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Lattice QCD has become a powerful tool:
» hadron spectrum

» weak matrix elements

¢ g-2

e light nuclei

 properties of hot QCD

» understanding phases of QFTs...
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Lattice QCD has become a powerful tool:
» hadron spectrum

» weak matrix elements

¢ g-2

e light nuclei

 properties of hot QCD

» understanding phases of QFTs...

But there are many interesting phenomena out of reach:
» finite baryon density

e real-time dynamics

» effects of topology

e chiral gauge theories like the SM
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Lattice QCD has become a powerful tool:
» hadron spectrum

» weak matrix elements

¢ g-2

e light nuclei

 properties of hot QCD

» understanding phases of QFTs...

But there are many interesting phenomena out of reach:
» finite baryon density
e real-time dynamics

» effects of topology N \)\“‘“
e chiral gauge theories like the SM S“
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What is the sign problem? And why is it exponentially hard?
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What is the sign problem? And why is it exponentially hard?

Consider (Euclidian) QCD: ™ 2 degenerate flavors u,d
m chemical potential p for quark number:

7 = / [DA,] =S¥ dety [ + m + 1]
&Nf=2
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What is the sign problem? And why is it exponentially hard?

Consider (Euclidian) QCD: ™ 2 degenerate flavors u,d
m chemical potential p for quark number:

7 = / [DA,] =S¥ dety [ + m + 1]
&Nf=2

Monte Carlo method: evaluate expectations of operators O(A) by sampling
gauge fields, averaging operator over the ensemble.

Requires sampling gauge fields with probability...
P(A) e~ Sy (A) det, [lD +m + ,LL’)/()}
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What is the sign problem? And why is it exponentially hard?

Consider (Euclidian) QCD: ™ 2 degenerate flavors u,d
m chemical potential p for quark number:

7 = / [DA,] =S¥ dety [ + m + 1]
&Nf=2

Monte Carlo method: evaluate expectations of operators O(A) by sampling
gauge fields, averaging operator over the ensemble.

Requires sampling gauge fields with probability...
P(A) e~ Sy (A) det, [lD +m + ,LL’)/()}

...but the determinant is complex!
T
det [lﬁ +m + /WO] = det [lD +m — ,u%}
Apply dagger, Ys
D. B. Kaplan ~ Beijing “Frontiers in LRCD” ~ 28/6/19




Can we write: measure operator

?

deto [ +m + pyo| = |dete [ +m + uyol| € .
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Can we write: measure operator

?

deto [ +m + pyo| = |dete [ +m + uyol| € .

Practical only if €29 doesn’t fluctuate wildly.
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Can we write: measure operator

?

deto [ +m + pyo| = |dete [ +m + uyol| € .

Practical only if €29 doesn’t fluctuate wildly.

Note: |deto [ID +m + pyo|| = dety [P+ m+ pyo] x dety [ 1D +m — pyo]
= dety [+ m + pr3y0] A
2 ﬂav.ors with is?sgin P 200°
chemical potential TN
- 0o
et
5.
.A INSTITUTE for
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Can we write: measure operator

?

deto [ +m + pyo| = |dete [ +m + uyol| € .

Practical only if €29 doesn’t fluctuate wildly.

Note: ’detg [lD +m + ,WYO] | = det; [lD +m + /VYO} X detq [lD +m — ,WYO]
= dety [+ m + pr3y0] A
2 ﬂav.ors with is?sgin P 200°
chemical potential QM e
& =Y godt
Ald

How badly does the phase fluctuate? Consider computing:

[[DA]Je=®vMdet  [[DAJe "M |det |e” _ (e
[[DAJe—Svm[det|  [[DAJe-Svm|det] '*

if very small & phase is fluctuating wildly.
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f[DA]e_SYM det B f[DA]e—SYM ‘ det \ew

[IDAleSvdet] ~ [(DATe= v ldet] ~
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[[DA]Je=*vM det  [[DAJe™"vM|det |e

[IDAleSvdet] ~ [(DATe= v ldet] ~

det = dets [l? +m + ,wyg] <€ 2 flavors with baryon chemical potential
(Mu= Hd= 1)

| det | = deto | 1D+ m + T3uyo| €= 2 flavors with isospin chemical potential
(Bu= -pa= 1)
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[[DA]Je=*vM det  [[DAJe™"vM|det |e

[IDAleSvdet] ~ [(DATe= v ldet] ~

det = det, [ID +m + ,wyg] €= 2 flavors with baryon chemical potential

(bu=pa= W)
| det | = deto | 1D+ m + T3uyo| €= 2 flavors with isospin chemical potential
(Bu= -pa= 1)
10 . @ . —VT(]:B—]:[)
e =—-=e
A

If Fg > Fi then there will be a sign problem that is exponentially bad (in the
spacetime volume)

L)
INSTITUT E for

...............
i

D. B. Kaplan ~ Beljing “Frontiers in LRCD” ~ 28/6/19



7 Partition functions
Phase of fermion det < 627’9 > ;= B é\_ with baryon/isospin
with quark baryon u,

41 chemical potentials
averaged over isospin \j
ensemble

How bad is this?
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Partition functions
75 S

Phase of fermion det <62739> ;=== é\_ with baryon/isospin
with quark baryon u, A chemical potentials
averaged over isospin \j
ensemble
,LL<m7T/21 p=/;r=1 — <62i0>]:1

(T=0)

2 My/3: Zp=1 Free
My /2 <p < My/3: =1, Pioy, ergy,

_ 2 204 .2 212 Co Ue
(T=0) Zp ~ X Tipp (Ioma [A7)" s ”densaz‘ioéo

— () <« 1

How bad is this?
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Partition functions
75 S

Phase of fermion det <62739> ;=== é\_ with baryon/isospin
with quark baryon u, A chemical potentials
averaged over isospin \j
ensemble
,LL<m7T/21 p=/;r=1 — <62i0>]:1

(T=0)

2 My/3: Zp=1 Free
My /2 <p < My/3: =1, Pioy, ergy,

_ 2 2 2 212 Co Ue
(T=0) ZI ~ GYTJC&N (1—m7 /4p”) > 1 nO’e af/O,l;o

How bad is this?
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| 7 Partition functions
Phase of fermion det < 627’9 > ;= B with baryon/isospin
with quark baryon u,

41 chemical potentials
averaged over isospin \j
ensemble

,LL<m7T/21 p=/;r=1 — <62i0>]:1
(T=0)
mw/2<,u<MN/3: Zp =1, leeenery
n
7-0) Zy ~ VTLERAmm2 452 5 1 Congg, VU o

— () <« 1

\

mﬂ/Q H

 The phase cancellations are exponentially bad in the spacetime volume

How bad is this?

H NUCLEAR THEORY
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How bad is the “sign problem” for real calculations?
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How bad is the “sign problem” for real calculations?

CPU effort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...

1e+30 | | T T
I — Tc
50 MeV
10 MeV
1e+25 1 Exaflop x year -
=109
GFlops x yr
2 1e+20 .
O
le+15 | : , .
Estimate of computational
difficulty for different lattice
volumes and temperatures
1e+10 Ph. de Forcrand i
0 1 2 3 4 5

Box size in fm

NUCLEAR THEORY
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How bad is the “sign problem” for real calculations?

CPU effort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...

1e+30 | | T T
I — Tc
50 MeV
10 MeV
1e+25 - 1 Exaflop x year -
=109
GFlops x yr
2 1e+20 .
O
1e+15 | ) ) =
Estimate of computational
difficulty for different lattice
volumes and temperatures
[ Ph. de Forcrand
1e+10 .

0 1 2 3 4 5
Box size in fm

e.g.: T=10 MeV, L=3fm, p=nuclear density: > 1020 exaflop-yrs?!

NUCLEAR THEORY
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Practical implementation of Wilson’s formulation of the Feynman
path integral on a classical computer:

323 X 64 lattice size: millions of degrees of freedom e millions” dim
Hilbert space size ~ emillions | attice QFT: sample it! wave function
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Practical implementation of Wilson’s formulation of the Feynman
path integral on a classical computer:

323 X 64 lattice size: millions of degrees of freedom e millions” dim
Hilbert space size ~ emillions | attice QFT: sample it! wave function
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Practical implementation of Wilson’s formulation of the Feynman
path integral on a classical computer:

323 X 64 lattice size: millions of degrees of freedom e millions” dim
Hilbert space size ~ emillions | attice QFT: sample it! wave function

Amazingly, the ground
state wave function of

QCD can be sampled
efficiently at p=o
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Practical implementation of Wilson’s formulation of the Feynman
path integral on a classical computer:

323 X 64 lattice size: millions of degrees of freedom e millions” dim
Hilbert space size ~ emillions | attice QFT: sample it! wave function

Amazingly, the ground
state wave function of

QCD can be sampled
efficiently at p=o

...but not at p=zo

D. B. Kaplan ~ Argonne Nat’l Lab ~ 2/29/12



I'll never be
more than a
cartoon!

T, GeV QGP

crossover

critical
point
0.1
hadron gas
. nuclear\ exotic phases —
vacuum - matter 'u CFL
0 1 ug, GeV

rr

D. B. Kaplan ~ BeLjing “Frontiers in LRCD” ~ 28/6/19
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T.GeV

critical
point

Crossover

0.1

hadron gas

vaCuulll

0

QOGP

nuclear
matter

1

exotic phases ‘/ CFL

I'll never be
more than a
cartoon!

ug, GeV

Quantum computers to the rescue?

D. B. Kaplan ~ Beijing “Frontiers in LRCED” ~ 28/6/19
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2 classical bits

state 1: 00 |
state 2:

can get from any initial state to any final one by a sequence of
single-bit flips

> bit flip = 2x2 matrix acting on 2nd bit
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2 classical bits

state 1: 00 |
state 2:

can get from any initial state to any final one by a sequence of
single-bit flips

> bit flip = 2x2 matrix acting on 2nd bit

2 “qubits”

state 1 requires 4x4 matrix acting on both

qubits
state 2:

cannot get from initial state to final state by a sequence of
individual bit flips due to entanglement
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2 classical bits

state 1: 00 |
state 2:

can get from any initial state to any final one by a sequence of
single-bit flips

> bit flip = 2x2 matrix acting on 2nd bit

2 “qubits”

state 1 requires 4x4 matrix acting on both
qubits

state 2:

cannot get from initial state to final state by a sequence of
individual bit flips due to entanglement

N classical bits: N 2x2 matrices needed to get from one state to the next

N qubits: 2Nx 2N matrix needed to get from one state to the next

NUCLEAR THEORY
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Classical bit stream

110110010001101011011110...
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Classical bit stream

110110010001101011011110...

Classical book

Tear out 1% of the pages and
you lose 1% of the information
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Classical bit stream Qbit stream

c1/110010111 .. .)

+¢2]001000110. . .)

Classical book +c3(101010001 .. .) + ...

Tear out 1% of the pages and
you lose 1% of the information
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Classical bit stream Qbit stream

c1/110010111 .. .)

+¢2]001000110. . .)

Classical book +c3(101010001 .. .) + ...

/ 1 5 @“’wm

Tear out 1% of the pages and
you lose 1% of the information
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Classical bit stream Qbit stream

c1/110010111....)

+¢2]001000110. . .)

Classical book +¢3/101010001 . ...
/ .* Quantum book

Tear out 1% of the pages and
you lose 1% of the information

No information on any one page of the
quantum book...tearing out a page is like
losing resolution in a photograph...but
each page tells you something about
what is on the other pages
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Classical bit stream Qbit stream

c1/110010111 .. .)

+¢2]001000110. . .)

Classical book +¢3/101010001 . ...

Tear out 1% of the pages and
you lose 1% of the information

No information on any one page of the
quantum book...tearing out a page is like
losing resolution in a photograph...but
each page tells you something about
what is on the other pages
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...but quantum books contain vastly more information than classical ones

imir ; ﬁ ; ; 3 ot
oV
O
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...but quantum books contain vastly more information than classical ones

N

The number of classical bits
required to encode the
information in 300 gubits is
more than the total number
of atoms in the Universe!
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...but quantum books contain vastly more information than classical ones

e
i 0o

T N
“C o
\C
\ o>

~ 9300

The number of classical bits
required to encode the
information in 300 gubits is
more than the total number
of atoms in the Universe!
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The quantum computing model:
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The quantum computing model:
(1)
2)

)
)
\lis)

R, DN D
=~ W N =

Ot

/

2y

Initialize
qubits
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The quantum computing model:
I

= U
)/

S
=~ W N =

1

Ot

W) W)
Initialize Perform gate
qubits operations

on qubits

RN N N N,
(& B N O N N
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The quantum computing model:

(1)
2)
\3§/ = U

S
=~ W N =

Ot

W) W)
Initialize Perform gate
qubits operations

on qubits

RN N N N,
(& B N O N N

D. B. Kaplan ~ Beijing “Frontiers in LRCD” ~ 28/6/19

Measure
(convert to
classical bits)




Can this be useful?
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Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time
what takes exponential time on a classical computer.

Example: discrete Fourier transform
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Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time
what takes exponential time on a classical computer.

Example: discrete Fourier transform

Classical Fourier transform on a discrete function with N values
{Xoyee XN} P {Yoyee YN-1)

1 N—1
'k
yk:—ijwj wWw=—e€e~N
v IN o

Computational cost = O(N log N).
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Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time
what takes exponential time on a classical computer.

Example: discrete Fourier transform

Classical Fourier transform on a discrete function with N values
{Xoyee XN} P {Yoyee YN-1)

;N
= —— 7w F Ww=eN
Computational cost = O(N log N).

When N = 21, cost (# gate operations) is O(n 2n).

On a quantum computer cost is O(n?)
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Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time
what takes exponential time on a classical computer.

Example: discrete Fourier transform

Classical Fourier transform on a discrete function with N values
{Xoyee XN} P {Yoyee YN-1)

;N
= —— 7w F Ww=eN
Computational cost = O(N log N).

When N = 2n, cost (# gate operations) is O(n 2n). «—— CLASSICAL

On a quantum computer cost is O(n?) — QUANTUM

H NUCLEAR THEORY
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Fourier transform on a quantum computer

Start with n=2 qubits [x> = [xo,x;> where xi=0,1...
So N =22=4and w = e2mi/4

The Fourier transform is then the unitary transformation on these
states

(OO}\ \
L — U
0)
1) )

/

(OO

)
)
)
)

—_ = O
—_ = O

1
0
1

/ W Wb WY wo\

1 W owl w? Wl

U= \/? W ow? Wt W
\wo w3 Wb WY /




Then

)= Yl > U6 = Y rUp) = Yk o o= Y
k (j,lﬁ k .j

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

In the basis:

L)~
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Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

In the basis:
00) 11 1 1)
L2 10) /22 (1wt Wt W
\ 11>; \1 w3 W w9/




Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

2X1+X! o 1 2 3

In the bafiSI \ {X1X2} — {OO} {01} {10} {11}
00) (1 1 1 1)
sy e UL po LT e Wt e
142 10> — \/? 1 (U2 Cd4 CU6
\ 11>} \1 w3 WO w9)
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Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

2X1+X! o 1 2 3

In the bafiSI \ {X1X2} — {OO} {01} {10} {11}
OO? /j_ 1 1 ].\ B
01 1 1 w w? Wl
) € 10h (U= o |1 wp ot o
\ 11> } \1 w3 WO w9)
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Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

2X1+X! o 1 2 3

In the baiiSI \ {X1X2} — {OO} {01} {10} {11}
00; /j_ 1 1 ].\ WV
01 1 1 w w? W e
[z129) € 4 10) r U= T2 |1 W Wt WS
11) \1 o o W)
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Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

. 2X1+X58 o) 1 2 3
In the basis: {xx:}= {00} {o1} {10} {12}
1 ) ;
00) (1 1 1 1 \ w"
| ) € 4 01) » U= 1 1 w w? W wrr
L1L2 10> — \/2—2 1 (U2 Cd4 CU6 w2(332—|-2561)
\ 11> } \1 w3 w w9)
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Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

2X,+ X5 0 1 2 3
In the basis: {xx;}= {oo} {o1} {10} {11}
(100) ) (11 1 1) w°
T122) € 01) S U = 1l w W Wl W™
10) v22 |11 w? Wt W W r2t2e)
11y L o W W) Wt
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Then

)= Yl > U6 = Y rUp) = Yk o o= Y

The coefficients of the qubits in the final state will be the Fourier
transform of the coefficients of the qubits in the initial state

2X,+Xo:! o 1 2 3

In the basis: ot = {oo} {o1} {10} {11}
( 00>\ 7 0
(11 1 1\4— W
‘ ) € < 01) \ 7 — 1 1 w w? Wl wr2t2e
L1L2 10> — \/? 1 CU2 w4 (U6 wQ(xQ—FQa:l)
11y L o W W) Wt
1 x L1 TI2 wd
y) = Ula) = 5 (10) +w27|1)) (j0) + w1+ 1) | s,
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This can be effected (up to overall phase) with 3 basic gates:

. .

X, Y2
0) + (1 0) — |1
= Hadamard gate:  |0) — ‘ >\/§’ ) , 1) — | >\/§‘ )

= Controlled Phase Rotation: |Z1) — w™[z1) iff 2o =1
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This can be effected (up to overall phase) with 3 basic gates:

. .

X, Y2
0) + (1 0) — |1
= Hadamard gate:  |0) — ‘ >\/§’ ) , 1) — | >\/§‘ )

= Controlled Phase Rotation: |Z1) — w™[z1) iff 2o =1

o 5 (|0>+w2x1‘1>> gy ot (o>+w2w1+m21>> RN (|0>+w2x1+$2|1>> <!0> +j§2x2|1>>

V2 V2 V2
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This can be effected (up to overall phase) with 3 basic gates:

. .

X1 Y2

0) + (1 0) — |1
= Hadamard gate:  |0) >‘>\/§’>, 1) >|> L)

= Controlled Phase Rotation: |Z1) — w™[z1) iff 2o =1

o 5 (|0>+w2x1‘1>> gy ot (o>+w2w1+m21>> RN (|0>+w2x1+$2|1>> <!0> +j§2xz|1>>

V2 V2 V2

V2 V2

<-> 1y2) = (’0> +w2x2\1>> (\0} —|—w2a:1—|—a;2‘1>>
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The “score” for the n=3 Fourier transform:

X3 . YI
X2 YZ
X1 Y3

3 gates for the n=2 case; 6 gates for n=3. Scales like nzfor large n

e n H-gates
e n(n+1)/2 R-gates

Same discrete FT scales like (n 2") on a classical computer.
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How can you use this for physics?

Example: phase estimation algorithm

Suppose |P> is the eigenvector of a unitary operator U (= e-iHt), represented

by m qubits:

and you want to determine O to accuracy 1:2-"

Superposition

e

Controlled U Operations

0) H
10) H
10) H

| .u'/,> //-m

c-Uu?

c—-u?

L 4

QFT!

Measurement

A

X

C - U211—l

N
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Superposition Controlled U Operations Measurement

QFT !

Hadamard gates give you the state:  2-/2(|o> + [1>)®n [P>

Controlled phase rotations by U then give you the state

E 2mifk | k

(|O) 27ri2”_10|1>) R ® (|O> n ezm'210|1>) 2 (|O> 27r?,200|1 )

i
22 N J \ >4

N ~~ ~~

1%t qubit n—1t" qubit nth qubit

ﬁ
22

If © = a 27 for integer a, then the inverse Fourier Transform
will yield an eigenstate of spin for each of the final qubits |y>

Measuring |y> yields the exact answer for a:
d = ZOYQ + 21 Y1 + 22 }’2 + ...+ 201 Yn-l )
all yi measured to be o or 1

NUCLEAR THEORY
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If @ =a 21+ 0 for integer a, then the probability for
measuring a particular value of a is peaked around the true
value.

The probability of determining the correct value of a

P(a)

0.2
Pla) 1 |sin(7276)|° . 0 L6
a) = 256 256
221 |2sin wd|?
1
> — =041  for |5 <27
-
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If |W> is a linear combination of two eigenstates

|Y> =& |B=a2">+ B |0=b2n>

with a,b integers, measurement of the auxiliary qubits will
e yield a with probability |&|> or b with probability |B|2
e after measurement, P> collapses to eigenstate

More general |{>, QPE measures the spectrum of |P>

H NUCLEAR THEORY
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Quantum phase estimation is a method for solving for energy levels of a
quantum many-body system:

1. Initialize qubits with a trial wave function P>
2. Use U =e"Ht for Quantum Phase Estimation (QPE) with
choice of t such that o < Et < 2m
e Break U up into product of short time evolution operators
(Trotterization)
e Express these in terms of gate operations
3. Measurements at end of QPE will give the spectrum of Et,
weighted by overlap of |[<E|Yi>[?
4. After each measurement, output qubits will represent the
eigenfunction corresponding to the measured Et.
5. Can use this wave function to compute matrix elements

Lots of gates and qubits needed!

H NUCLEAR THEORY
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m gates
m rotations

RN
()
(00}

gates/Trotter step (log)

106 ..0
& #3-bit Shor (LiQuily)
(
.0 ..o ’CCOZ
104 @ .. *
***H,0
° 2 i
- Has been improved by orders of
10| magnitude since published
0 50 100 150

qubits

Gate-count estimates for performing quantum chemistry on small quantum computers

Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer
Phys. Rev. A 90, 022305 - Published 6 August 2014
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Lattice Yang Mills? Start with Hamiltonian formulation
e Fix Ao=0 gauge

1 S 1 - - . . -
« H=_ <92EaEa+ —Ba,Ba) , [Az,Ei] = ih 6" dqp
2 g2

e Physical states obey Gauss constraint: D;E;|¢) =0
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Lattice Yang Mills? Start with Hamiltonian formulation
e Fix Ap=0 gauge

1/ o= = 1~ = A R
.« H=_ <g2EaEa+g—QBaBa) , [Aa,Eg} = ih 6" Sy

e Physical states obey Gauss constraint: D;E;|¢) =0

Kogut-Susskind (lattice) Yang-Mills Hamiltonian:

e Fix U=1 gauge on temporal links, U on spatial links » operators

. B,B, » —ReTrUp (product of U’s around plaquette)
. E.E,— fi =7y (Casimir operator)
[za, U} T.U | {fa, U} — 0T,
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The Hilbert space: the link operators are coordinates in the gauge group,
the ¢, 7, operators are their conjugates

o
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The Hilbert space: the link operators are coordinates in the gauge group,

the ¢, 7, operators are their conjugates
G G
9) 9")

“coordinate” basis:

(glg’y=0(g—2g"), f dglg)gl =1
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The Hilbert space: the link operators are coordinates in the gauge group,
the ¢, 7, operators are their conjugates

“coordinate” basis: G

(glg’y=0(g—2g"), f dglg)gl =1

)
“momentum” basis:

(RabIR'a'V' ) = Spp: S Oy » Z IRab){(Rab| = 1
Rab

/d
(Rablg) = 4|1 D™ (g) | Rab)

Irreducible representations of G
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The Hilbert space: the link operators are coordinates in the gauge group,
the ¢, 7, operators are their conjugates

“coordinate” basis: G G

(glg’y=0(g—2g"), f dglg)gl =1

)
“momentum” basis:

(RabIR'a'V' ) = Spp: S Oy » Z IRab){(Rab| = 1
Rab

(Rablg) = ‘/Icél D™ (g) | Rab)
'\ Irreducible representations of G

A Formulation of Lattice Gauge Theories for Quantum Simulations
Erez Zohar and Michele Burrello, Phys. Rev. D 91, 054506
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E.g. U(1): particle on a circle

o) =16, €02 Q
Rab) — |L)y, LeZ, ng(g) —y et
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E.g. U(1): particle on a circle

N —l0),  del2m) Q
Rab) — |L), LeZ, DE(g) — et?
E.g. SU(2): particle on a 3-sphere ( .

g) — |0)

Rab) — |jmm') | DE (g) — DY) () (Wigner d-matrices)

mm
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E.g. U(1): particle on a circle

g)—=1¢),  ¢€l0,2m) Q
Rab) > |L), LeZ, DE(g)— e
E.g. SU(2): particle on a 3-sphere ( .

g) — |0)

—

Rab) — |jmm') | DE (g) — Dggn,( ) (Wigner d-matrices)

Even with spatial lattice, we have an infinite-dimension Hilbert space:

o The |g> states take continuous values

e The |Rab> states are discrete, but there are « of them

D. B. Kaplan ~ Beijing “Frontiers in LRCD” ~ 28/6/19



“Latticize” G?
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“Latticize” G?

Nice graphics algorithms, but not lattices
(e.g. generally no useful families of finite subgroups of G, so no
gauge symmetry)...

NUCLEAR THEORY
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“Latticize” G?

Nice graphics algorithms, but not lattices
(e.g. generally no useful families of finite subgroups of G, so no
gauge symmetry)...

.... except for Zny € U(1)

NUCLEAR THEORY
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Cutoff on |Rab> states (canonical momentum cutoff)?

E.g. U(1), cutoff on L —cceeeeeco— |
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Cutoff on |Rab> states (canonical momentum cutoff)?

E.g. U(1), cutoffon L —cceeeeeco— |

E.g. SU(2), cutoff on j:

/ / / / J i
© N = Njw N o W
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Cutoff on |Rab> states (canonical momentum cutoff)?

E.g. U(1), cutoff on L —cceeeeeco— |

E.g. SU(2), cutoff on j:

/ / / / s i
© NI = N N N o W

This cutoff maintains gauge symmetry, gives
finite Hilbert space, but what does it do
to the physics? Open question

HE NUCLEAR THEORY
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Nevertheless, toy models on small lattices with low cutoffs can be
interesting in their own right, and perhaps feasible in near-term
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Nevertheless, toy models on small lattices with low cutoffs can be
interesting in their own right, and perhaps feasible in near-term

Example: “glueballs” in SU(2), 2+1 dimensions, four lattice sites.
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Nevertheless, toy models on small lattices with low cutoffs can be
interesting in their own right, and perhaps feasible in near-term

Example: “glueballs” in SU(2), 2+1 dimensions, four lattice sites.

minimal:
e no glueballs in 1+1 dimensions
e no glueballs in 2+1 with less than 1 plaquette
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Go1, mo1, my;) |

>
13, M3, MY 3)

\j027ﬂ1q377n62>

A

|J23, M3, Mo3)
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13 "3 3
713, M3, mys) |7 s

Go1, mo1,mb) | 1
Coul 1702, mo2; Mog)
O o o
Cloz) Tl02]

|J23, M3, Mo3)

(23]
2
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1 g "3 3
o — \,
T[Ol] | i]137m137mi;>

| |

23]

Jo1, Mo1, Mgq) 723, Mo3, M3
(87 . \
1] Yo, mo2; M) (23]
O 2
Cloz) "02]

¢, re € su(2)
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1 g 3 3

o i
"ou) g1, miz, miy) Tféza]
701, M01, Moy ) 723, Mo3, M3
(87 . \
floy) !]02,m0’2,m62) (23]
[02] o2]
¢, re € su(2)
ge\’\era\ State: ) / . / . / . /
W> = \]01, mo1, m01>‘]13, mis, m13> ‘323, mas, m23>\]02, mo2, m02>
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1 g 3 3
o — \,
T[Ol] | i]137 mi3, m'10>

| |

"l23

. / . /
!301, moi, m01> !]23, mas, m23>
C‘f . / \ Oé
6[01] !]027 mMo2, Mgs) (23]

O > 2
(0% (0%
[02] To2]

0 re e su(2)

te
e\’\efa\ sta . . . .
& W> = \]01, mo1, m61>‘]13, mis, m’13> ‘]23, mas, m’23>\]02, mo2, m62>
ar\t State

(
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SU(2) Hilbert space for one link, cut off at j=3 m

=
N
@)
n
—t
QO
—
Q)
n
© NI, =N lw N v w

Hilbert space dimension for L links, cutoff J:

17t nas2nG L an

[
> (25 +1)° :[ ;
ij

o4
- INSTITUTE for
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4-link SU(2) model:
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4-link SU(2) model:

te:
eneral std | | | |
S ) = |Jo1,mo1,m61>|313,m13,m’13>|]237m237m’23>|302’m02’m62>
dimension of \—\'\\ble.\i o | NHA+2D)E +4JT) !
pace With cutoff 3

LV
‘ INSTITUTE for
&

ma NUCLEAR THEORY

D. B. Kaplan ~ Beijing “Frontiers in LRCED” ~ 28/6/19



4-link SU(2) model: B

te:
eneral sta | | | |
\i» 5 W) = o1, mo1, mop)|713, Mas, mi3)|j23, Mas, Mhs)|joz, Moz, M)
‘ dimension of \—\\\b?f.t o [ A+ NA+2])3+4) !
pace with cutoff /. 3

gauge nvarian J Same | on all links; all »'s summed

\ 1 —m m . . . . ‘

J1bj) = 2j+ 1) D (=) mg, m o, —mo, madyoayl s s ma Y| ma, —madias)
m;=-—j
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4-link SU(2) model:

e
7 o =

| genera\ state:
\“ _ .
| 13, m / .
13, M73) | 723, M2 R
dimension of Hilbert 5, M) jo2, Moz, M
pace with cutoff J: D [(1 42 , M)
- )3+ 4)1*
| T - ]
i’ gauge invariant state — o
%7 ante
T Z( R ondl links; dl m's
m;=-— ] ? 09m1> Sa
onlj, =m0, madonljy mi, m rrmred
dimension of gauge invariant 3Ly ma, —m3 Y3
subspace with cutoft J: 5 23l
e.g.: J=3: —
— 384 160 OOO = D -
2 29 qub|ts S Binv z
2 3 qubits

N /" N
~ R&/6/19



The SU(2) glue ball spectrum can be calculated quickly (Mathematica) for
this simple system (because gauge invariance can be imposed analytically):

Mass

12
10 -

gl

* Tl g=10
: Lelerpiiriii: p=10"
i R E R R R Dige = 21
e 2 ..4 8 8 10‘/

cutoff onj

For low cutoff, can this be simulated on an existing quantum
computer? Stay tuned.

D. B. Kaplan ~ Beijing “Frontiers in LRCED” ~ 28/6/19
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Major challenges faced in order to do a QCD simulation omg a quantum
computer:

Engineering:
Need lots of good qubits, fast gate operations

Qubits will be noisy: need error correction
(~1000 physical qubits for 1 logical qubit?)

Physics:
*Need a good way to input initial state with overlap with ground state!

... and lots of other theoretical and algorithmic advances.

H NUCLEAR THEORY
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Quantum Adiabatic Algorithm:

H(s)=(1—s)Hy+ sH: 0<s<1

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106

H NUCLEAR THEORY
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Quantum Adiabatic Algorithm:

H(s)=(1—s)Hy+ sH: 0<s<1

simple Hamiltonian

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106
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Quantum Adiabatic Algorithm:

H(s)=(1—s)Hy+ sH: 0<s<1

simple Hamiltonian / \ interesting Hamiltonian

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106
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Quantum Adiabatic Algorithm:

H(s)=(1—s)Hy+ sH: 0<s<1

simple Hamiltonian / \ interesting Hamiltonian

Initialize qubits for known
ground state of Hy o

Evolve according to H(s), .
varying s slowly from 0 to 1

Adiabatic theorem: ground
state of Hypwill evolve into
ground state of H;

- adiabatic evolution

-

| | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—

Measure desired matrix .
elements

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106

rr
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Drawback of the Quantum Adiabatic Algorithm:

Adiabatic theorem requires \\\

evolution time scales as
IAE

1

L~ S B -

0.6 0.7 0.8

Exponentially slow if there exists exponentially small gap
(e.g. in 1st order phase transition)

Maybe OK to start with strong coupling vacuum of LQCD and

evolve to weak?
D. B. Kaplan ~ Beijing “Frontiers in LRCD” ~ 28/6/19




Another possible algorithm: “Spectral Combing”
DBK, N Klco, A Roggerro, E-print 1709.08250 (quant-ph)

Simulate a “heat bath”?

Initialize [P>|cold>

Evolves unitarily to entangled state ~ [Po>|warm>
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Or, to reduce number of qubits:

Spectral combing:

Couple “target’ hamiltonian to a spin system with characteristic energy w(t)
which decreases with time.

D. B. Kaplan ~ Beljing “Frontiers in LRED” ~ 28/6/19 At



Does it work?

Here: target Hamiltonian is N=3 1d Ising model, Ns=3 spins in the comb,
random initial state

1 .0 M N Py — Wl

0.8_‘ | ] n=0 [ ] n=3
~ : W n=1 g n=4
/_E 06 D n=2 . n=5
s |
\i 0.4_‘ g |

3 0.01! | | ]
0.2 4000 80001
Trotter steps
0.0 i e ]
' 2000 4000 6000 8000

Trotter steps
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Conclusions:

Sign problems are severe in interesting theories, and are rooted in
the dynamics of the theory, probably not fixable for QCD by new
algorithms for classical computers

There are LOTS of hardware obstacles to overcome...

...but if quantum computing becomes a reality, we may be able to solve

these outstanding problems » with the potential to revolutionize physics
and technology
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Conclusions:

Sign problems are severe in interesting theories, and are rooted in
the dynamics of the theory, probably not fixable for QCD by new
algorithms for classical computers

Quantum computers have the potential for transforming the simulation
of quantum systems from exponentially hard, to polynomially hard

There are LOTS of hardware obstacles to overcome...

...but if quantum computing becomes a reality, we may be able to solve
these outstanding problems » with the potential to revolutionize physics
and technology
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Conclusions:

Sign problems are severe in interesting theories, and are rooted in
the dynamics of the theory, probably not fixable for QCD by new
algorithms for classical computers

Quantum computers have the potential for transforming the simulation
of quantum systems from exponentially hard, to polynomially hard

There are LOTS of hardware obstacles to overcome...

...but if quantum computing becomes a reality, we may be able to solve
these outstanding problems » with the potential to revolutionize physics
and technology

In the meantime, lots of fun things for field theorists to think about...
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