Quantum computers for scientific

computing

D. B. Raplan " Beijing "Frontiers in LQCD" ~ 28/6/19

Lattice QCD has become a powerful tool:

- hadron spectrum
- weak matrix elements
- g-2
- light nuclei
- properties of hot QCD
- understanding phases of QFTs...
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Lattice QCD has become a powerful tool:

- hadron spectrum
- weak matrix elements
- g-2
- light nuclei
- properties of hot QCD
- understanding phases of QFTs...

But there are many interesting phenomena out of reach:

- finite baryon density
- real-time dynamics
- effects of topology
- chiral gauge theories like the SM
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Lattice QCD has become a powerful tool:

- hadron spectrum
- weak matrix elements
- g-2
- light nuclei
- properties of hot QCD
- understanding phases of QFTs...

But there are many interesting phenomena out of reach:

- finite baryon density
- real-time dynamics
- effects of topology
- chiral gauge theories like the SM

What is the sign problem? And why is it exponentially hard?
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

What is the sign problem? And why is it exponentially hard?
Consider (Euclidian) QCD:

- 2 degenerate flavors u,d
- chemical potential μ for quark number:

$$
Z=\int\left[D A_{\mu}\right] e^{-S_{Y M}} \operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

What is the sign problem? And why is it exponentially hard?
Consider (Euclidian) QCD:

- 2 degenerate flavors u, d
- chemical potential μ for quark number:

$$
Z=\int\left[D A_{\mu}\right] e^{-S_{Y M}} \operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]
$$

Monte Carlo method: evaluate expectations of operators $O(A)$ by sampling gauge fields, averaging operator over the ensemble.

Requires sampling gauge fields with probability...

$$
P(A) \propto e^{-S_{Y M}(A)} \operatorname{det}_{2}\left[I D+m+\mu \gamma_{0}\right]
$$

D. B. Kaplan ~Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

What is the sign problem? And why is it exponentially hard?
Consider (Euclidian) QCD:

- 2 degenerate flavors u,d
- chemical potential μ for quark number:

$$
Z=\int\left[D A_{\mu}\right] e^{-S_{Y M}} \operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]
$$

Monte Carlo method: evaluate expectations of operators $O(A)$ by sampling gauge fields, averaging operator over the ensemble.

Requires sampling gauge fields with probability...

$$
P(A) \propto e^{-S_{Y M}(A)} \operatorname{det}_{2}\left[I D+m+\mu \gamma_{0}\right]
$$

...but the determinant is complex!

$$
\operatorname{det}\left[\not D+m+\mu \gamma_{0}\right]^{\dagger}=\operatorname{det}\left[\not D+m-\mu \gamma_{0}\right]
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Can we write:
$\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]=\left|\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]\right| e^{2 i \theta}$
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Can we write:
$\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]=\left|\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]\right| e^{2 i \theta}$
Practical only if $e^{2 i \theta}$ doesn't fluctuate wildly.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Can we write:
$\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]=\left|\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]\right| e^{2 i \theta}$
Practical only if $e^{2 i \theta}$ doesn't fluctuate wildly.

Note: $\left|\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]\right|=\operatorname{det}_{1}\left[\not D+m+\mu \gamma_{0}\right] \times \operatorname{det}_{1}\left[\not D+m-\mu \gamma_{0}\right]$

$$
=\operatorname{det}_{2}\left[\not D+m+\mu \tau_{3} \gamma_{0}\right]
$$

2 flavors with isospin chemical potential
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Can we write:

Practical only if $\mathrm{e}^{2 i \theta}$ doesn't fluctuate wildly.

Note: $\left|\operatorname{det}_{2}\left[\not D+m+\mu \gamma_{0}\right]\right|=\operatorname{det}_{1}\left[\not D+m+\mu \gamma_{0}\right] \times \operatorname{det}_{1}\left[\not D D+m-\mu \gamma_{0}\right]$

$$
=\operatorname{det}_{2}\left[\not D+m+\mu \tau_{3} \gamma_{0}\right]
$$

2 flavors with isospin

 chemical potential

How badly does the phase fluctuate? Consider computing:

$$
\frac{\int[D A] e^{-S_{Y M}} \operatorname{det}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\frac{\int[D A] e^{-S_{Y M}}|\operatorname{det}| e^{i \theta}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\left\langle e^{i \theta}\right\rangle_{I}
$$

if very small \Leftrightarrow phase is fluctuating wildly.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

$$
\frac{\int[D A] e^{-S_{Y M}} \operatorname{det}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\frac{\int[D A] e^{-S_{Y M}}|\operatorname{det}| e^{i \theta}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\left\langle e^{i \theta}\right\rangle_{I}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

$$
\frac{\int[D A] e^{-S_{Y M}} \operatorname{det}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\frac{\int[D A] e^{-S_{Y M}}|\operatorname{det}| e^{i \theta}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\left\langle e^{i \theta}\right\rangle_{I}
$$

2 flavors with baryon chemical potential

$$
\left(\mu_{u}=\mu_{d}=\mu\right)
$$

$|\operatorname{det}|=\operatorname{det}_{2}\left[\not D+m+\tau_{3} \mu \gamma_{0}\right] \leftharpoonup \quad 2$ flavors with isospin chemical potential

$$
\left(\mu_{u}=-\mu_{d}=\mu\right)
$$

$$
\frac{\int[D A] e^{-S_{Y M}} \operatorname{det}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\frac{\int[D A] e^{-S_{Y M}}|\operatorname{det}| e^{i \theta}}{\int[D A] e^{-S_{Y M}}|\operatorname{det}|}=\left\langle e^{i \theta}\right\rangle_{I}
$$

$\operatorname{det}=\operatorname{det}_{2}\left[D D+m+\mu \gamma_{0}\right] \leftarrow \quad 2$ flavors with baryon chemical potential

$$
\left(\mu_{u}=\mu_{d}=\mu\right)
$$

$|\operatorname{det}|=\operatorname{det}_{2}\left[\not D+m+\tau_{3} \mu \gamma_{0}\right] \longleftarrow \quad 2$ flavors with isospin chemical potential

$$
\left(\mu_{u}=-\mu_{d}=\mu\right)
$$

$$
\left\langle e^{i \theta}\right\rangle_{I}=\frac{Z_{B}}{Z_{I}}=e^{-V T\left(\mathcal{F}_{B}-\mathcal{F}_{I}\right)}
$$

If $F_{B}>F_{I}$ then there will be a sign problem that is exponentially bad (in the spacetime volume)
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Phase of fermion det with quark baryon μ, averaged over isospin ensemble

Partition functions with baryon/isospin chemical potentials

How bad is this?
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Phase of fermion let with quark baryon μ, averaged over isospin ensemble

Partition functions with baryon/isospin chemical potentials

$$
\begin{aligned}
& \mu<m_{\pi} / 2: \quad Z_{B}=Z_{I}=1 \quad \Longrightarrow \quad\left\langle e^{2 i \theta}\right\rangle_{I}=1 \\
& \text { (} T=0 \text {) } \\
& m_{\pi} / 2<\mu<M_{N} / 3: \quad Z_{B}=1, \\
& \text { (} T=0 \text {) } \\
& Z_{I} \sim e^{V T f_{\pi}^{2} \mu^{2}\left(1-m_{\pi}^{2} / \mu^{2}\right)^{2}}{ }^{2 i \theta} \gg 1 \text { pion cobden due to }^{2 i<1} \\
& \Longrightarrow \quad\left\langle e^{2 i \theta}\right\rangle_{I} \ll 1
\end{aligned}
$$

How bad is this?
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Phase of fermion let with quark baryon μ, averaged over isospin ensemble

$$
\left\langle e^{2 i \theta}\right\rangle_{I}=\frac{Z_{B}}{Z_{I}} \nprec
$$

Partition functions with baryon/isospin chemical potentials

$$
\begin{aligned}
& \mu<m_{\pi} / 2: \quad Z_{B}=Z_{I}=1 \quad \Longrightarrow \quad\left\langle e^{2 i \theta}\right\rangle_{I}=1 \\
& \text { (} T=0 \text {) } \\
& m_{\pi} / 2<\mu<M_{N} / 3: \quad Z_{B}=1, \\
& \text { (} T=0 \text {) } \\
& Z_{I} \sim e^{V T f_{\pi}^{2} \mu^{2}\left(1-m_{\pi}^{2} / \mu^{2}\right)^{2}}>1^{\text {Dion condergy due to }} \\
& \Longrightarrow \quad\left\langle e^{2 i \theta}\right\rangle_{I} \ll 1 \\
& \begin{array}{l}
\text { Free energy du to } \\
\text { sion cobden } \\
1
\end{array}
\end{aligned}
$$

How bad is this?
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Phase of fermion det with quark baryon μ, averaged over isospin ensemble

$$
\mu<m_{\pi} / 2: \quad Z_{B}=Z_{I}=1 \quad \Longrightarrow \quad\left\langle e^{2 i \theta}\right\rangle_{I}=1
$$

Partition functions with baryon/isospin chemical potentials

$$
m_{\pi} / 2<\mu<M_{N} / 3: \quad Z_{B}=1
$$

$$
(T=0)
$$

$$
Z_{I} \sim e^{V T f_{\pi}^{2} \mu^{2}\left(1-m_{\pi}^{2} / 4 \mu^{2}\right)^{2}}{ }^{2 i \theta} \gg 1 \text { pion conden due to }
$$

$$
\Longrightarrow \quad\left\langle e^{2 i \theta}\right\rangle_{I} \ll 1
$$

- The phase cancellations are exponentially bad in the spacetime volume

How bad is this?
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

How bad is the "sign problem" for real calculations?
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

How bad is the "sign problem" for real calculations?
CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of 10...

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

How bad is the "sign problem" for real calculations?
CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of $10 \ldots$

e.g.: $\mathrm{T}=10 \mathrm{MeV}$, $\mathrm{L}=3 \mathrm{fm}, \rho=$ nuclear density: > 1010-20 exaflop-yrs?!
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Practical implementation of Wilson's formulation of the Feynman path integral on a classical computer:
323×64 lattice size: millions of degrees of freedom Hilbert space size $\sim e^{\text {millions }}$. Lattice QFT: sample it!
e"millions" dim
wave function
D. B. Kaplan ~ Argonne Nat'l Lab ~3/29/18

Practical implementation of Wilson's formulation of the Feynman path integral on a classical computer:
323×64 lattice size: millions of degrees of freedom Hilbert space size $\sim e^{\text {millions. }}$. Lattice QFT: sample it!
e"millions" dim
wave function
D. B. Kaplan ~ Argonne Nat'l Lab ~3/29/18

Practical implementation of Wilson's formulation of the Feynman path integral on a classical computer:

323×64 lattice size: millions of degrees of freedom Hilbert space size $\sim e^{\text {millions }}$. Lattice QFT: sample it!
e"millions" dim
wave function

Amazingly, the ground state wave function of
QCD can be sampled
efficiently at $\mu=0$
D. B. Kaplan ~ Argonne Nat'l Lab ~3/29/18

Practical implementation of Wilson's formulation of the Feynman path integral on a classical computer:
323×64 lattice size: millions of degrees of freedom $\quad e^{\text {"millions" }}$ dim Hilbert space size $\sim e^{\text {millions. }}$. Lattice QFT: sample it!

> Amazingly, the ground state wave function of
> QCD can be sampled
> efficiently at $\mu=0$

...but not at $\mu \neq 0$
D. B. Kaplan ~ Argonne Nat'l Lab ~3/29/18

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Quantum computers to the rescue?

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

2 classical bits

state 1 :
state 2:

00

01
bit flip $=2 \times 2$ matrix acting on 2 nd bit
can get from any initial state to any final one by a sequence of single-bit flips
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

2 classical bits

state 1:

state 2: 00
can get from any initial state to any final one by a sequence of single-bit flips

2 "quits"
state 1 :
state 2 :
bit flip $=2 \times 2$ matrix acting on and bit

requires 4×4 matrix acting on both quits
cannot get from initial state to final state by a sequence of individual bit flips due to entanglement
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

2 classical bits

state 1 :

state 2 : 00
can get from any initial state to any final one by a sequence of single-bit flips

2 "qubits"
state 1 :
state 2 :
bit flip $=2 \times 2$ matrix acting on 2 nd bit

requires 4×4 matrix acting on both qubits
cannot get from initial state to final state by a sequence of individual bit flips due to entanglement

N classical bits: $\mathrm{N} 2 \times 2$ matrices needed to get from one state to the next
N qubits: $2^{N} \times 2^{N}$ matrix needed to get from one state to the next
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Classical bit stream

110110010001101011011110...
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Classical bit stream

110110010001101011011110...

Classical book

Tear out 1% of the pages and you lose 1% of the information
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Classical bit stream
Obit stream
110110010001101011011110...

Classical book

Tear out 1% of the pages and you lose 1% of the information

Classical bit stream
Obit stream
110110010001101011011110...

Classical book

Tear out 1% of the pages and you lose 1% of the information

Classical bit stream
110110010001101011011110...

Classical book

Tear out 1% of the pages and you lose 1% of the information

Qbit stream
$c_{1}|110010111 \ldots\rangle$
$+c_{2} \mid 001000110 \ldots$
$+c_{3} \mid 101010001 \ldots$

Quantum book

No information on any one page of the quantum book...tearing out a page is like losing resolution in a photograph...but each page tells you something about what is on the other pages
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Classical bit stream
110110010001101011011110...

Classical book

Tear out 1% of the pages and you lose 1% of the information

Qbit stream

```
c}|110010111\ldots
+c}\mp@subsup{c}{2}{}|00100011
+c}\mp@subsup{c}{3}{}10101000
```

Quantum book

Spurfinatte

No information on any one page of the Fernuirfung quantum book...tearing out a page is like losing resolution in a photograph...but each page tells you something about what is on the other pages
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19
...but quantum books contain vastly more information than classical ones

D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

..but quantum books contain vastly more information than classical ones

...but quantum books contain vastly more information than classical ones

D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

The quantum computing model:
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

The quantum computing model:

$$
\left(\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle \\
\left|i_{3}\right\rangle \\
\left|i_{4}\right\rangle \\
\left|i_{5}\right\rangle
\end{array}\right)
$$

$$
\left|\Psi_{i}\right\rangle
$$

Initialize
 quits

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

The quantum computing model:
$\left(\begin{array}{l}\left|i_{1}\right\rangle \\ \left|i_{2}\right\rangle \\ \left|i_{3}\right\rangle \\ \left|i_{4}\right\rangle \\ \left|i_{5}\right\rangle\end{array}\right) \longrightarrow\left(\begin{array}{l}\left|i_{1}\right\rangle \\ \left|i_{2}\right\rangle \\ \left|i_{3}\right\rangle \\ \left|i_{4}\right\rangle \\ \left|i_{5}\right\rangle\end{array}\right)$

$$
\left|\Psi_{i}\right\rangle
$$

$\left|\Psi_{f}\right\rangle$

Initialize
 qubits

Perform gate operations on qubits

The quantum computing model:

$\left|\Psi_{i}\right\rangle$

Initialize qubits

$\left|\Psi_{f}\right\rangle$

Perform gate operations

 on qubitsMeasure
(convert to classical bits)
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Can this be useful?

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time what takes exponential time on a classical computer.

Example: discrete Fourier transform
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time what takes exponential time on a classical computer.

Example: discrete Fourier transform
Classical Fourier transform on a discrete function with N values

$$
\begin{gathered}
\left\{\mathrm{x}_{0}, \ldots \mathrm{x}_{\mathrm{N}-1}\right\} \mapsto\left\{\mathrm{y}_{0}, \ldots \mathrm{y}_{\mathrm{N}-1}\right\} \\
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \omega^{j k} \quad \omega=e^{\frac{2 \pi i}{N}}
\end{gathered}
$$

Computational cost $=\mathrm{O}(\mathrm{N} \log \mathrm{N})$.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time what takes exponential time on a classical computer.

Example: discrete Fourier transform
Classical Fourier transform on a discrete function with N values

$$
\begin{gathered}
\left\{\mathrm{x}_{0}, \ldots \mathrm{x}_{\mathrm{N}-1}\right\} \mapsto\left\{\mathrm{y}_{0}, \ldots \mathrm{y}_{\mathrm{N}-1}\right\} \\
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \omega^{j k} \quad \omega=e^{\frac{2 \pi i}{N}}
\end{gathered}
$$

Computational cost $=\mathrm{O}(\mathrm{N} \log \mathrm{N})$.
When $N=2^{n}$, cost (\# gate operations) is $O\left(n 2^{n}\right)$.
On a quantum computer cost is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. B. Kaplan ~Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Can this be useful?

Certain algorithms on a quantum computer can do in polynomial time what takes exponential time on a classical computer.

Example: discrete Fourier transform
Classical Fourier transform on a discrete function with N values

$$
\begin{gathered}
\left\{\mathrm{x}_{0}, \ldots \mathrm{x}_{\mathrm{N}-1}\right\} \mapsto\left\{\mathrm{y}_{0}, \ldots \mathrm{y}_{\mathrm{N}-1}\right\} \\
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \omega^{j k} \quad \omega=e^{\frac{2 \pi i}{N}}
\end{gathered}
$$

Computational cost $=\mathrm{O}(\mathrm{N} \log \mathrm{N})$.
When $N=2^{n}$, cost (\# gate operations) is $\mathrm{O}\left(\mathrm{n} 2^{n}\right) . \longleftarrow$ CLASSICAL
On a quantum computer cost is $\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \longleftarrow$ QUANTUM
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Fourier transform on a quantum computer

Start with $\mathrm{n}=2$ quits $|\mathrm{x}\rangle=\left|\mathrm{x}_{0}, \mathrm{x}_{1}\right\rangle$ where $\mathrm{x}_{\mathrm{i}}=0,1 \ldots$
So $N=2^{2}=4$ and $\omega=e^{2 \pi i / 4}$
The Fourier transform is then the unitary transformation on these states

$$
\begin{gathered}
\left(\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right) \rightarrow U\left(\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right) \\
U=\frac{1}{\sqrt{2^{2}}}\left(\begin{array}{llll}
\omega^{0} & \omega^{0} & \omega^{0} & \omega^{0} \\
\omega^{0} & \omega^{1} & \omega^{2} & \omega^{3} \\
\omega^{0} & \omega^{2} & \omega^{4} & \omega^{6} \\
\omega^{0} & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
\end{gathered}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the qubits in the final state will be the Fourier transform of the coefficients of the qubits in the initial state

In the basis:
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:

$$
\left|x_{1} x_{2}\right\rangle \in\left\{\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right\} \quad U=\frac{1}{\sqrt{2^{2}}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:

$$
\left|x_{1} x_{2}\right\rangle \in\left\{\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right\} \quad U=\frac{1}{\sqrt{2^{2}}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:

$$
\left|x_{1} x_{2}\right\rangle \in\left\{\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right\} \quad U=\frac{1}{\sqrt{2^{2}}}\left(\begin{array}{cccc}
\begin{array}{ccc}
1 & 1 & 1
\end{array} & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:

$$
\left|x_{1} x_{2}\right\rangle \in\left\{\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right\}
$$

$$
\begin{aligned}
& \begin{array}{c}
2 \mathrm{x}_{1}+\mathrm{x}_{2}: \\
\left\{\mathrm{x}_{1} \mathrm{x}_{2}\right\}
\end{array}=\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\{00\} & \{01\} & \{10\} & \{11\}
\end{array} \\
& U=\frac{1}{\sqrt{2^{2}}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & \omega & \omega^{2} & \omega^{3} \\
\frac{1}{1} & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
\end{aligned} \begin{aligned}
& \omega^{0} \\
& \omega^{x_{2}+2 x_{1}} \\
& \omega^{2\left(x_{2}+2 x_{1}\right)} \\
& \omega^{3\left(x_{2}+2 x_{1}\right)}
\end{aligned}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Then

$$
|\psi\rangle=\sum_{k} x_{k}|k\rangle \rightarrow U \psi=\sum_{j, k} x_{j} U_{j k}|k\rangle \equiv \sum_{k} y_{k}|k\rangle, \quad \text { so } y_{k}=\sum_{j} x_{j} \omega^{j k}
$$

The coefficients of the quits in the final state will be the Fourier transform of the coefficients of the quits in the initial state

In the basis:

$$
\left.\begin{array}{r}
\left|x_{1} x_{2}\right\rangle \in\left\{\begin{array}{l}
|00\rangle \\
|01\rangle \\
|10\rangle \\
|11\rangle
\end{array}\right\} \quad U=\frac{1}{\sqrt{2^{2}}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hline 1 & \omega & \omega^{2} \\
\hline 1 & \omega^{2} & \omega^{3} \\
\hline 1 & \omega^{3} & \omega^{6} \\
\hline
\end{array}\right) \\
\omega^{9}
\end{array}\right) \quad \begin{aligned}
& \omega^{0} \\
& \omega^{x_{2}+2 x_{1}} \\
& \omega^{2\left(x_{2}+2 x_{1}\right)} \\
& \omega^{3\left(x_{2}+2 x_{1}\right)}
\end{aligned}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

This can be effected (up to overall phase) with 3 basic gates:

H = Hadamard gate: $|0\rangle \rightarrow \frac{|0\rangle+|1\rangle}{\sqrt{2}}, \quad|1\rangle \rightarrow \frac{|0\rangle-|1\rangle}{\sqrt{2}}$
$=$ Controlled Phase Rotation: $\quad\left|x_{1}\right\rangle \rightarrow \omega^{x_{1}}\left|x_{1}\right\rangle \quad$ iff $x_{2}=1$ D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

This can be effected (up to overall phase) with 3 basic gates:

$\mathbf{H}=$ Hadamard gate: $\quad|0\rangle \rightarrow \frac{|0\rangle+|1\rangle}{\sqrt{2}}, \quad|1\rangle \rightarrow \frac{|0\rangle-|1\rangle}{\sqrt{2}}$
$=$ Controlled Phase Rotation: $\quad\left|x_{1}\right\rangle \rightarrow \omega^{x_{1}}\left|x_{1}\right\rangle \quad$ iff $x_{2}=1$

$$
\left|x_{1} x_{2}\right\rangle \xrightarrow{H}\left(\frac{|0\rangle+\omega^{2 x_{1}}|1\rangle}{\sqrt{2}}\right)\left|x_{2}\right\rangle \xrightarrow{R_{\pi / 2}}\left(\frac{|0\rangle+\omega^{2 x_{1}+x_{2}}|1\rangle}{\sqrt{2}}\right)\left|x_{2}\right\rangle \xrightarrow{H}\left(\frac{|0\rangle+\omega^{2 x_{1}+x_{2}}|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle+\omega^{2 x_{2}}|1\rangle}{\sqrt{2}}\right)
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

This can be effected (up to overall phase) with 3 basic gates:

= Hadamard gate:

$$
|0\rangle \rightarrow \frac{|0\rangle+|1\rangle}{\sqrt{2}}, \quad|1\rangle \rightarrow \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

$=$ Controlled Phase Rotation: $\quad\left|x_{1}\right\rangle \rightarrow \omega^{x_{1}}\left|x_{1}\right\rangle \quad$ iff $x_{2}=1$

$$
\left|x_{1} x_{2}\right\rangle \xrightarrow{H}\left(\frac{|0\rangle+\omega^{2 x_{1}}|1\rangle}{\sqrt{2}}\right)\left|x_{2}\right\rangle \xrightarrow{R_{\pi / 2}}\left(\frac{|0\rangle+\omega^{2 x_{1}+x_{2}}|1\rangle}{\sqrt{2}}\right)\left|x_{2}\right\rangle \xrightarrow{H}\left(\frac{|0\rangle+\omega^{2 x_{1}+x_{2}}|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle+\omega^{2 x_{2}}|1\rangle}{\sqrt{2}}\right)
$$

$$
\left|y_{1} y_{2}\right\rangle=\left(\frac{|0\rangle+\omega^{2 x_{2}}|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle+\omega^{2 x_{1}+x_{2}}|1\rangle}{\sqrt{2}}\right)
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

The "score" for the $n=3$ Fourier transform:

3 gates for the $n=2$ case; 6 gates for $n=3$. Scales like n^{2} for large n

- $n \mathrm{H}$-gates
- $\mathrm{n}(\mathrm{n}+1) / 2$ R-gates

Same discrete FT scales like ($\mathrm{n} 2^{\mathrm{n}}$) on a classical computer.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

How can you use this for physics?

Example: phase estimation algorithm

Suppose $\mid \Psi>$ is the eigenvector of a unitary operator $U\left(=e^{-i \mathrm{Ht}}\right)$, represented by m quits:

$$
U|\Psi\rangle=e^{2 \pi i \theta}|\Psi\rangle
$$

and you want to determine θ to accuracy 1:2-n

D. B. Kaplan ~Beíjing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Hadamard gates give you the state: $\quad 2^{-n / 2}(|0\rangle+|1\rangle) \otimes n|\Psi\rangle$
Controlled phase rotations by U then give you the state

$$
\frac{1}{2^{\frac{n}{2}}} \underbrace{\left(|0\rangle+e^{2 \pi i 2^{n-1} \theta}|1\rangle\right)}_{1^{\text {st }} \text { qubit }} \otimes \cdots \otimes \underbrace{\left(|0\rangle+e^{2 \pi i 2^{1} \theta}|1\rangle\right)}_{n-1^{\text {th }} \text { qubit }} \otimes \underbrace{\left(|0\rangle+e^{2 \pi i 2^{0} \theta}|1\rangle\right)}_{n^{\text {th }} \text { qubit }}=\frac{1}{2^{\frac{n}{2}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i \theta k}|k\rangle
$$

If $\theta=a 2^{-n}$ for integer a, then the inverse Fourier Transform will yield an eigenstate of spin for each of the final qubits $\mid y>$

Measuring $\mid y>$ yields the exact answer for a :
$a=2^{0} y_{0}+2^{1} y_{1}+2^{2} y_{2}+\ldots+2^{n-1} y_{n-1}$,
all y_{i} measured to be o or 1
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

If $\theta=a 2^{-n}+\delta$ for integer a, then the probability for measuring a particular value of a is peaked around the true value.

The probability of determining the correct value of a

$$
\begin{aligned}
P(a) & =\frac{1}{2^{2 n}} \frac{\left|\sin \left(\pi 2^{n} \delta\right)\right|^{2}}{|2 \sin \pi \delta|^{2}} \\
& \geq \frac{4}{\pi^{2}}=0.41 \quad \text { for } \quad|\delta| \leq 2^{-(n+1)}
\end{aligned}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

If $|\Psi\rangle$ is a linear combination of two eigenstates

$$
\left.|\Psi>=\alpha| \theta=a 2^{-n}\right\rangle+\beta\left|\theta=b 2^{-n}\right\rangle
$$

with a, b integers, measurement of the auxiliary qubits will

- yield a with probability $|\alpha|^{2}$ or b with probability $|\beta|^{2}$
- after measurement, $\mid \Psi>$ collapses to eigenstate

More general $|\Psi\rangle$, QPE measures the spectrum of $|\Psi\rangle$
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Quantum phase estimation is a method for solving for energy levels of a quantum many-body system:

1. Initialize qubits with a trial wave function $\left|\Psi_{i}\right\rangle$
2. Use $\mathrm{U}=\mathrm{e}^{-\mathrm{i} \mathrm{Ht}}$ for Quantum Phase Estimation (QPE) with choice of t such that $o \leq E t \leq 2 \pi$

- Break U up into product of short time evolution operators (Trotterization)
- Express these in terms of gate operations

3. Measurements at end of QPE will give the spectrum of Et, weighted by overlap of $\left.|<E| \Psi_{i}\right\rangle\left.\right|^{2}$
4. After each measurement, output qubits will represent the eigenfunction corresponding to the measured Et.
5. Can use this wave function to compute matrix elements

Lots of gates and qubits needed!
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Gate-count estimates for performing quantum chemistry on small quantum computers
Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer
Phys. Rev. A 90, 022305 - Published 6 August 2014
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Lattice Yang Mills? Start with Hamiltonian formulation

- Fix $\mathrm{A}_{0}=0$ gauge
- $H=\frac{1}{2}\left(g^{2} \vec{E}_{a} \vec{E}_{a}+\frac{1}{g^{2}} \vec{B}_{a} \vec{B}_{a}\right), \quad\left[A_{a}^{i}, E_{b}^{j}\right]=i \hbar \delta^{i j} \delta_{a b}$
- Physical states obey Gauss constraint:

$$
D_{i} E_{i}|\psi\rangle=0
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Lattice Yang Mills? Start with Hamiltonian formulation

- Fix $A_{0}=0$ gauge
- $H=\frac{1}{2}\left(g^{2} \vec{E}_{a} \vec{E}_{a}+\frac{1}{g^{2}} \vec{B}_{a} \vec{B}_{a}\right), \quad\left[A_{a}^{i}, E_{b}^{j}\right]=i \hbar \delta^{i j} \delta_{a b}$
- Physical states obey Gauss constraint: $D_{i} E_{i}|\psi\rangle=0$

Kogut-Susskind (lattice) Yang-Mills Hamiltonian:

- Fix $U=1$ gauge on temporal links, U on spatial links - operators
- $\vec{B}_{a} \vec{B}_{a} \rightarrow-\operatorname{Re} \operatorname{Tr} \hat{U}_{\square} \quad$ (product of U's around plaquette)
- $\vec{E}_{a} \vec{E}_{a} \rightarrow \hat{\ell}_{a}^{2}=\hat{r}_{a}^{2}$
(Casimir operator)
- $\left[\hat{\ell}_{a}, \hat{U}\right]=-T_{a} \hat{U}, \quad\left[\hat{r}_{a}, \hat{U}\right]=\hat{U} T_{a}$
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

The Hilbert space: the link operators are coordinates in the gauge group, the ℓ_{a}, r_{a} operators are their conjugates
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

The Hilbert space: the link operators are coordinates in the gauge group, the ℓ_{a}, r_{a} operators are their conjugates
"coordinate" basis:
$\left\langle g \mid g^{\prime}\right\rangle=\delta\left(g-g^{\prime}\right), \quad \int d g|g\rangle\langle g|=\mathbf{1}$

G

$|g\rangle$

G

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

The Hilbert space: the link operators are coordinates in the gauge group, the ℓ_{a}, r_{a} operators are their conjugates
"coordinate" basis:
$\left\langle g \mid g^{\prime}\right\rangle=\delta\left(g-g^{\prime}\right), \quad \int d g|g\rangle\langle g|=\mathbf{1}$
"momentum" basis:
$\left\langle R a b \mid R^{\prime} a^{\prime} b^{\prime}\right\rangle=\delta_{R R^{\prime}} \delta_{a a^{\prime}} \delta_{b b^{\prime}}, \quad \sum_{R a b}|R a b\rangle\langle R a b|=\mathbf{1}$
$\langle R a b \mid g\rangle \equiv \sqrt{\frac{d_{R}}{|G|}} D_{a b}^{(R)}(g)$

$|R a b\rangle$

$\left|R^{\prime} a^{\prime} b^{\prime}\right\rangle$

Irreducible representations of G
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

The Hilbert space: the link operators are coordinates in the gauge group, the ℓ_{a}, r_{a} operators are their conjugates
"coordinate" basis:
$\left\langle g \mid g^{\prime}\right\rangle=\delta\left(g-g^{\prime}\right), \quad \int d g|g\rangle\langle g|=\mathbf{1}$
"momentum" basis:
$\left\langle R a b \mid R^{\prime} a^{\prime} b^{\prime}\right\rangle=\delta_{R R^{\prime}} \delta_{a a^{\prime}} \delta_{b b^{\prime}}, \quad \sum_{R a b}|R a b\rangle\langle R a b|=\mathbf{1}$
$\langle R a b \mid g\rangle \equiv \sqrt{\frac{d_{R}}{|G|}} D_{a b}^{(R)}(g)$
$|R a b\rangle$

G

$\left|R^{\prime} a^{\prime} b^{\prime}\right\rangle$

Irreducible representations of G
A Formulation of Lattice Gauge Theories for Quantum Simulations
Erez Zohar and Michele Burrello, Phys. Rev. D 91, 054506
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19
E.g. U(1): particle on a circle

$$
\begin{array}{ll}
|g\rangle \rightarrow|\phi\rangle, & \phi \in[0,2 \pi) \\
|R a b\rangle \rightarrow|L\rangle, & L \in Z, \quad D_{a b}^{R}(g) \rightarrow e^{i L \phi}
\end{array}
$$

E.g. U(1): particle on a circle
$|g\rangle \rightarrow|\phi\rangle, \quad \phi \in[0,2 \pi)$
$|R a b\rangle \rightarrow|L\rangle, \quad L \in Z, \quad D_{a b}^{R}(g) \rightarrow e^{i L \phi}$

E.g. $\operatorname{SU}(2)$: particle on a 3 -sphere
$|g\rangle \rightarrow|\vec{\theta}\rangle$
$|R a b\rangle \rightarrow\left|j m m^{\prime}\right\rangle, \quad D_{a b}^{R}(g) \rightarrow D_{m m^{\prime}}^{(j)}(\vec{\theta})$
(Wigner d-matrices)
D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19
E.g. U(1): particle on a circle
$|g\rangle \rightarrow|\phi\rangle, \quad \phi \in[0,2 \pi)$
$|R a b\rangle \rightarrow|L\rangle, \quad L \in Z, \quad D_{a b}^{R}(g) \rightarrow e^{i L \phi}$

E.g. $\mathrm{SU}(2)$: particle on a 3-sphere
$|g\rangle \rightarrow|\vec{\theta}\rangle$
$|R a b\rangle \rightarrow\left|j m m^{\prime}\right\rangle, \quad D_{a b}^{R}(g) \rightarrow D_{m m^{\prime}}^{(j)}(\vec{\theta})$
(Wigner d-matrices)

Even with spatial lattice, we have an infinite-dimension Hilbert space:

- The |g> states take continuous values
- The |Rab> states are discrete, but there are ∞ of them
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19
"Latticize" G?

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$
"Latticize" G?

Nice graphics algorithms, but not lattices
(e.g. generally no useful families of finite subgroups of G, so no gauge symmetry)...
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$
"Latticize" G?

Nice graphics algorithms, but not lattices
(e.g. generally no useful families of finite subgroups of G, so no gauge symmetry)...
.... except for $\mathrm{Z}_{\mathrm{N}} \in \mathrm{U}(1)$

D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Cutoff on |Rab> states (canonical momentum cutoff)?

E.g. $\mathrm{U}(1)$, cutoff on L

D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Cutoff on |Rab> states (canonical momentum cutoff)?
E.g. U(1), cutoff on L

E.g. $S U(2)$, cutoff on j :

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Cutoff on |Rab> states (canonical momentum cutoff)?
E.g. $U(1)$, cutoff on L

E.g. $S U(2)$, cutoff on j :

D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Nevertheless, toy models on small lattices with low cutoffs can be interesting in their own right, and perhaps feasible in near-term
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Nevertheless, toy models on small lattices with low cutoffs can be interesting in their own right, and perhaps feasible in near-term

Example: "glueballs" in SU(2), 2+1 dimensions, four lattice sites.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Nevertheless, toy models on small lattices with low cutoffs can be interesting in their own right, and perhaps feasible in near-term

Example: "glueballs" in SU(2), 2+1 dimensions, four lattice sites.
minimal:

- no glueballs in $1+1$ dimensions
- no qlueballs in $2+1$ with less than 1 plaquette
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

$$
\ell^{\alpha}, r^{\alpha} \in \mathfrak{s u}(2)
$$

Gauge invariance constraint at each vertex $\quad \ell^{\alpha}, r^{\alpha} \in \mathfrak{s u}(2)$
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Gauge invariance constraint at each vertex $\quad \ell^{\alpha}, r^{\alpha} \in \mathfrak{s u}(2)$ general state:

$$
|\psi\rangle=\left|j_{01}, m_{01}, m_{01}^{\prime}\right\rangle\left|j_{13}, m_{13}, m_{13}^{\prime}\right\rangle\left|j_{23}, m_{23}, m_{23}^{\prime}\right\rangle\left|j_{02}, m_{02}, m_{02}^{\prime}\right\rangle
$$

Gauge invariance constraint at each vertex $\quad \ell^{\alpha}, r^{\alpha} \in \mathfrak{s u}(2)$
general state:

$$
|\psi\rangle=\left|j_{01}, m_{01}, m_{01}^{\prime}\right\rangle\left|j_{13}, m_{13}, m_{13}^{\prime}\right\rangle\left|j_{23}, m_{23}, m_{23}^{\prime}\right\rangle\left|j_{02}, m_{02}, m_{02}^{\prime}\right\rangle
$$

gauge invariant state:
$|\mathcal{T}\rangle=\frac{1}{(2 j+1)^{2}} \sum_{m_{i}=-j}^{j}(-1)^{-\left(m_{0}+m_{3}\right)}\left|j, m_{0}, m_{1}\right\rangle_{[01]}\left|j,-m_{0}, m_{2}\right\rangle_{[02]}\left|j, m_{1}, m_{3}\right\rangle_{[13]}\left|j, m_{2},-m_{3}\right\rangle_{[23]}$ D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

SU(2) Hilbert space for one link, cut off at $j=3$

Hilbert space dimension for L links, cutoff J :

$$
\left[\sum_{j=0}^{J}(2 j+1)^{2}\right]^{L}=\left[\frac{(1+J)(1+2 J)(3+4 J)}{3}\right]^{L}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

4-link SU(2) model:

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

4-link SU(2) model:

general state:

$$
|\psi\rangle=\left|j_{01}, m_{01}, m_{01}^{\prime}\right\rangle\left|j_{13}, m_{13}, m_{13}^{\prime}\right\rangle\left|j_{23}, m_{23}, m_{23}^{\prime}\right\rangle\left|j_{02}, m_{02}, m_{02}^{\prime}\right\rangle
$$

dimension of Hilbert

$$
\mathcal{D}=\left[\frac{(1+J)(1+2 J)(3+4 J)}{3}\right]^{4}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

4-link SU(2) model:

general state:

$$
|\psi\rangle=\left|j_{01}, m_{01}, m_{01}^{\prime}\right\rangle\left|j_{13}, m_{13}, m_{13}^{\prime}\right\rangle\left|j_{23}, m_{23}, m_{23}^{\prime}\right\rangle\left|j_{02}, m_{02}, m_{02}^{\prime}\right\rangle
$$

dimension of Hilbert space with cutoff J :

$$
\mathcal{D}=\left[\frac{(1+J)(1+2 J)(3+4 J)}{3}\right]^{4}
$$

gauge invariant state:

$$
\left|\psi_{j}\right\rangle=\frac{1}{(2 j+1)^{2}} \sum_{m_{i}=-j}^{j}(-1)^{-\left(m_{0}+m_{3}\right)}\left|j, m_{0}, m_{1}\right\rangle_{[01]}\left|j,-m_{0}, m_{2}\right\rangle_{[02]}\left|j, m_{1}, m_{3}\right\rangle_{[13]}\left|j, m_{2},-m_{3}\right\rangle_{[23]}
$$

dimension of gauge invariant subspace with cutoff $J: \quad \mathcal{D}_{\text {inv }}=2 J+1$

4-link SU(2) model:

general state:

$$
|\psi\rangle=\left|j_{01}, m_{01}, m_{01}^{\prime}\right\rangle\left|j_{13}, m_{13}, m_{13}^{\prime}\right\rangle\left|j_{23}, m_{23}, m_{23}^{\prime}\right\rangle\left|j_{02}, m_{02}, m_{02}^{\prime}\right\rangle
$$

dimension of Hilbert

$$
\mathcal{D}=\left[\frac{(1+J)(1+2 J)(3+4 J)}{3}\right]^{4}
$$ space with cutoff J :

gauge invariant state:

$$
\left.\left|\psi_{j}\right\rangle=\frac{1}{(2 j+1)^{2}} \sum_{m_{i}=-j}^{j}(-1)^{-\left(m_{0}+m_{3}\right)}\left|j, m_{0}, m_{1}\right\rangle_{[01]}\left|j,-m_{0}, m_{2}\right\rangle_{[02]}\left|j, m_{1}, m_{3}\right\rangle_{[13]}\left|j, m_{2},-m_{3}\right\rangle_{[23]} \right\rvert\,
$$

dimension of gauge invariant subspace with cutoff $J: \quad \mathcal{D}_{\text {inv }}=2 J+1$

$$
\begin{array}{rlr}
\text { e.g.: } J=3: & \mathcal{D}= & 384,160,000 \\
& & \\
& \geq 29 \text { qubits } & \\
& & \geq 3 \text { quits } \\
\hline
\end{array}
$$

D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

The $\operatorname{SU}(2)$ glue ball spectrum can be calculated quickly (Mathematica) for this simple system (because gauge invariance can be imposed analytically):

For low cutoff, can this be simulated on an existing quantum computer? Stay tuned.

Major challenges faced in order to do a QCD simulation omg a quantum computer:

Engineering:

Need lots of good qubits, fast gate operations
Qubits will be noisy: need error correction
(~ 1000 physical qubits for 1 logical qubit?)

Physics:

Need a good way to input initial state with overlap with ground state!
.... and lots of other theoretical and algorithmic advances.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Quantum Adiabatic Algorithm:

$$
H(s)=(1-s) H_{0}+s H_{1} \quad 0 \leq s \leq 1
$$

Quantum Adiabatic Algorithm:

$$
H(s)=(1-s) H_{0}+s H_{1} \quad 0 \leq s \leq 1
$$

simple Hamiltonian
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Quantum Adiabatic Algorithm:

Quantum Adiabatic Algorithm:

- Initialize qubits for known ground state of H_{0}
- Evolve according to $H(s)$, varying s slowly from 0 to 1
- Adiabatic theorem: ground state of H_{0} will evolve into ground state of H_{l}
- Measure desired matrix elements

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Drawback of the Quantum Adiabatic Algorithm:

Adiabatic theorem requires

 evolution time scales as$$
t \sim \frac{1}{\Delta E^{2}}
$$

Exponentially slow if there exists exponentially small gap (e.g. in ist order phase transition)

Maybe OK to start with strong coupling vacuum of LQCD and evolve to weak?
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Another possible algorithm: "Spectral Combing"
DBK, N Klco, A Roggerro, E-print 1709.08250 (quant-ph)
Simulate a "heat bath"?

Evolves unitarily to entangled state $\sim\left|\Psi_{o}\right\rangle \mid$ warm \rangle
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Or, to reduce number of quits:

Spectral combing:

Couple "target' hamiltonian to a spin system with characteristic energy $\omega(t)$ which decreases with time.
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Does it work?

Here: target Hamiltonian is $\mathrm{N}=3$ 1d Ising model, $\mathrm{N}_{\mathrm{s}}=3$ spins in the comb, random initial state

D. B. Kaplan ~Beijing "Frontiers in LQCD" ~ 28/6/19

Conclusions:

Sign problems are severe in interesting theories, and are rooted in the dynamics of the theory, probably not fixable for QCD by new algorithms for classical computers

There are LOTS of hardware obstacles to overcome... ...but if quantum computing becomes a reality, we may be able to solve these outstanding problems $>$ with the potential to revolutionize physics and technology
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

Conclusions:

Sign problems are severe in interesting theories, and are rooted in the dynamics of the theory, probably not fixable for QCD by new algorithms for classical computers

Quantum computers have the potential for transforming the simulation of quantum systems from exponentially hard, to polynomially hard

There are LOTS of hardware obstacles to overcome... ...but if quantum computing becomes a reality, we may be able to solve these outstanding problems $>$ with the potential to revolutionize physics and technology
D. B. Kaplan ~ Beijing "Frontiers in LQCD" $\sim 28 / 6 / 19$

Conclusions:

Sign problems are severe in interesting theories, and are rooted in the dynamics of the theory, probably not fixable for QCD by new algorithms for classical computers

Quantum computers have the potential for transforming the simulation of quantum systems from exponentially hard, to polynomially hard

There are LOTS of hardware obstacles to overcome... ...but if quantum computing becomes a reality, we may be able to solve these outstanding problems $>$ with the potential to revolutionize physics and technology

In the meantime, lots of fun things for field theorists to think about...
D. B. Kaplan ~ Beijing "Frontiers in LQCD" ~ 28/6/19

