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Lattice QCD has become a powerful tool: 
• hadron spectrum 
• weak matrix elements 
• g-2 
• light nuclei 
• properties of hot QCD  
• understanding phases of QFTs…

But there are many interesting phenomena out of reach: 
• finite baryon density 
• real-time dynamics 
• effects of topology 
• chiral gauge theories like the SM SIGN PROBLEMS
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2 degenerate flavors u,d  
chemical potential µ for quark number:

Z =
�

[DAµ] e�SY M det2
�
/D + m + µ�0

�

Nf = 2

Consider (Euclidian) QCD: 
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chemical potential µ for quark number:

Z =
�

[DAµ] e�SY M det2
�
/D + m + µ�0

�
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Consider (Euclidian) QCD: 

Monte Carlo method: evaluate expectations of operators O(A) by sampling 
gauge fields, averaging operator over the ensemble.  

Requires sampling gauge fields with probability...  
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�
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What is the sign problem? And why is it exponentially hard?

2 degenerate flavors u,d  
chemical potential µ for quark number:

Z =
�

[DAµ] e�SY M det2
�
/D + m + µ�0

�

Nf = 2

Consider (Euclidian) QCD: 

Monte Carlo method: evaluate expectations of operators O(A) by sampling 
gauge fields, averaging operator over the ensemble.  

Requires sampling gauge fields with probability...  

P (A) � e�SY M (A) det
�
/D + m + µ�0

�
2

...but the determinant is complex!

det
�
/D + m + µ�0

�† = det
�
/D + m� µ�0

�

Apply dagger,  γ5
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 measure operator

det2
�
/D + m + µ�0

�
=

��det2
�
/D + m + µ�0

��� e2i�

Can we write: ?
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Practical only if e2iθ doesn’t fluctuate wildly.
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Practical only if e2iθ doesn’t fluctuate wildly.

 measure operator

det2
�
/D + m + µ�0
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=

��det2
�
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Practical only if e2iθ doesn’t fluctuate wildly.

 measure operator

det2
�
/D + m + µ�0

�
=

��det2
�
/D + m + µ�0

��� e2i�

Can we write: ?

if very small ⇔ phase is fluctuating wildly.

How badly does the phase fluctuate? Consider computing:
�

[DA]e�SY M det�
[DA]e�SY M | det |

=
�

[DA]e�SY M | det |ei�

�
[DA]e�SY M | det |

= �ei��I
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�
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�
[DA]e�SY M det�

[DA]e�SY M | det |
=

�
[DA]e�SY M | det |ei�

�
[DA]e�SY M | det |

= �ei��I

2 flavors with baryon chemical potential
(�u = �d = �)

det = det2
�
/D + m + µ�0

�

| det | = det2
�
/D + m + �3µ�0

�
2 flavors with isospin chemical potential

(�u = -�d = �)
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�
[DA]e�SY M det�

[DA]e�SY M | det |
=

�
[DA]e�SY M | det |ei�

�
[DA]e�SY M | det |

= �ei��I

�ei��I =
ZB

ZI
= e�V T (FB�FI)

If FB  > FI  then there will be a sign problem that is exponentially bad (in the 
spacetime volume) 

2 flavors with baryon chemical potential
(�u = �d = �)

det = det2
�
/D + m + µ�0

�

| det | = det2
�
/D + m + �3µ�0

�
2 flavors with isospin chemical potential

(�u = -�d = �)
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�e2i��I =
ZB

ZI

Phase of fermion det 
with quark baryon µ, 
averaged over isospin 
ensemble

Partition functions 
with baryon/isospin 
chemical potentials

How bad is this?
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�e2i��I =
ZB

ZI

Phase of fermion det 
with quark baryon µ, 
averaged over isospin 
ensemble

Partition functions 
with baryon/isospin 
chemical potentials

Free energy due to 
pion condensation

µ < m�/2 : ZB = ZI = 1 =� �e2i��I = 1

m�/2 < µ < MN/3 : ZB = 1 ,

ZI � eV Tf2
�µ2(1�m2

�/4µ2)2 � 1

=� �e2i��I � 1

(T=0)

(T=0)

How bad is this?



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

�e2i��I =
ZB

ZI

Phase of fermion det 
with quark baryon µ, 
averaged over isospin 
ensemble

Partition functions 
with baryon/isospin 
chemical potentials

Free energy due to 
pion condensation

µ < m�/2 : ZB = ZI = 1 =� �e2i��I = 1

m�/2 < µ < MN/3 : ZB = 1 ,

ZI � eV Tf2
�µ2(1�m2

�/4µ2)2 � 1

=� �e2i��I � 1

(T=0)

(T=0)

µ
m�/2

�e2i��1

How bad is this?



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

�e2i��I =
ZB

ZI

Phase of fermion det 
with quark baryon µ, 
averaged over isospin 
ensemble

Partition functions 
with baryon/isospin 
chemical potentials

• The phase cancellations are exponentially bad in the spacetime volume

Free energy due to 
pion condensation

µ < m�/2 : ZB = ZI = 1 =� �e2i��I = 1

m�/2 < µ < MN/3 : ZB = 1 ,

ZI � eV Tf2
�µ2(1�m2

�/4µ2)2 � 1

=� �e2i��I � 1

(T=0)

(T=0)

µ
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How bad is this?
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D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

How bad is the “sign problem” for real calculations? The CPU e�ort grows exponentially with L3/T

CPU e�ort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 0  1  2  3  4  5

O
ps

Box size in fm

1 Exaflop x year

T = Tc
100 MeV

50 MeV
10 MeV

Crudely based on: • 10 sec on 1GF laptop for 24 lattice, a = 0.1 fm
• e�ort ⇤ exp(2V

T �nucl.(mB � 3/2m�)⇤ ⇥� ⌅
�f

)

Estimate of computational 
difficulty for different lattice 
volumes and temperatures
Ph. de Forcrand

=109 
GFlops x yr
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How bad is the “sign problem” for real calculations? The CPU e�ort grows exponentially with L3/T

CPU e�ort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...
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Crudely based on: • 10 sec on 1GF laptop for 24 lattice, a = 0.1 fm
• e�ort ⇤ exp(2V

T �nucl.(mB � 3/2m�)⇤ ⇥� ⌅
�f

)

Estimate of computational 
difficulty for different lattice 
volumes and temperatures
Ph. de Forcrand

=109 
GFlops x yr

e.g.:  T=10 MeV,  L=3fm,  ρ=nuclear density:  > 1010-20 exaflop-yrs?!
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… e“millions” dim 
wave function

Practical implementation of Wilson’s formulation of the Feynman 
path integral on a classical computer:

…
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323 x 64 lattice size: millions of degrees of freedom 
Hilbert space size ~ emillions.  Lattice QFT: sample it!

… e“millions” dim 
wave function

Amazingly, the ground 
state wave function of 
QCD can be sampled 
efficiently at µ=0

Practical implementation of Wilson’s formulation of the Feynman 
path integral on a classical computer:

…but not at µ≠0
…
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exotic phases

I’ll never be 
more than a 

cartoon!

Quantum computers to the rescue?
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2 classical bits

00

01

state 1:

state 2:

can get from any initial state to any final one by a sequence of 
single-bit flips

bit flip = 2x2 matrix acting on 2nd bit
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2 classical bits
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01

state 1:

state 2:

can get from any initial state to any final one by a sequence of 
single-bit flips

bit flip = 2x2 matrix acting on 2nd bit

  2 “qubits”

|00>

 ( |00>+|11>)/√2

state 1:

state 2:

cannot get from initial state to final state by a sequence of 
individual bit flips due to entanglement

requires 4x4 matrix acting on both  
qubits
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2 classical bits

00

01

state 1:

state 2:

can get from any initial state to any final one by a sequence of 
single-bit flips

bit flip = 2x2 matrix acting on 2nd bit

  2 “qubits”

|00>

 ( |00>+|11>)/√2

state 1:

state 2:

cannot get from initial state to final state by a sequence of 
individual bit flips due to entanglement

requires 4x4 matrix acting on both  
qubits

N classical bits:  N 2x2 matrices needed to get from one state to the next

N qubits: 2Nx 2N matrix needed to get from one state to the next
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Tear out 1% of the pages and 
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+c3|101010001 . . .i+ . . .

Qbit stream
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Quantum book

No information on any one page of the 
quantum book…tearing out a page is like 
losing resolution in a photograph…but 
each page tells you something about 
what is on the other pages

Classical bit stream

110110010001101011011110…

Classical book

Tear out 1% of the pages and 
you lose 1% of the information

c1|110010111 . . .i
+c2|001000110 . . .i
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Qbit stream

Enta
nglem

ent!
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Quantum book

No information on any one page of the 
quantum book…tearing out a page is like 
losing resolution in a photograph…but 
each page tells you something about 
what is on the other pages

Classical bit stream

110110010001101011011110…

Classical book

Tear out 1% of the pages and 
you lose 1% of the information

c1|110010111 . . .i
+c2|001000110 . . .i
+c3|101010001 . . .i+ . . .

Qbit stream

Enta
nglem

ent!

Spukhafte  
Fernwirkung
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…but quantum books contain vastly more information than classical ones

D. B. Kaplan ~ Temple University ~ 9/18/17
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…but quantum books contain vastly more information than classical ones
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D. B. Kaplan ~ Temple University ~ 9/18/17

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

300 qubits 



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

…but quantum books contain vastly more information than classical ones

~2300 
The number of classical bits 
required to encode the 
information in 300 qubits is 
more than the total number 
of atoms in the Universe! 

D. B. Kaplan ~ Temple University ~ 9/18/17

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
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1 classical universe>
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The quantum computing model:

0

BBBB@

|i1i
|i2i
|i3i
|i4i
|i5i

1

CCCCA

<latexit sha1_base64="0nPiLYtVcV3CDoQwvFD2/+ZHnLE="></latexit>

| ii
<latexit sha1_base64="bdC1HV+r1Gt7pKniOxO2iEYs5as=">AAAB/3icbVBNS8NAEN3Urxq/ooIXL4tF8FSSKuix6MVjBfsBTQib7bZdutmE3YlQYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9KBdfgut9WaWV1bX2jvGlvbe/s7jn7By2dZIqyJk1EojoR0UxwyZrAQbBOqhiJI8Ha0ehm6rcfmNI8kfcwTlkQk4HkfU4JGCl0jrDtGx+w39A85L4iciAYDp2KW3VnwMvEK0gFFWiEzpffS2gWMwlUEK27nptCkBMFnAo2sf1Ms5TQERmwrqGSxEwH+ez+CT41Sg/3E2VKAp6pvydyEms9jiPTGRMY6kVvKv7ndTPoXwU5l2kGTNL5on4mMCR4GgbuccUoiLEhhCpubsV0SBShYCKzTQje4svLpFWreufV2t1FpX5dxFFGx+gEnSEPXaI6ukUN1EQUPaJn9IrerCfrxXq3PuatJauYOUR/YH3+AKBclTc=</latexit>

Initialize  
qubits 
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0
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|i2i
|i3i
|i4i
|i5i

1

CCCCA

<latexit sha1_base64="0nPiLYtVcV3CDoQwvFD2/+ZHnLE=">AAACZHicdZFLS8NAEMc38dFaX6nFkyCLRfBUkvR5LHrxqGBVaErZbKd1cbMJuxuxhH5Jbx69+Dnc1visDiz8+c0MM/PfMOFMadd9tuyV1bX1QnGjtLm1vbPrlPeuVZxKCj0a81jehkQBZwJ6mmkOt4kEEoUcbsL7s3n+5gGkYrG40tMEBhGZCDZmlGiDhk4WhDBhIksioiV7nJUCU60xG3qBJGLCIQg+kb+M6suosYyaOSoFIEZfo4ZO1a21mu1Oq4HdmrsII1odt+7XsZeTKsrjYug8BaOYphEITTlRqu+5iR5kRGpGOZjdUwUJofdkAn0jBYlADbKFSTN8bMgIj2NpntB4Qb93ZCRSahqFptIseKd+5+bwr1w/1ePOIGMiSTUI+j5onHKsYzx3HI+YBKr51AhCJTO7YnpHJKHa/MvchI9L8f/i2q959Zp/2ah2T3M7iugAHaET5KE26qJzdIF6iKIXq2A5Vtl6tbfsir3/XmpbeU8F/Qj78A2LVrgT</latexit>

| f i
<latexit sha1_base64="evPE589oiT5siDlLycswNap7W0U=">AAAB/3icbVBNS8NAEN3Urxq/ooIXL4tF8FSSKuix6MVjBfsBTQib7aZdutmE3YlQag/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy/KBNfgut9WaWV1bX2jvGlvbe/s7jn7By2d5oqyJk1FqjoR0UxwyZrAQbBOphhJIsHa0fBm6rcfmNI8lfcwyliQkL7kMacEjBQ6R9j2jQ/Yb2gexr4isi8YDp2KW3VnwMvEK0gFFWiEzpffS2meMAlUEK27nptBMCYKOBVsYvu5ZhmhQ9JnXUMlSZgOxrP7J/jUKD0cp8qUBDxTf0+MSaL1KIlMZ0JgoBe9qfif180hvgrGXGY5MEnni+JcYEjxNAzc44pRECNDCFXc3IrpgChCwURmmxC8xZeXSatW9c6rtbuLSv26iKOMjtEJOkMeukR1dIsaqIkoekTP6BW9WU/Wi/VufcxbS1Yxc4j+wPr8AZu4lTQ=</latexit>

U⇒
Perform gate 
operations  
on qubits 
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The quantum computing model:

0

BBBB@

|i1i
|i2i
|i3i
|i4i
|i5i

1

CCCCA

<latexit sha1_base64="0nPiLYtVcV3CDoQwvFD2/+ZHnLE="></latexit>

| ii
<latexit sha1_base64="bdC1HV+r1Gt7pKniOxO2iEYs5as=">AAAB/3icbVBNS8NAEN3Urxq/ooIXL4tF8FSSKuix6MVjBfsBTQib7bZdutmE3YlQYg/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9KBdfgut9WaWV1bX2jvGlvbe/s7jn7By2dZIqyJk1EojoR0UxwyZrAQbBOqhiJI8Ha0ehm6rcfmNI8kfcwTlkQk4HkfU4JGCl0jrDtGx+w39A85L4iciAYDp2KW3VnwMvEK0gFFWiEzpffS2gWMwlUEK27nptCkBMFnAo2sf1Ms5TQERmwrqGSxEwH+ez+CT41Sg/3E2VKAp6pvydyEms9jiPTGRMY6kVvKv7ndTPoXwU5l2kGTNL5on4mMCR4GgbuccUoiLEhhCpubsV0SBShYCKzTQje4svLpFWreufV2t1FpX5dxFFGx+gEnSEPXaI6ukUN1EQUPaJn9IrerCfrxXq3PuatJauYOUR/YH3+AKBclTc=</latexit>
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qubits 
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<latexit sha1_base64="0nPiLYtVcV3CDoQwvFD2/+ZHnLE="></latexit>

| f i
<latexit sha1_base64="evPE589oiT5siDlLycswNap7W0U=">AAAB/3icbVBNS8NAEN3Urxq/ooIXL4tF8FSSKuix6MVjBfsBTQib7aZdutmE3YlQag/+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy/KBNfgut9WaWV1bX2jvGlvbe/s7jn7By2d5oqyJk1FqjoR0UxwyZrAQbBOphhJIsHa0fBm6rcfmNI8lfcwyliQkL7kMacEjBQ6R9j2jQ/Yb2gexr4isi8YDp2KW3VnwMvEK0gFFWiEzpffS2meMAlUEK27nptBMCYKOBVsYvu5ZhmhQ9JnXUMlSZgOxrP7J/jUKD0cp8qUBDxTf0+MSaL1KIlMZ0JgoBe9qfif180hvgrGXGY5MEnni+JcYEjxNAzc44pRECNDCFXc3IrpgChCwURmmxC8xZeXSatW9c6rtbuLSv26iKOMjtEJOkMeukR1dIsaqIkoekTP6BW9WU/Wi/VufcxbS1Yxc4j+wPr8AZu4lTQ=</latexit>

U⇒
Perform gate 
operations  
on qubits 

Measure 
(convert to 
classical bits) 



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

Can this be useful?
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Certain algorithms on a quantum computer can do in polynomial time 
what takes exponential time on a classical computer. 

Example: discrete Fourier transform

Can this be useful?
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Certain algorithms on a quantum computer can do in polynomial time 
what takes exponential time on a classical computer. 

Example: discrete Fourier transform

Classical Fourier transform on a discrete function with N values 
{x0,…xN-1} ↦ {y0,…yN-1}

yk =
1p
N

N�1X

j=0

xj!
jk ! = e

2⇡i
N

Computational cost = O(N log N).

Can this be useful?
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Certain algorithms on a quantum computer can do in polynomial time 
what takes exponential time on a classical computer. 

Example: discrete Fourier transform

Classical Fourier transform on a discrete function with N values 
{x0,…xN-1} ↦ {y0,…yN-1}

yk =
1p
N

N�1X

j=0

xj!
jk ! = e

2⇡i
N

Computational cost = O(N log N).

When N = 2n, cost (# gate operations) is O(n 2n). 

On a quantum computer cost is O(n2)

Can this be useful?
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Certain algorithms on a quantum computer can do in polynomial time 
what takes exponential time on a classical computer. 

Example: discrete Fourier transform

Classical Fourier transform on a discrete function with N values 
{x0,…xN-1} ↦ {y0,…yN-1}

yk =
1p
N

N�1X

j=0

xj!
jk ! = e

2⇡i
N

Computational cost = O(N log N).

When N = 2n, cost (# gate operations) is O(n 2n). 

On a quantum computer cost is O(n2)

Can this be useful?

CLASSICAL

QUANTUM
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Fourier transform on a quantum computer

Start with n=2 qubits    |x> = |x0,x1>   where xi = 0,1 …  
So N = 22 = 4 and ω = e2πi/4

The Fourier transform is then the unitary transformation on these  
states 0

BB@

|00i
|01i
|10i
|11i

1

CCA ! U

0

BB@

|00i
|01i
|10i
|11i

1

CCA

U =
1p
22

0

BB@

!0 !0 !0 !0

!0 !1 !2 !3

!0 !2 !4 !6

!0 !3 !6 !9

1

CCA

<latexit sha1_base64="Acg5jkdwgncRxSMFCcCHuLKWZho=">AAACznicfZJNSysxFIYzo/daq/dadekmWK64KjNT8WMhiG4ENxWsCp1aMumZGsxkxiQj1jC49fe58wf4P0w/sFXLPRB4eM97yMk5iTLOlPa8N8edm//1e6G0WF5a/vN3pbK6dqnSXFJo0pSn8joiCjgT0NRMc7jOJJAk4nAV3Z0M8lcPIBVLxYXuZ9BOSE+wmFGirdSpvDfxIQ5jSajxCxOqe6lNcBMURRhBjwmTJURL9liUwzSBHrnx8Bb+P4bhDK8/wWCC9ZneKcPOBHdneutThgkeDLwgup/ddypVr+YNA/8EfwxVNI5Gp/IadlOaJyA05USplu9lum2I1IxysNPIFWSE3pEetCwKkoBqm+E6CvzPKl0cp9IeofFQna4wJFGqn0TWafu7Vd9zA3FWrpXreL9tmMhyDYKOLopzjnWKB7vFXSaBat63QKhktldMb4ndrbY/oGyH4H9/8k+4DGp+vRac71SPjsfjKKENtIm2kY/20BE6RQ3URNQ5c+6dJ8e4DffBLdznkdV1xjXr6Eu4Lx9vqdiR</latexit>
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In the basis: 

Then 

| i =
X

k

xk|ki ! U =
X

j,k

xjUjk|ki ⌘
X

k

yk|ki , so yk =
X

j

xj!
jk

The coefficients of the qubits in the final state will be the Fourier 
transform of the coefficients of the qubits in the initial state 
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In the basis: 

Then 

| i =
X

k

xk|ki ! U =
X

j,k

xjUjk|ki ⌘
X

k

yk|ki , so yk =
X

j

xj!
jk

The coefficients of the qubits in the final state will be the Fourier 
transform of the coefficients of the qubits in the initial state 

U =
1p
22

0

BB@

1 1 1 1
1 ! !2 !3

1 !2 !4 !6

1 !3 !6 !9

1

CCA|x1x2i 2

8
>><

>>:

|00i
|01i
|10i
|11i

9
>>=

>>;
<latexit sha1_base64="P13okw+Qo/7pZakpvmblbFZlF3Q="></latexit>
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9
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Then 
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Then 
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In the basis: 

Then 
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In the basis: 

Then 
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� �
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This can be effected (up to overall phase) with 3 basic gates:

x1

y1x2

y2H Rπ/2

H

H = Hadamard gate:   |0i ! |0i+ |1ip
2

, |1i ! |0i � |1ip
2

Rπ/4
= Controlled Phase Rotation: |x1i ! !x1 |x1i i↵ x2 = 1
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This can be effected (up to overall phase) with 3 basic gates:

x1

y1x2

y2H Rπ/2

H

H = Hadamard gate:   |0i ! |0i+ |1ip
2

, |1i ! |0i � |1ip
2

Rπ/4
= Controlled Phase Rotation: |x1i ! !x1 |x1i i↵ x2 = 1

|x1 x2i
H�!

✓
|0i+ !2x1 |1ip

2

◆
|x2i

R⇡/2���!
✓
|0i+ !2x1+x2 |1ip

2

◆
|x2i

H�!
✓
|0i+ !2x1+x2 |1ip

2

◆✓
|0i+ !2x2 |1ip

2

◆
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This can be effected (up to overall phase) with 3 basic gates:

x1

y1x2

y2H Rπ/2

H

H = Hadamard gate:   |0i ! |0i+ |1ip
2

, |1i ! |0i � |1ip
2

Rπ/4
= Controlled Phase Rotation: |x1i ! !x1 |x1i i↵ x2 = 1

|x1 x2i
H�!

✓
|0i+ !2x1 |1ip

2

◆
|x2i

R⇡/2���!
✓
|0i+ !2x1+x2 |1ip

2

◆
|x2i

H�!
✓
|0i+ !2x1+x2 |1ip

2

◆✓
|0i+ !2x2 |1ip

2

◆

|y1y2i =
✓
|0i+ !2x2 |1ip

2

◆✓
|0i+ !2x1+x2 |1ip

2

◆
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x1

y1

x2 y2

H Rπ/2

H

The “score” for the n=3 Fourier transform:

y3

x3

Rπ/4

Rπ/2

H

3 gates for the n=2 case; 6 gates for n=3. Scales like n2 for large n 

Same discrete FT scales like (n 2n) on a classical computer. 

• n H-gates 
• n(n+1)/2 R-gates
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How can you use this for physics?

Example: phase estimation algorithm
Suppose |ψ> is the eigenvector of a unitary operator U (= e-iHt), represented 
by m qubits:

U |ψ> = e2πiθ |ψ>

and you want to determine θ to accuracy 1:2-n 
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Hadamard gates give you the state:      2-n/2 (|0> + |1>)⊗n |ψ>

Controlled phase rotations by U then give you the state 

.

Apply controlled unitary operations

Let  be a unitary operator with eigenvector  such that  thus

.

 is a controlled-U gate which applies the unitary operator  on the second register only if its corresponding
control bit (from the first register) is .

After applying all the  controlled operations  with  as seen in the figure, and kicking
back phases to the control bits in the first register, the state of the first register can be described as

Apply inverse Quantum Fourier transform

Applying inverse Quantum Fourier transform on

yields

The state of both registers together is

Phase approximation representation

We can approximate the value of  by rounding  to the nearest integer. This means that 
 where  is the nearest integer to  and the difference  satisfies .

We can now write the state of the first and second register in the following way:

If θ = a 2-n for integer a, then the inverse Fourier Transform 
will yield an eigenstate of spin for each of the final qubits |y>  

Measuring |y> yields the exact answer for a: 
a = 20y0 + 21 y1 + 22 y2 + …+ 2n-1 yn-1 ,  
all yi measured to be 0 or 1 
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If θ = a 2-n + δ for integer a, then the probability for 
measuring a particular value of a is peaked around the true 
value. 

The probability of determining the correct value of a

P (a) =
1

22n
|sin(⇡2n�)|2

|2 sin⇡�|2

� 4

⇡2
= 0.41 for |�|  2�(n+1)

<latexit sha1_base64="8jOO3DN3ZjDES5Jf3eraC86eswE=">AAACpHicdVFdb9MwFHUyPrbysQKPezFUVK0QVRK6ri+TJniABx46QbdJdVs5jtNac5zMvkFUVn4Z/4I3/g3O0koDwZUsHZ1z7ofvjQspDATBL8/fu3f/wcP9g9ajx0+eHrafPb8weakZn7Jc5voqpoZLofgUBEh+VWhOs1jyy/j6Q61ffuPaiFx9hU3B5xldKZEKRsFRy/aPSY/2u6ck1ZTZsLLRwkaqqnBDEMlTIC4fMDFC9UghcLRQmCRcAu0TLVbrRl9ElW2MUe10xsazEwnTrS5Z8abu0JkL4Wh8ioPBMCQ3NyVNMAH+HWya62pH1Nl3Crl5XH/7tqfehP1q2e4EgyAYReExrkEdDozGw/HoGIdbpoO2MVm2f5IkZ2XGFTBJjZmFQQFzSzUIJnnVIqXhBWXXdMVnDiqacTO3t0uu8GvHJNgN554CfMvezbA0M2aTxc6ZUVibv7Wa/Jc2KyEdz61QRQlcsaZRWkoMOa4vhhOhOQO5cYAyLdysmK2pWyO4u7bcEnY/xf8HF9EgfDeIzoeds/fbdeyjI/QK9VCITtAZ+oQmaIqY99L76E28c7/rf/a/+NPG6nvbnBfoj/AXvwFh8s92</latexit>
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If  |ψ> is a linear combination of two eigenstates

|ψ> = α |θ= a2-n> + β |θ= b2-n> 

with a,b integers, measurement of the auxiliary qubits will 
•  yield a with probability |α|2 or b with probability |β|2 

•  after measurement, |ψ> collapses to eigenstate

More general |ψ>, QPE measures the spectrum of |ψ>
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Quantum phase estimation is a method for solving for energy levels of a 
quantum many-body system:

1. Initialize qubits with a trial wave function |ψi> 
2. Use U = e-iHt  for Quantum Phase Estimation (QPE) with 

choice of t such that 0 ≤ Et ≤ 2π 
• Break U up into product of short time evolution operators 

(Trotterization) 
• Express these in terms of gate operations  

3. Measurements at end of QPE will give the spectrum of Et, 
weighted by overlap of |<E|ψi>|2  

4. After each measurement, output qubits will represent the 
eigenfunction corresponding to the measured Et. 

5. Can use this wave function to compute matrix elements

Lots of gates and qubits needed!
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Gate-count estimates for performing quantum chemistry on small quantum computers 
Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer 
Phys. Rev. A 90, 022305 – Published 6 August 2014 

Has been improved by orders of  
magnitude since published
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Lattice Yang Mills? Start with Hamiltonian formulation
• Fix A0=0 gauge 

•   

• Physical states obey Gauss constraint: DiEi| i = 0

H =
1

2

✓
g
2 ~Ea

~Ea +
1

g2
~Ba

~Ba

◆
,

h
A

i
a, E

j
b

i
= i~ �ij �ab
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Lattice Yang Mills? Start with Hamiltonian formulation
• Fix A0=0 gauge 

•   

• Physical states obey Gauss constraint: DiEi| i = 0

H =
1

2

✓
g
2 ~Ea

~Ea +
1

g2
~Ba

~Ba

◆
,

h
A

i
a, E

j
b

i
= i~ �ij �ab

Kogut-Susskind (lattice) Yang-Mills Hamiltonian:

• Fix U=1 gauge on temporal links, U  on spatial links ► operators 

•                                                     (product of U’s around plaquette) 

•                                                      (Casimir operator) 

•    

~Ba
~Ba ! �ReTr Û⇤

~Ea
~Ea ! ˆ̀2

a = r̂2a
h
ˆ̀
a, Û

i
= �TaÛ ,

h
r̂a, Û

i
= ÛTa
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The Hilbert space: the link operators are coordinates in the gauge group, 
the             operators are their conjugates`a, ra
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2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

“coordinate” basis: G G

|gi |g0i

The Hilbert space: the link operators are coordinates in the gauge group, 
the             operators are their conjugates`a, ra



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

“coordinate” basis: G G

|gi |g0i

The Hilbert space: the link operators are coordinates in the gauge group, 
the             operators are their conjugates`a, ra

2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

“momentum” basis:

Irreducible representations of G

|R0 a0 b0i|Rabi



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

“coordinate” basis: G G

|gi |g0i

A Formulation of Lattice Gauge Theories for Quantum Simulations 
Erez Zohar and Michele Burrello, Phys. Rev. D 91, 054506 

The Hilbert space: the link operators are coordinates in the gauge group, 
the             operators are their conjugates`a, ra

2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

2

• Orthogonality of group representations. From Schur’s lemma one can prove
Z

dg

|G|
D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) =
1
dR

�RR0�aa0�bb0 , dR ⌘ dim R . (9)

• Completeness of group representations. The Peter-Weyl theorem shows that the representations matrices are complete:
X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h) = |G| �(g � h) , (10)

where the �-function is defined by
Z

dg �(g � h) f (g) = f (h) . (11)

III. THE HILBERT SPACE FOR A GROUP AND ITS OPERATORS

We will want to discuss quantum dynamics on the group manifold. This Hilbert space is not to be confused with the vector
space the representation matrices act on, such as that spanned by | jmi for SU(2).

A. Hilbert space, coordinate basis

The coordinate basis for this space is given by |gi. The states are normalized such that

h g|g
0
i = �(g � g

0) ,
Z

dg |gihg| = 1 , (12)

1 being the unit operator on the Hilbert space.

B. Hilbert space, irrep basis.

The analogue of a “momentum basis” for the Hilbert space is given by |Rabi where R runs over all irreducible representations
and both a and b independently run over the Cartan quantum numbers within R. These states are defined by

hRab|g i ⌘

s
dR

|G|
D

(R)
ab

(g) , (13)

It then follows that these form an orthogonal, complete basis for the Hilbert space,

hRab|R
0
a
0
b
0
i = �RR0�aa0�bb0 ,

X

Rab

|RabihRab| = 1 . (14)

To show the above properties, from eq. (12), eq. (13) and eq. (9) we have

hRab|R
0
a
0
b
0
i =

Z
dg hRab|g ih g|R

0
a
0
b
0
i =

p
dR dR0

|G|

Z
dg D

(R)
ab

(g) D
(R0)⇤
a0b0

(g) = �RR0�aa0�bb0 , (15)

while from eq. (12), eq. (13) and eq. (10) we have

X

Rab

|RabihRab| =

Z
dg

Z
dh |gih g|Rab ihRab|h ihh|

=
1
|G|

Z
dg

Z
dh |gihh|

X

Rab

dR D
(R)
ab

(g) D
(R)⇤
ab

(h)

=

Z
dg

Z
dh |gihh| �(g � h) =

Z
dg |gihg| = 1 . (16)

“momentum” basis:

Irreducible representations of G

|R0 a0 b0i|Rabi



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

E.g. U(1): particle on a circle

|gi ! |�i , � 2 [0, 2⇡)

|Rabi ! |Li , L 2 Z , DR
ab(g) ! eiL�



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

E.g. U(1): particle on a circle

|gi ! |�i , � 2 [0, 2⇡)

|Rabi ! |Li , L 2 Z , DR
ab(g) ! eiL�

E.g. SU(2): particle on a 3-sphere

|Rabi ! |jmm0i , DR
ab(g) ! D(j)

mm0(~✓) (Wigner d-matrices)

|gi ! |~✓i
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• The |g> states take continuous values 

• The |Rab> states are discrete, but there are ∞ of them

Even with spatial lattice, we have an infinite-dimension Hilbert space:
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“Latticize” G?

Nice graphics algorithms, but not lattices  
(e.g. generally no useful families of finite subgroups of G, so no 
gauge symmetry)… 

…. except for ZN ∈ U(1)
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Cutoff on |Rab> states (canonical momentum cutoff)?

E.g. U(1), cutoff on L L
L0-L0 0

E.g. SU(2), cutoff on j: 

m

j

m’

This cutoff maintains gauge symmetry, gives 
finite Hilbert space, but what does it do  
to the physics? Open question
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Nevertheless, toy models on small lattices with low cutoffs can be 
interesting in their own right, and perhaps feasible in near-term

Example: “glueballs” in SU(2), 2+1 dimensions, four lattice sites.

minimal: 
• no glueballs in 1+1 dimensions 
• no qlueballs in 2+1 with less than 1 plaquette
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7

For the four link model there are four sites, and each site has a link entering and leaving it. Consider the action of Ĝ↵[0]| i,
acting at site n = 0, where | i is the state

| i = |Rabi[01]|R
0
a
0
b
0
i[02]|�i (53)

where the subscripts indicate which link, and I have lumped all the links where G↵[0] does not act into |�i. We get

e
i✓↵G↵[0]

| i = D
(R)(~✓)aAD

(R0)(~✓)a0A0 |RAbi[01]|R
0
A
0
b
0
i[02]|�i (54)

We see that for this to transform as a singlet will require (i) R = R
0, (ii) a

0 = �a, (iii) the wave function is summed over a with
the appropriate weights. When considering all four gauge symmetries we arrive at the following requirement, that | i be a sum
of terms of the following form with the appropriate weights:

|R, a0, a1i[01]|R,�a0, a2i[02]|R, a1, a3i[13]|R, a2,�a3i[23] (55)

For SU(2) this leads to the state

| i =
X

j

A j|Ji , |Ji =
1

(2 j + 1)2

jX

mi=� j

(�1)�(m0+m3)
| j,m0,m1i[01]| j,�m0,m2i[02]| j,m1,m3i[13]| j,m2,�m3i[23] , (56)

where
P

mi
is shorthand for a sum over all four ms and the phase is from are the product of Clebsch Gordan coe�cients required

to make all the singlets. This says that for a cuto↵ J on the j values, while the Hilbert space has dimension

D =

0
BBBBBB@

JX

j=0

(2 j + 1)2

1
CCCCCCA

4

=

0
BBBBBB@

2JX

k=0

(k + 1)2

1
CCCCCCA

4

=

 
(1 + J)(1 + 2J)(3 + 4J)

3

!4

, (57)

the space of gauge invariant states has dimension 2J. These states are normalized:

hJ|J
0
i = �J J 0

1
(2 j + 1)4

jX

mi=� j

= �J J 0 . (58)

A. Matrix element of the ~B2 plaquette operator

There are two operators in H:

OE =
X

ˆ̀2
↵[i j] , OB = <Tr Û[02]Û[23]Û

†

[13]Û
†

[01] (59)

The matrix element of OE is straightforward:

hJ|OE |J
0
i = 4 j( j + 1)�J J 0 (60)

For the matrix element of OB we need

h j1,m1,m
0

1|ÛMM0
| j2,m2,m

0

2i . (61)

From eq. (30) we have

h j1m1n1|Û
( 1

2 )
mn | j2m2n2i =

s
(2 j1 + 1)
(2 j2 + 1)

h j1 m1,
1
2 m| j2m2 ih j1 n1,

1
2 n| j2n2 i

=
p

(2 j1 + 1)(2 j2 + 1) (�1)2 j1+m2+n2+1
 

j1
1
2 j2

m1 m �m2

!  
j1

1
2 j2

n1 n �n2

!

h j1m1n1|
⇣
Û

( 1
2 )†

⌘
mn
| j2m2n2i =

p
(2 j1 + 1)(2 j2 + 1)

"
(�1)2 j2+m1+n1+1

 
j2

1
2 j1

m2 n �m1

!  
j2

1
2 j1

n2 m �n1

!#⇤
(62)

Putting these results together I find (numerically...need to do analytically)

hJ|OB|J
0
i =

8>><
>>:
�1 |J �J

0
| = 1

2
0 otherwise

(63)

gauge invariant state:

`↵[23]

r↵[23]

`↵[13] r↵[13]

`↵[02] r↵[02]

`↵[01]

r↵[01]

`↵, r↵ 2 su(2)
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m

j

m’

SU(2) Hilbert space for one link, cut off at j=3

Hilbert space dimension for L links, cutoff J: 
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140 states
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4-link SU(2) model:
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For the four link model there are four sites, and each site has a link entering and leaving it. Consider the action of Ĝ↵[0]| i,
acting at site n = 0, where | i is the state

| i = |Rabi[01]|R
0
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i[02]|�i (53)

where the subscripts indicate which link, and I have lumped all the links where G↵[0] does not act into |�i. We get
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We see that for this to transform as a singlet will require (i) R = R
0, (ii) a

0 = �a, (iii) the wave function is summed over a with
the appropriate weights. When considering all four gauge symmetries we arrive at the following requirement, that | i be a sum
of terms of the following form with the appropriate weights:

|R, a0, a1i[01]|R,�a0, a2i[02]|R, a1, a3i[13]|R, a2,�a3i[23] (55)
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The matrix element of OE is straightforward:
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i = 4 j( j + 1)�J J 0 (60)

For the matrix element of OB we need
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0
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From eq. (30) we have
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Putting these results together I find (numerically...need to do analytically)

hJ|OB|J
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0 otherwise

(63)

gauge invariant state:

dimension of gauge invariant  

subspace with cutoff J: Dinv = 2J + 1

Same j on all links; all m’s summed
| ji

4-link SU(2) model:
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For the four link model there are four sites, and each site has a link entering and leaving it. Consider the action of Ĝ↵[0]| i,
acting at site n = 0, where | i is the state

| i = |Rabi[01]|R
0
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0
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0
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0 = �a, (iii) the wave function is summed over a with
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of terms of the following form with the appropriate weights:
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where
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is shorthand for a sum over all four ms and the phase is from are the product of Clebsch Gordan coe�cients required

to make all the singlets. This says that for a cuto↵ J on the j values, while the Hilbert space has dimension
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Putting these results together I find (numerically...need to do analytically)
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subspace with cutoff J: Dinv = 2J + 1

Same j on all links; all m’s summed
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The SU(2) glue ball spectrum can be calculated quickly (Mathematica) for  
this simple system (because gauge invariance can be imposed analytically):

mass

cutoff on j

For low cutoff, can this be simulated on an existing quantum 
computer?  Stay tuned.

2 4 6 8 10
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D = 101
4

Dinv = 21

J = 10
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Major challenges faced in order to do a QCD simulation omg a quantum 
computer:

Engineering:   

Need lots of good qubits, fast gate operations 

Qubits will be noisy: need error correction  
(~1000 physical qubits for 1 logical qubit?) 

Physics:   

̣Need a good way to input initial state with overlap with ground state! 

      …. and lots of other theoretical and algorithmic advances.
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Quantum Adiabatic Algorithm:

H(s) = (1� s)H0 + sH1 0  s  1

Edward Farhi, Je"rey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

Quantum Adiabatic Algorithm:

H(s) = (1� s)H0 + sH1 0  s  1

simple  Hamiltonian

Edward Farhi, Je"rey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

Quantum Adiabatic Algorithm:

H(s) = (1� s)H0 + sH1 0  s  1

simple  Hamiltonian interesting Hamiltonian

Edward Farhi, Je"rey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106



D. B. Kaplan ~ Beijing “Frontiers in LQCD” ~ 28/6/19

Quantum Adiabatic Algorithm:

H(s) = (1� s)H0 + sH1 0  s  1

simple  Hamiltonian interesting Hamiltonian

• Initialize qubits for known 
ground state of H0 

• Evolve according to H(s), 
varying s slowly from 0 to 1 

• Adiabatic theorem: ground 
state of H0 will evolve into 
ground state of H1 

• Measure desired matrix 
elements

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser 13
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Figure 6: The eight levels of H̃(s) for the 3-bit problem with HP and HB given by (3.5).

Since G |x = 0⟩ = |x = 0⟩ and
[
G, H̃(s)

]
= 0, we can restrict our attention to states that are invariant

under G such as (4.4).
We now write (4.5) in the invariant sector as a sum of n/2 commuting 2× 2 Hamiltonians that we

can diagonalize. First we make a standard transformation to fermion operators. To this end we define
for j = 1, . . . , n,

bj = σ(1)
x σ(2)

x · · ·σ(j−1)
x σ(j)

− 1(j+1) · · · 1(n)

b†j = σ(1)
x σ(2)

x · · ·σ(j−1)
x σ(j)

+ 1(j+1) · · · 1(n) (4.7)

where

σ− = 1
2

(
1 −1
1 −1

)
and σ+ = 1

2

(
1 1
−1 −1

)
.

It is straightforward to verify that

{bj, bk} = 0

{bj, b
†
k} = δjk (4.8)

where {A, B} = AB + BA. Furthermore

b†jbj = 1
2 (1 − σ(j)

x ) (4.9)

for j = 1, . . . , n and

(b†j − bj)(b
†
j+1 + bj+1) = σ(j)

z σ(j+1)
z (4.10)

for j = 1, . . . , n−1. We need a bit more care to make sense of (4.10) for j = n. An explicit calculation
shows that

(b†n − bn)(b†1 + b1) = −Gσ(n)
z σ(1)

z (4.11)

adiabatic evolution

Edward Farhi, Je"rey Goldstone, Sam Gutmann, Michael arXiv:quant-ph/0001106
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Drawback of the Quantum Adiabatic Algorithm:
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Figure 6: The eight levels of H̃(s) for the 3-bit problem with HP and HB given by (3.5).

Since G |x = 0⟩ = |x = 0⟩ and
[
G, H̃(s)

]
= 0, we can restrict our attention to states that are invariant

under G such as (4.4).
We now write (4.5) in the invariant sector as a sum of n/2 commuting 2× 2 Hamiltonians that we

can diagonalize. First we make a standard transformation to fermion operators. To this end we define
for j = 1, . . . , n,

bj = σ(1)
x σ(2)

x · · ·σ(j−1)
x σ(j)

− 1(j+1) · · · 1(n)

b†j = σ(1)
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x · · ·σ(j−1)
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+ 1(j+1) · · · 1(n) (4.7)

where

σ− = 1
2

(
1 −1
1 −1

)
and σ+ = 1
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(
1 1
−1 −1

)
.

It is straightforward to verify that

{bj, bk} = 0

{bj, b
†
k} = δjk (4.8)

where {A, B} = AB + BA. Furthermore

b†jbj = 1
2 (1 − σ(j)

x ) (4.9)

for j = 1, . . . , n and

(b†j − bj)(b
†
j+1 + bj+1) = σ(j)

z σ(j+1)
z (4.10)

for j = 1, . . . , n−1. We need a bit more care to make sense of (4.10) for j = n. An explicit calculation
shows that

(b†n − bn)(b†1 + b1) = −Gσ(n)
z σ(1)

z (4.11)

∆E

Adiabatic theorem requires  
evolution time scales as 

t ⇠ 1

�E2

Exponentially slow if there exists exponentially small gap 
(e.g. in 1st order phase transition)

Maybe OK to start with strong coupling vacuum of LQCD and 
evolve to weak?
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Another possible algorithm: “Spectral Combing”
DBK, N Klco, A Roggerro, E-print 1709.08250 (quant-ph)

H
Hheat bath

Initialize |ψ>|cold>

Evolves unitarily to entangled state ~  |ψ0>|warm>

Simulate a “heat bath”?
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Or, to reduce number of qubits:

Spectral combing: 

H Hs(ω(t))

Couple “target’ hamiltonian to a spin system with characteristic energy ω(t) 
which decreases with time.
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Does it work?

n=0
n=1
n=2
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n=4
n=5
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Here: target Hamiltonian is N=3 1d Ising model, Ns=3 spins in the comb, 
random initial state
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Conclusions:

Sign problems are severe in interesting theories, and are rooted in 
the dynamics of the theory, probably not fixable for QCD by new 
algorithms for classical computers 

There are LOTS of hardware obstacles to overcome… 
…but if quantum computing becomes a reality, we may be able to solve 
these outstanding problems ► with the potential to revolutionize physics 
and technology
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Conclusions:

Sign problems are severe in interesting theories, and are rooted in 
the dynamics of the theory, probably not fixable for QCD by new 
algorithms for classical computers 

There are LOTS of hardware obstacles to overcome… 
…but if quantum computing becomes a reality, we may be able to solve 
these outstanding problems ► with the potential to revolutionize physics 
and technology

In the meantime, lots of fun things for field theorists to think about…

Quantum computers have the potential for transforming the simulation 
of quantum systems from exponentially hard, to polynomially hard


