o

o

o 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0. On the right √

t 0/w 0. We show data from twisted mass (pentagrams), standard Wilson (squares) 
and quenched (circles) simulations. For the second coarsest quenched lattice we performed a finite volume test and there are two data points overlapping. The lines represent 
the continuum extrapolations described in the text and the asterisks are the obtained continuum values.

Fig. 2. The continuum extrapolated values of 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0 (left) and √

√

√

√

√

√

√

√

√
t0 /w 0 (right) from the fit shown in Fig. 

 

 

 

 

 

 

 

 1 plotted line against  /M . The  in the blue band is the effective 
theory prediction eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 fitted through points from  

 

 

 

 

 

 

 

 M = ∞ down to  M/ = 

 

 

 

 

 

 

 

 2.5000.  The line in the green band is instead a fit linear in  /M . For comparison the dashed 
lines represent the quadratic (blue)  

 

 

 

 

 

 

 

 and linear (green) fit through points  

 

 

 

 

 

 

 

 from  

 

 

 

 

 

 

 

 M = ∞ down to  

 

 

 

 

 

 

 

 M/ = 

 

 

 

 

 

 

 

 1.2800.   

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

   Also shown by the dashed–dotted red line is a fit in this

range adding to eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 a next-to-leading correction term proportional to  4/M 4
. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.)

Table 2

The values of various dimensionless ratios in the continuum limit for several values of the quark mass.

M

M

M

M

M

M

M

M

M/ 

 

 

 

 

 

 

 

 ∞ 

 

 

 

 

 

 

 

 5.7781 

 

 

 

 

 

 

 

 4.87 

 

 

 

 

 

 

 

 2.50 

 

 

 

 

 

 

 

 1.28 

 

 

 

 

 

 

 

 0.59

√

√

√

√

√

√

√

√

√
t

t

t

t

t

t

t

t

tc/t 0 0.7919(3) 

 

 

 

 

 

 

 

 0.7894(9) 

 

 

 

 

 

 

 

 0.7888(5) 

 

 

 

 

 

 

 

 0.7826(6) 

 

 

 

 

 

 

 

 0.7751(9) 

 

 

 

 

 

 

 

 0.7643(6)√

√

√

√

√

√

√

√

√
t0/w0 0.9803(6) 

 

 

 

 

 

 

 

 0.9774(21) 

 

 

 

 

 

 

 

 0.9765(10) 

 

 

 

 

 

 

 

 0.9661(13) 

 

 

 

 

 

 

 

 0.9532(18) 

 

 

 

 

 

 

 

 0.9311(15)

r0/
√
t0 3.013(17) 

 

 

 

 

 

 

 

 – 

 

 

 

 

 

 

 

 3.022(29) 

 

 

 

 

 

 

 

 2.988(35) 

 

 

 

 

 

 

 

 3.043(71) 

 

 

 

 

 

 

 

 3.050(64)

original study:                                            Bruno, Finkenrath, Knechtli, Leder, Sommer, Phys.Rev.Lett. 114 (2015) 
significant improvement:                            Knechtli, Leder, Korzec, Phys.Lett. B774 (2017) 

   (twisted + untwisted quarks, higher masses,)

continuum limits

652 

 

 

 

 

 

 

 

 ALPHA Collaboration / Physics Letters B 774 (2017) 

 

 

 

 

 

 

 

 649–655

Fig. 1. Combined continuum extrapolations. On the the left,  ratio

o

o

o

o

o

o

o

o 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0. On the right √

t 0/w 0. We show data from twisted mass (pentagrams), standard Wilson (squares) 
and quenched (circles) simulations. For the second coarsest quenched lattice we performed a finite volume test and there are two data points overlapping. The lines represent 
the continuum extrapolations described in the text and the asterisks are the obtained continuum values.

Fig. 2. The continuum extrapolated values of 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0 (left) and √

√

√

√

√

√

√

√

√
t0 /w 0 (right) from the fit shown in Fig. 

 

 

 

 

 

 

 

 1 plotted line against  /M . The  in the blue band is the effective 
theory prediction eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 fitted through points from  

 

 

 

 

 

 

 

 M = ∞ down to  M/ = 

 

 

 

 

 

 

 

 2.5000.  The line in the green band is instead a fit linear in  /M . For comparison the dashed 
lines represent the quadratic (blue)  

 

 

 

 

 

 

 

 and linear (green) fit through points  

 

 

 

 

 

 

 

 from  

 

 

 

 

 

 

 

 M = ∞ down to  

 

 

 

 

 

 

 

 M/ = 

 

 

 

 

 

 

 

 1.2800.   

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

   Also shown by the dashed–dotted red line is a fit in this

range adding to eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 a next-to-leading correction term proportional to  4/M 4
. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.)

Table 2

The values of various dimensionless ratios in the continuum limit for several values of the quark mass.

M

M

M

M

M

M

M

M

M/ 

 

 

 

 

 

 

 

 ∞ 

 

 

 

 

 

 

 

 5.7781 

 

 

 

 

 

 

 

 4.87 

 

 

 

 

 

 

 

 2.50 

 

 

 

 

 

 

 

 1.28 

 

 

 

 

 

 

 

 0.59

√

√

√

√

√

√

√

√

√
t

t

t

t

t

t

t

t

tc/t 0 0.7919(3) 

 

 

 

 

 

 

 

 0.7894(9) 

 

 

 

 

 

 

 

 0.7888(5) 

 

 

 

 

 

 

 

 0.7826(6) 

 

 

 

 

 

 

 

 0.7751(9) 

 

 

 

 

 

 

 

 0.7643(6)√

√

√

√

√

√

√

√

√
t0/w0 0.9803(6) 

 

 

 

 

 

 

 

 0.9774(21) 

 

 

 

 

 

 

 

 0.9765(10) 

 

 

 

 

 

 

 

 0.9661(13) 

 

 

 

 

 

 

 

 0.9532(18) 

 

 

 

 

 

 

 

 0.9311(15)

r0/
√
t0 3.013(17) 

 

 

 

 

 

 

 

 – 

 

 

 

 

 

 

 

 3.022(29) 

 

 

 

 

 

 

 

 2.988(35) 

 

 

 

 

 

 

 

 3.043(71) 

 

 

 

 

 

 

 

 3.050(64)

  at charm:  ~0.2 % effects



652 

 

 

 

 

 

 

 

 ALPHA Collaboration / Physics Letters B 774 (2017) 

 

 

 

 

 

 

 

 649–655

Fig. 1. Combined continuum extrapolations. On the the left,  ratio

o

o

o

o

o

o

o

o 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0. On the right √

t 0/w 0. We show data from twisted mass (pentagrams), standard Wilson (squares) 
and quenched (circles) simulations. For the second coarsest quenched lattice we performed a finite volume test and there are two data points overlapping. The lines represent 
the continuum extrapolations described in the text and the asterisks are the obtained continuum values.

Fig. 2. The continuum extrapolated values of 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0 (left) and √

√

√

√

√

√

√

√

√
t0 /w 0 (right) from the fit shown in Fig. 

 

 

 

 

 

 

 

 1 plotted line against  /M . The  in the blue band is the effective 
theory prediction eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 fitted through points from  

 

 

 

 

 

 

 

 M = ∞ down to  M/ = 

 

 

 

 

 

 

 

 2.5000.  The line in the green band is instead a fit linear in  /M . For comparison the dashed 
lines represent the quadratic (blue)  

 

 

 

 

 

 

 

 and linear (green) fit through points  

 

 

 

 

 

 

 

 from  

 

 

 

 

 

 

 

 M = ∞ down to  

 

 

 

 

 

 

 

 M/ = 

 

 

 

 

 

 

 

 1.2800.   

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

   Also shown by the dashed–dotted red line is a fit in this

range adding to eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 a next-to-leading correction term proportional to  4/M 4
. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.)

Table 2

The values of various dimensionless ratios in the continuum limit for several values of the quark mass.

M

M

M

M

M

M

M

M

M/ 

 

 

 

 

 

 

 

 ∞ 

 

 

 

 

 

 

 

 5.7781 

 

 

 

 

 

 

 

 4.87 

 

 

 

 

 

 

 

 2.50 

 

 

 

 

 

 

 

 1.28 

 

 

 

 

 

 

 

 0.59

√

√

√

√

√

√

√

√

√
t

t

t

t

t

t

t

t

tc/t 0 0.7919(3) 

 

 

 

 

 

 

 

 0.7894(9) 

 

 

 

 

 

 

 

 0.7888(5) 

 

 

 

 

 

 

 

 0.7826(6) 

 

 

 

 

 

 

 

 0.7751(9) 

 

 

 

 

 

 

 

 0.7643(6)√

√

√

√

√

√

√

√

√
t0/w0 0.9803(6) 

 

 

 

 

 

 

 

 0.9774(21) 

 

 

 

 

 

 

 

 0.9765(10) 

 

 

 

 

 

 

 

 0.9661(13) 

 

 

 

 

 

 

 

 0.9532(18) 

 

 

 

 

 

 

 

 0.9311(15)

r0/
√
t0 3.013(17) 

 

 

 

 

 

 

 

 – 

 

 

 

 

 

 

 

 3.022(29) 

 

 

 

 

 

 

 

 2.988(35) 

 

 

 

 

 

 

 

 3.043(71) 

 

 

 

 

 

 

 

 3.050(64)

original study:                                            Bruno, Finkenrath, Knechtli, Leder, Sommer, Phys.Rev.Lett. 114 (2015) 
significant improvement:                            Knechtli, Leder, Korzec, Phys.Lett. B774 (2017) 

   (twisted + untwisted quarks, higher masses,)

continuum limits

652 

 

 

 

 

 

 

 

 ALPHA Collaboration / Physics Letters B 774 (2017) 

 

 

 

 

 

 

 

 649–655

Fig. 1. Combined continuum extrapolations. On the the left,  ratio

o

o

o

o

o

o

o

o 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0. On the right √

t 0/w 0. We show data from twisted mass (pentagrams), standard Wilson (squares) 
and quenched (circles) simulations. For the second coarsest quenched lattice we performed a finite volume test and there are two data points overlapping. The lines represent 
the continuum extrapolations described in the text and the asterisks are the obtained continuum values.

Fig. 2. The continuum extrapolated values of 

 

 

 

 

 

 

 

 √

√

√

√

√

√

√

√

√
tc/t0 (left) and √

√

√

√

√

√

√

√

√
t0 /w 0 (right) from the fit shown in Fig. 

 

 

 

 

 

 

 

 1 plotted line against  /M . The  in the blue band is the effective 
theory prediction eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 fitted through points from  

 

 

 

 

 

 

 

 M = ∞ down to  M/ = 

 

 

 

 

 

 

 

 2.5000.  The line in the green band is instead a fit linear in  /M . For comparison the dashed 
lines represent the quadratic (blue)  

 

 

 

 

 

 

 

 and linear (green) fit through points  

 

 

 

 

 

 

 

 from  

 

 

 

 

 

 

 

 M = ∞ down to  

 

 

 

 

 

 

 

 M/ = 

 

 

 

 

 

 

 

 1.2800.   

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

   Also shown by the dashed–dotted red line is a fit in this

range adding to eq. 

 

 

 

 

 

 

 

 (4) 

 

 

 

 

 

 

 

 a next-to-leading correction term proportional to  4/M 4
. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.)

Table 2

The values of various dimensionless ratios in the continuum limit for several values of the quark mass.

M

M

M

M

M

M

M

M

M/ 

 

 

 

 

 

 

 

 ∞ 

 

 

 

 

 

 

 

 5.7781 

 

 

 

 

 

 

 

 4.87 

 

 

 

 

 

 

 

 2.50 

 

 

 

 

 

 

 

 1.28 

 

 

 

 

 

 

 

 0.59

√

√

√

√

√

√

√

√

√
t

t

t

t

t

t

t

t

tc/t 0 0.7919(3) 

 

 

 

 

 

 

 

 0.7894(9) 

 

 

 

 

 

 

 

 0.7888(5) 

 

 

 

 

 

 

 

 0.7826(6) 

 

 

 

 

 

 

 

 0.7751(9) 

 

 

 

 

 

 

 

 0.7643(6)√

√

√

√

√

√

√

√

√
t0/w0 0.9803(6) 

 

 

 

 

 

 

 

 0.9774(21) 

 

 

 

 

 

 

 

 0.9765(10) 

 

 

 

 

 

 

 

 0.9661(13) 

 

 

 

 

 

 

 

 0.9532(18) 

 

 

 

 

 

 

 

 0.9311(15)

r0/
√
t0 3.013(17) 

 

 

 

 

 

 

 

 – 

 

 

 

 

 

 

 

 3.022(29) 

 

 

 

 

 

 

 

 2.988(35) 

 

 

 

 

 

 

 

 3.043(71) 

 

 

 

 

 

 

 

 3.050(64)

  at charm:  ~0.2 % effects

Very small effects



EFT prediction  ~1/M2  favored Knechtli, Leder, Korzec, Moir, 2017

mass dependence in continuum   at charm:  ~0.2 % effects

One can make use of this for obtaining higher 
precision in renormalization problems:

Decoupling as a tool.   Presented in Wuhan:
Non-perturbative renormalization by decoupling

Alberto Ramos <alberto.ramos@maths.tcd.ie>

LPHAA
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Decoupling as a tool

P`,f(M/⇤f
MS)

⇤f
MS

Sf (M)
=

⇤`
MS
S` ,

where S`
= Sf

(M) + O(1/M2
) is a mass-scale (e.g. 1/

p
t0))

It is very practical to define the scale by

S = µdec , with [gf
GF(µdec,M/µdec)]

2
= uM .

decoupling:
g`
GF(µdec)

2
= uM .

and rewrite (⇤ = µ'g):
⇤`
MS

µdec
=

⇤`
MS

⇤`
GF

'`
g,GF(

p
uM) .

function which relates the coupling in the full theory with the massive quarks and the
one with all massless ones,

uM =  M(u0, z) , with u0 = [ḡf
GF(µ, 0)]

2 , z = M/µ ,

Rainer Sommer Beijing 2019 12
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Decoupling as a tool

P`,f(M/⇤f
MS)

⇤f
MS

Sf (M)
=

⇤`
MS
S` ,

becomes

⇢P`,f(z/⇢)| {z }
High order PT

=
⇤`
MS

⇤`
GF|{z}

1-lp exact

'`
GF|{z}

YM

(

p
 M(u0, z)| {z }

full

) (1)

in terms of the dimensionless
⇢ =

⇤f
MS

µdec
.

needed
I Nf = 3: fix coupling at M = 0, determine coupling for M � µdec

uM =  M(u0, z) , with u0 = [ḡf
GF(µ, 0)]

2 , z = M/µ ,

I Nf = 0: very precise running of couplings to very lage µ
step scaling functions
! '`

GF
done by M.Dalla Brida and A. Ramos. do not discuss further
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Decoupling as a tool for renormalization

‣ Choose $dec relatively low. Here Schroedinger Functional, 
$dec =1/L = 0.8GeV. Fixed by coupling in GF scheme, 
massless. 

T�� ����� ���� I������������� R������ C����������

O�� �����: M��� ������� �� ��� ����� ������� �����

I µdec(M) [GeV]: Switch to mass-less scheme. Use ALPHA [ALPHA 1706.03821]

ḡ2(µdec(M))
���
Nf=3,M,T=2L

=) ḡ2(µdec(M))
���
Nf=3,M=0,T=L

=) µdec(M) in [fm] .

I M [GeV]: NP-renormalization ALPHA [ALPHA 1802.05243]

LM =
L
a

Zm(µdec(M))(1 + bmamq)ZRGI(µdec(M)) (am0 � amc)

I Zm determined non-perturbatively (! no details here!)
I ZRGI Known non-perturbatively [ALPHA 1802.05243]

I 1-loop value for bm, bg: Not fully O(a)-improved.

I ⇤(0)/µdec: Known very precisely [M. Dalla Brida, A. Ramos 1905.05147] (! no details
here!)

3-flavor renormalization program by ALPHA

L/a � ḡ2(µdec(M))
���
Nf=3,M=0,T=L

µdec(M) [GeV]

12 4.3020 3.9533(59) 0.789(15)
16 4.4662 3.9496(77) 0.789(15)
20 4.5997 3.9648(97) 0.789(15)
24 4.7141 3.959(50) 0.789(15)
32 4.90 3.949(11) 0.789(15)

Missing piece: massive $ massless: LCP accureately known at M = 0
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Decoupling as a tool for renormalization

‣ Choose $dec relatively low. Here Schroedinger Functional, 
$dec =1/L = 0.8GeV. Fixed by coupling in GF scheme, 
massless. 

‣ Turn on heavy masses, 1.6 GeV … 6.4 GeV  
(3 heavy degenerate quarks) 

‣ Compute coupling with massive quarks

T�� ����� ���� I������������� R������ C����������

D�������� ������� �������� ��� ��������

�  z = M/µdec(M) M [GeV] ḡ2(µlow(M))
���

Nf=3,M,T=2L

4.5997 0.1352889 0 0 3.9648(97)
4.6083 0.133831710060 1.972(18) 1.6 4.290(15)
4.6172 0.132345249425 4.000(37) 3.2 4.458(14)
4.6266 0.130827894135 6.000(58) 4.7 4.555(14)
4.6364 0.129273827559 8.000(85) 6.3 4.717(14)

Example: L/a = 20

We determine ḡ2(µlow(M))
���
Nf=3,M,T=2L

with two discretizations: ZFL/WFL

L/a � aM ZFL WFL
12 4.3499 .50 4.636(11) 5.477(12)
16 4.5008 .37 4.588(14) 5.023(15)
20 4.6266 .30 4.555(14) 4.823(14)
24 4.7359 .25 4.555(13) 4.738(14)
32 4.9159 .18 4.490(17) 4.590(18)

Extrapolate results to the continuum: Example z = 6
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Continuum extrapolation
T�� ����� ���� I������������� R������ C����������

C�������� �������������� ���� ��� ����: aM < 0.40, 0.35

4.2

4.3

4.4

4.5

4.6

4.7

4.8

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

ḡ2 z

(a/L)2

z = 1.972 z = 4 z = 6 z = 8

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

ḡ2 z

(a/L)2

z = 6 z = 8

7/9



Rainer Sommer | Beijing | July 2019

Preliminary result

‣ nice and precise without that much effort —> improve further

T�� ����� ���� I������������� R������ C����������

T���� ��� �� ������

M [GeV] µdec(M) [GeV] ḡ2(µlow(M))
���

Nf=3,M,T=2L
⇤(0)/µlow

1
P(⇤/M) ⇤(3) [MeV]

1.6 0.789(15) - 0.689(11) 0.7662(44) 416(11)
3.2 0.789(15) - 0.725(11) 0.6693(37) 382.7(96)
4.7 0.789(15) - 0.741(12) 0.6198(34) 362.0(92)
6.3 0.789(15) - 0.757(13) 0.5871(32) 350.3(92)

320

330

340

350

360

370

380

390

400

410

420

430

0 0.05 0.1 0.15 0.2 0.25 0.3

⇤
(3

)

M
S
[M

eV
]

(µlow/M)2

Dec. (aM < 0.4)
Dec. (aM < 0.35)

ALPHA (Nf = 3)
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Summary

I The Standard Model is (many feel: too) alive
I We need to push it to its limits in energy and precision

I Somewhat provocative but true: If we want a non-perturbative result, we need it
renormalized non-perturbatively.

I The perturbative series is divergent, asymptotic (well understood! I recommend ’t
Hooft Erice lectures).
When one uses it ↵(µ) better is small.

I For scale dependent renormalizations, ↵(µ) mR(µ), ZLL(µ)

step scaling with finite volume schemes

can be used to go to very large µ and connect to

Renormalization Group Invariants

I On the other hand, RI-sMOM is more genaral (automatic) is mostly used and
dominant discretization errors can be removed perturbatively

Can the question of NP gauge fixing be better understood?

I There is a new trick: renormalization by decoupling

I There is also the Gradient flow –> Hiroshi Suzuki

Rainer Sommer Beijing 2019 16
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Finally

‣ There are many omissions

‣ I would like to mention at least one: 
chirally rotated Schroedinger Functional has been used to  
obtain very precise renormalization factors.  
S. Sint, M. Dalla Brida, T. Korzec
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Finally

‣ There are many omissions

‣ I would like to mention at least one: 
chirally rotated Schroedinger Functional has been used to  
obtain very precise renormalization factors.  
S. Sint, M. Dalla Brida, T. Korzec

‣ THANK YOU!


