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Chapter 1

Quantum theory of the Yang–Mills theory

1.1 Notations

Spacetime signature is (+,+,+,+) (euclidean) and gamma matrices satisfying

{γµ, γν} = 2δµν (1.1)

are all hermitian.

We normalize the gauge group generator as

tr(T aT b) = −1

2
δab. (1.2)

The structure constant are defined by
[T a, T b] = fabcT c, (1.3)

and quadratic Casimirs are

facdf bcd = CAδ
ab, trR(T

aT b) = −Tδab, T aT a = −CF1.

We also use the following abbreviation for the momentum integral:∫
p

≡
∫

dDp

(2π)D
, (1.4)

where we set the spacetime dimensionD having use of the dimensional regularization, in whichD = 4−2ϵ,

in mind.

Dimensional regularization

A basic formula in the dimensional regularization is∫
ℓ

1

(ℓ2 +M2)α
=

Γ (α−D/2)

(4π)D/2Γ (α)
M2(D/2−α). (1.5)

In particular (setting D = 4− 2ϵ),∫
ℓ

1

(ℓ2 +M2)2
=

1

(4π)2
Γ (2−D/2)

(
M2

4π

)(D/2−2)

=
1

(4π)2

[
1

ϵ
− γE − ln

(
M2

4π

)]
, (1.6)
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and ∫
ℓ

1

ℓ2 +M2
=

Γ (1−D/2)

(4π)D/2
MD−2 M→0→ 0, (1.7)

and ∫
ℓ

1 =
Γ (−D/2)

(4π)D/2
MD M→0→ 0. (1.8)

Note that the last quantity is nothing but δ(0).

1.2 Functional integral and the Faddeev–Popov ghost

1.2.1 Quantization of the scalar field

For a real scalar field φ(x), the functional integral

Z ≡
∫

Dφe−S , S =

∫
dDx

[
1

2
∂µφ∂µφ+ V (φ)

]
, (1.9)

defines the quantum theory. The perturbation theory is simply developed by expanding the potential

around a (constant) stationary point φ0 such that V ′(φ0) = 0 as

Z =

∫
Dφe−S0−Sint , (1.10)

where (under φ(x) → φ(x) + φ0),

S0 =

∫
dDx

(
1

2
∂µφ∂µφ+

1

2
m2

0φ
2

)
, m2

0 ≡ V ′′(φ0), (1.11)

Sint =

∫
dDx

∞∑
n=3

1

n!
V (n)(φ0)φ

n. (1.12)

Now, take ∫
Dφe−S0φ(y) (1.13)

and consider the infinitesimal shift of the integration variable, φ → φ+ δφ. The integral itself does not

change under this and, if the integration measure is invariant under the shift, we have the identity (a

Schwinger–Dyson equation)⟨
(−1)

∫
dDx δφ(x)

(
−∂µ∂µ +m2

0

)
φ(x)φ(y) + δφ(y)

⟩
0

= 0, (1.14)

where

⟨O⟩0 ≡
∫
Dφe−S0O∫
Dφe−S0

. (1.15)

Taking the derivative w.r.t. δφ(x), that implies

(−1)
(
−∂µ∂µ +m2

0

)
⟨φ(x)φ(y)⟩0 + δ(x− y) = 0. (1.16)

This gives the free propagator :

⟨φ(x)φ(y)⟩0 =
1

−∂µ∂µ +m2
0

δ(x− y) =

∫
p

eip(x−y)

p2 +m2
0

. (1.17)
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Presumably, this is the quickest way to obtain the free propagator without mistake. Then the correlation

functions of φ can be perturbatively computed by expanding e−Sint w.r.t. φ and contracting φ’s by the

free propagator.

We will later use the notion of the effective action, the generating functional of the one particle

irreducible (1PI) correlation functions. To define this, we first introduce the generating functional of the

connected correlation functions W [J ]:

e−W [J] ≡
∫

Dφe−S+J·φ, J · φ ≡
∫

dDxJ(x)φ(x). (1.18)

The expectation value of φ in the presence of J is given by

ϕ(x) ≡ ⟨φ(x)⟩ = − δ

δJ(x)
W [J ]. (1.19)

The effective action Γ [ϕ] is defined by the Legendre transformation of W [J ], that is

Γ [ϕ] ≡ W [J ] + J · ϕ. (1.20)

As usual for the Legendre transformation, we have a relation dual to the above:

J(x) =
δ

δϕ(x)
Γ [ϕ]. (1.21)

1.2.2 Quantization of the Yang–Mills field

The action of the Yang–Mills theory is

S =
1

4g20

∫
dDxF a

µνF
a
µν . (1.22)

where
Fµν(x) ≡ ∂µA

a
ν(x)− ∂νA

a
µ(x) + fabcAb

µ(x)A
c
ν(x), (1.23)

is called the field strength. This is a gauge theory, i.e., the action is invariant under the following gauge

transformation,
δAa

µ(x) = ∂µω
a(x) + fabcAb

µ(x)ω
c(x) ≡ Dµω

a(x). (1.24)

This describes, for example, the system of the gluon, and thus is very important.

The gauge invariance, however, prevents a simple perturbation theory. The would-be “free propagator”

⟨
Aa

µ(x)A
b
ν(y)

⟩
0

?
=

∫
DAe−S0Aa

µ(x)A
b
ν(y)∫

DAe−S0
, (1.25)

where

S0 ≡ 1

4g20

∫
dDx

(
∂µA

a
ν − ∂νA

a
µ

)2
. (1.26)

But if this free propagator is well-defined, we have

∂µω
a(x)

⟨
Ab

ν(y)
⟩
0︸ ︷︷ ︸

=0

+∂νω
b(y)

⟨
Aa

µ(x)
⟩
0︸ ︷︷ ︸

=0

+∂µω
a(x)∂µω

b(y) = 0, (1.27)
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that is, ∂µω
a(x)∂µω

a(x) = 0, a contradiction. Therefore, that expression must be ill-defined. To develop

the perturbation theory, we have to break the gauge invariance by adding the (Lorentz) gauge fixing

term,

Sgf =
λ0

2g20

∫
dDx

(
∂µA

a
µ

)2
(1.28)

and the ghost–anti-ghost term Scc̄ associated to this (the Faddeev–Popov prescription).

It is known that required terms can be summarized as

Sgf + Scc̄ = δ
1

g20

∫
dDx c̄a

(
∂µA

a
µ − 1

2λ0
Ba

)
(1.29)

=
1

g20

∫
dDx

(
Ba∂µA

a
µ − 1

2λ0
BaBa +

1

2λ0
c̄a∂µDµc

a

)
, (1.30)

where δ denotes the nilpotent BRS transformation,

δAa
µ(x) = Dµc

a(x), δca(x) = −1

2
fabccb(x)cc(x), (1.31)

δc̄a(x) = Ba(x), δBa(x) = 0. (1.32)

If we eliminates the Nakanishi-Lautrup auxiliary field by the equation of motion,

Ba = λ0∂µA
a
µ, (1.33)

we have the above gauge fixing term. The actions are BRS invariant:

δS = 0, δ(Sgf + Scc̄) = 0. (1.34)

This shows that any correlation functions of gauge invariant operators are independent of the gauge

fixing parameter λ0:

∂

∂λ0
⟨O⟩ = − 1

2λ2
0g

2
0

∫
dDx ⟨δ [c̄a(x)Ba(x)]O⟩

= − 1

2λ2
0g

2
0

∫
dDx ⟨c̄a(x)Ba(x)δO⟩ ∵ ⟨δ(anything)⟩ = 0

= 0 ∵ O is gauge (i.e., BRS) invariant. (1.35)

This shows that the gauge fixing term has no effect on physical quantities.

1.3 Feynman rules and the 1-loop calculation

1.3.1 Free propagators and the interaction vertices

The action is

S + Sgf =
1

4g20

∫
dDxF a

µνF
a
µν +

λ0

2g20

∫
dDx (∂µA

a
µ)

2

≡ Sfree + Sint, (1.36)

where

Sfree =
1

g20

∫
dDx

1

2
Aa

µδ
ab(−1)[δµν∂ρ∂ρ + (λ0 − 1)∂µ∂ν ]A

b
ν , (1.37)
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and

Sint =
1

g20

∫
dDx

(
fabc∂µA

a
νA

b
µA

c
ν +

1

4
fabcfadeAb

µA
c
νA

d
µA

e
ν

)
. (1.38)

The free propagator: Taking the functional integral∫
DAµ e

−SfreeAb
ν(y), (1.39)

and consider the variation of integration variable, Aa
µ → Aa

µ + δAa
µ. This gives the Schwinger–Dyson

equation,

− 1

g20
δca(−1) [δρµ∂σ∂σ + (λ0 − 1)∂ρ∂µ] ⟨Aa

µ(x)A
b
ν(y)⟩0 + δcbδρνδ(x− y) = 0. (1.40)

The solution is

⟨Aa
µ(x)A

b
ν(y)⟩0 = g20δ

ab

∫
p

eip(x−y)

(p2)2

[
(δµνp

2 − pµpν) +
1

λ0
pµpµ

]
. (1.41)

(Exercise: Verify this.)

The ghost action is

Scc̄ = − 1

g20

∫
dDx c̄a∂µDµc

a (1.42)

= − 1

g20

∫
dDx c̄a∂µ∂µc

a +
1

g20

∫
dDx fabc∂µc̄

aAb
µc

c, (1.43)

and the free propagator is given by

⟨
ca(x)c̄b(y)

⟩
0
= g20δ

ab

∫
p

eip(x−y)

p2
(1.44)

1.3.2 Computation of the divergent part in the 1-loop level

Throughout these lectures, we adopt the Feynman gauge λ0 = 1 for computational simplicity.

Ghost two-point function

Let us start with the simplest one: the ghost two-point function. The expansion of the exponential

factor gives rise to⟨
ca(x)c̄b(y)

1

2!

1

g40

∫
dDz

∫
dDw f cdeffgh∂µc̄

c(z)Ad
µ(z)c

e(z)∂ν c̄
f (w)Ag

ν(w)c
h(w)

⟩
0

. (1.45)

After the contraction by the free propagators,

g40f
adefedb

∫
dDz

∫
dDw

∫
k

eik(x−z)

k2

∫
k′

eik
′(w−y)

(k′)2

∫
p

eip(z−w)

p2

∫
q

eiq(z−w)

q2
(−ik) · (−iq). (1.46)

The integration over z and w imposes

k′ = −k, q ≡ ℓ, p = −ℓ+ k. (1.47)

Then,

g40CAδ
ab

∫
k

eik(x−y)

(k2)2

∫
ℓ

1

ℓ2(ℓ− k)2
k · ℓ. (1.48)
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To this, we apply Feynman’s parameter formula

1

ℓ2(ℓ− k)2
=

∫ 1

0

dx
1

[ℓ2(1− x) + (ℓ− k)2x]2

=

∫ 1

0

dx
1

[(ℓ′)2 + k2x(1− x)]2
, ℓ = ℓ′ + kx. (1.49)

Then (we set ℓ′ → ℓ),

g40CAδ
ab

∫
k

eik(x−y)

(k2)2

∫ 1

0

dx

∫
ℓ

1

[ℓ2 + k2x(1− x)]2
k · (ℓ+ kx). (1.50)

Since
1

[ℓ2 + k2x(1− x)]2
=

1

(ℓ2)2
+

1

(ℓ2)3
(−2)k2x(1− x) +O(ℓ−8), (1.51)

the divergent part is given by

g40CAδ
ab

∫
k

eik(x−y)

(k2)2

∫ 1

0

dx

∫
ℓ

1

(ℓ2)2
k2x. (1.52)

In the dimensional regularization, ∫
ℓ

1

(ℓ2)2
=

Γ (2−D/2)

(4π)D/2
∼ 1

(4π)2
1

ϵ
. (1.53)

That is, we find ⟨
ca(x)c̄b(y)

⟩
1-loop, divergent

= g20δ
ab

∫
p

eip(x−y)

(p2)2
g20

(4π)2
1

2
CA

1

ϵ
p2. (1.54)

Gauge field two-point function

Next we consider the two-point function of the gauge field; this is somewhat tough. For this, it is

convenient to represent the 3-point vertex in the momentum space:

[(Aa
µ, k), (A

b
ν , p), (A

c
ρ, q)] = − i

g20
fabc[δµν(k − p)ρ + δνρ(p− q)µ + δρµ(q − k)ν ]. (1.55)

In the first diagram, after making the contraction,

(−i)2g40f
acdf bdc

∫
dDz

∫
dDw

∫
k

eik(x−z)

k2

∫
k′

eik
′(y−w)

(k′)2

∫
p

eip(w−z)

p2

∫
q

eiq(w−z)

q2

× 1

2
[δµρ(k − p)σ + δρσ(p− q)µ + δσµ(q − k)ρ] [δνσ(k

′ + q)ρ + δσρ(−q + p)ν + δρν(−p− k′)σ] .

(1.56)

After the integration over z and w,

k′ = −k, q ≡ −ℓ, p = ℓ− k. (1.57)

Then,

1

2
g40CAδ

ab

∫
k

eik(x−y)

(k2)2

∫
ℓ

1

ℓ2(ℓ− k)2

× [δµρ(−ℓ+ 2k)σ + δρσ(2ℓ− k)µ + δσµ(−ℓ− k)ρ][δνσ(−ℓ− k)ρ + δσρ(2ℓ− k)ν + δρν(−ℓ+ 2k)σ].
(1.58)
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Then, after some calculation by using the Feynman’s parameter formula (we set ℓ′ → ℓ),

1

2
g40CAδ

ab

∫
k

eik(x−y)

(k2)2

∫ 1

0

dx

∫
ℓ

1

[ℓ2 + k2x(1− x)]2

×
{
2δµνℓ

2 + (4D − 6)ℓµℓν + (2x2 − 2x+ 5)δµνk
2 +

[
D(2x− 1)2 − 6(x2 − x+ 1)

]
kµkν

}
. (1.59)

We can set ℓµℓν → 1
D δµνℓ

2 and in the divergent part, D → 4. Then the divergent part is given by

g40CAδ
ab

∫
k

eik(x−y)

(k2)2

∫
ℓ

1

(ℓ2)2

(
19

12
δµνk

2 − 11

6
kµkν

)
. (1.60)

The divergent part of the first diagram is thus

g20δ
ab

∫
p

eip(x−y)

(p2)2
g20

(4π)2
1

ϵ
CA

(
19

12
δµνp

2 − 11

6
pµpν

)
. (1.61)

The second diagram including the ghost loop reads⟨
Aa

µ(x)A
b
ν(y)

1

2!

1

g40

∫
dDz

∫
dDw f cdeffgh∂ρc̄

c(z)Ad
ρ(z)c

e(z)∂σ c̄
f (w)Ag

σ(w)c
h(w)

⟩
0

. (1.62)

After the contraction,

(−1)g40f
caefebc

∫
dDz

∫
dDw

∫
k

eik(x−z)

k2

∫
k′

eik
′(y−w)

(k′)2

∫
p

eip(w−z)

p2

∫
q

eiq(z−w)

q2
(−ip)µ(−iq)ν . (1.63)

After the integration over z and w,

k′ = −k, p ≡ ℓ, q = ℓ+ k. (1.64)

Repeating a similar procedure as above,

−g40CAδ
ab

∫
k

eik(x−y)

(k2)2

∫ 1

0

dx

∫
ℓ

1

[ℓ2 + k2x(1− x)]2
[ ℓµℓν︸︷︷︸

1
D δµνℓ2

−x(1− x)kµkν ]. (1.65)

Then the divergent part of the second diagram is given by

g40CAδ
ab

∫
k

eik(x−y)

(k2)2

∫
ℓ

1

(ℓ2)2

(
1

12
δµνk

2 +
1

6
kµkν

)
= g20δ

ab

∫
p

eip(x−y)

(p2)2
g20

(4π)2
1

ϵ
CA

(
1

12
δµνp

2 +
1

6
pµpν

)
. (1.66)

Finally, the third diagram vanishes under the dimensional regularization with which∫
ℓ

1

ℓ2
= 0, (1.67)

and thus the sum of divergent parts of the three diagrams is

⟨
Aa

µ(x)A
b
ν(y)

⟩
1-loop, divergent

= g20δ
ab

∫
p

eip(x−y)

(p2)2
g20

(4π)2
1

ϵ

5

3
CA

(
δµνp

2 − pµpν
)
. (1.68)
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ghost-anti-ghost-gauge three-point function

In the tree level,⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
tree

= g40f
abc

∫
p,q

eip(x−z)eiq(y−z) 1

p2
1

(p+ q)2
1

(q2)2

[
(δµνq

2 − qµqν) +
1

λ0
qµqν

]
ipν . (1.69)

In the one-loop level, the first 1PI diagram containing AAA vertex, yields after some calculation,⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
one-loop, divergent

= g40f
abc

∫
k,q

eip(x−z)eiq(y−z) 1

p2
1

(p+ q)2
1

q2

[
g20

(4π)2
1

ϵ

3

8
CA

]
ipµ. (1.70)

To obtain this, we have to use the identity

faXbf bY cf cZa = −1

2
fXY ZCA. (1.71)

The second 1PI diagram containing three c̄Ac vertices yields⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
one-loop, divergent

= g40f
abc

∫
k,q

eip(x−z)eiq(y−z) 1

p2
1

(p+ q)2
1

q2

[
g20

(4π)2
1

ϵ

1

8
CA

]
ipµ. (1.72)

We also have three one-particle reducible diagrams. From the results for two-point functions, we have⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
1PR, one-loop, divergent

= g40f
abc

∫
p,q

eip(x−z)eiq(y−z) 1

p2
1

(p+ q)2
1

(q2)2
g20

(4π)2
1

ϵ
CA

[(
5

3
+ 2 · 1

2

)
δµνq

2 − 5

3
qµqν

]
ipν . (1.73)

In total,⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
one-loop, divergent

= g40f
abc

∫
p,q

eip(x−z)eiq(y−z) 1

p2
1

(p+ q)2
1

(q2)2
g20

(4π)2
1

ϵ
CA

(
19

6
δµνq

2 − 5

3
qµqν

)
ipν , (1.74)

in the Feynman gauge λ0 = 1.

1.4 Renormalization

1.4.1 Renormalization constants

Later, we will prove that all UV divergences appearing in correlation functions of elementary fields can

be absorbed into the following 3 constants, Z, Z3, and Z̃3,

g20 = µ2εg2Z,

λ0 = λZ−1
3 ,

Aa
µ = Z1/2Z

1/2
3 (AR)

a
µ,

ca = Z̃3Z
1/2Z

1/2
3 caR,

c̄a = Z1/2Z
−1/2
3 c̄aR, (1.75)
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order by order in perturbation theory, as

Z = 1 + Z(1) + Z(2) + · · · , (1.76)

etc.

1.4.2 One-loop determination of renormalization constants

To the one-loop level,⟨
(AR)

a
µ(x)(AR)

b
ν(y)

⟩
= Z−1Z−1

3

[⟨
Aa

µ(x)A
b
ν(y)

⟩
tree

+
⟨
Aa

µ(x)A
b
ν(y)

⟩
one-loop

]
= µ2ϵg2δab

∫
p

eip(x−y)

(p2)2

[
Z−1
3 (δµνp

2 − pµpν) +
1

λ
pµpν

]
+
⟨
Aa

µ(x)A
b
ν(y)

⟩
one-loop

. (1.77)

Thus, by choosing

Z
(1)
3 =

g2

(4π)2
1

ϵ

5

3
CA, (1.78)

the one-loop UV divergence in ⟨Aa
µ(x)A

b
ν(y)⟩ is removed. Note that in the one-loop contribution we can

regard g0 = g.

Similarly, ⟨
caR(x)c̄

b
R(y)

⟩
= Z̃−1

3 Z−1
[⟨
ca(x)c̄b(y)

⟩
tree

+
⟨
ca(x)c̄b(y)

⟩
one-loop

]
= µ2ϵg2δab

∫
p

eip(x−y)

p2
Z̃−1
3 +

⟨
ca(x)c̄b(y)

⟩
one-loop

. (1.79)

Thus,

Z̃
(1)
3 =

g2

(4π)2
1

ϵ

1

2
CA, (1.80)

removes the divergence.

The last constant Z can be deduced from⟨
caR(x)(AR)

b
µ(y)c̄

c
R(z)

⟩
= Z̃−1

3 Z−3/2Z
−1/2
3

[⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
tree

+
⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
one-loop

]
= µ4ϵg4fabc

∫
p,q

eip(x−z)eiq(y−z)

× 1

p2
1

(p+ q)2
1

(q2)2

[
Z̃−1
3 Z1/2Z

−1/2
3 (δµνq

2 − qµqν) + Z̃−1
3 Z1/2Z

1/2
3

1

λ
qµqν

]
ipν

+
⟨
ca(x)Ab

µ(y)c̄
c(z)

⟩
one-loop

. (1.81)

The cancellation of the divergences requires

Z̃
(1)
3 − 1

2
Z(1) +

1

2
Z

(1)
3 =

g2

(4π)2
1

ϵ

19

6
CA, (1.82)

−
(
Z̃

(1)
3 − 1

2
Z(1) +

1

2
Z

(1)
3

)
+ Z̃

(1)
3 − 1

2
Z(1) − 1

2
Z

(1)
3 =

g2

(4π)2
1

ϵ

(
−5

3

)
CA. (1.83)
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These yield again Z
(1)
3 = g2

(4π)2
1
ϵ
5
3CA and

Z(1) =
g2

(4π)2
1

ϵ

(
−11

3

)
CA. (1.84)

The minus sign in this expression shows the famous asymptotic freedom.

Thus we have examined the renormalizability of the Yang–Mills theory and determined the renormal-

ization constants to the one-loop level.

Let us summarize the one-loop renormalization in the Feynman gauge:

g20 = µ2εg2
[
1 +

g2

(4π)2
1

ϵ

(
−11

3

)
CA

]
,

λ0 = λ

[
1 +

g2

(4π)2
1

ϵ

(
−5

3

)
CA

]
,

Aa
µ =

[
1 +

g2

(4π)2
1

ϵ
(−1)CA

]
(AR)

a
µ,

ca =

[
1 +

g2

(4π)2
1

ϵ

(
−1

2

)
CA

]
caR,

c̄a =

[
1 +

g2

(4π)2
1

ϵ

(
−8

3

)
CA

]
c̄aR. (1.85)

The renormalization always has the ambiguity that one may subtract any finite quantity in addition

to the above; this freedom in the renormalization prescription is called the renormalization scheme.

The above prescription is termed the minimal subtraction (MS) scheme. In phenomenology, it is quite

common to adopt the modified minimal subtraction (MS) scheme instead that is simply the MS scheme

with the change of the renormalization scale µ:

µ2 → 4πe−γEµ2. (1.86)
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Chapter 2

Gradient flow

2.1 Yang–Mills gradient flow

The Yang–Mills gradient flow is the evolution of the gauge field Aa
µ(x) along a fictitious time t ∈ [0,∞),

according to

∂tB
a
µ(t, x) = −g20

δS

δBa
µ(t, x)

= DνG
a
νµ(t, x) = ∆Ba

µ(t, x) + · · · , (2.1)

where

Ga
µν(t, x) = ∂µB

a
ν (t, x)− ∂νB

a
µ(t, x) + fabcBb

µ(t, x)B
c
ν(t, x), (2.2)

DνG
a
νµ(t, x) = ∂νG

a
νµ(t, x) + fabcBb

ν(t, x)G
c
νµ(t, x). (2.3)

The initial value is thus the conventional gauge field

Ba
µ(t = 0, x) = Aa

µ(x). (2.4)

The RHS of the flow equation is the Yang–Mills equation of motion, the gradient in functional space if

S is regarded as a potential function. So the name of the gradient flow. The flow equation is a sort of

diffusion equation in which the diffusion length is

x ∼
√
8t. (2.5)

Thus the flow makes field configurations smooth.

2.2 Perturbative expansion of the gradient flow

The flow equation reads

∂tB
a
µ(t, x) = DνG

a
νµ(t, x) + α0Dµ∂νB

a
ν (t, x), Ba

µ(t = 0, x) = Aa
µ(x), (2.6)

where the term with α0 is introduced to suppress gauge modes.

2.2.1 Justification of the “gauge fixing term”

Under the infinitesimal gauge transformation,x

Bµ(t, x) → Bµ(t, x) +Dµω(t, x), (2.7)

12



the flow equation
∂tBµ(t, x) = DνGνµ(t, x) + α0Dµ∂νBν(t, x), (2.8)

changes to
∂tBµ(t, x) = DνGνµ(t, x) + α0Dµ∂νBν(t, x)−Dµ(∂t − α0Dν∂ν)ω(t, x). (2.9)

Choosing ω(t, x) as

(∂t − α0Dν∂ν)ω(t, x) = −δα0∂νBν(t, x), ω(t = 0, x) = 0, (2.10)

α0 can be changed accordingly
α0 → α0 + δα0. (2.11)

Thus, a gauge invariant quantity (in usual 4D sense is independent of α0, as far as it does not contain

the flow time derivative ∂t.

The flow equation can be formally solved as

Ba
µ(t, x) =

∫
dDy

[
Kt(x− y)µνA

a
ν(y) +

∫ t

0

dsKt−s(x− y)µνR
a
ν(s, y)

]
, (2.12)

by using the heat kernel,

Kt(x)µν =

∫
p

eipx

p2

[
(δµνp

2 − pµpν)e
−tp2

+ pµpνe
−α0tp

2
]
. (2.13)

R represents the non-linear terms in the flow equation,

Ra
µ = fabc

[
2Bb

ν∂νB
c
µ −Bb

ν∂µB
c
ν + (α0 − 1)Bb

µ∂νB
c
ν

]
+ fabcf cdeBb

νB
d
νB

e
µ. (2.14)

The solution is represented diagrammatically as (double lines: K, crosses: Aµ, white circles: R),

+ + + + . . .

Fig. 2.1

So far, we have discussed the classical theory. Quantum correlation functions of the flowed gauge field

are obtained by the functional integral over the initial value Aµ(x):

⟨Bµ1
(t1, x1) · · ·Bµn

(tn, xn)⟩ =
1

Z

∫
DAµ Bµ1

(t1, x1) · · ·Bµn
(tn, xn) e

−S−Sgf−Scc̄ . (2.15)

For example, the contraction of two Aµ’s

≡

13



yields the free propagator of the flowed field, as

⟨
Ba

µ(t, x)B
b
ν(s, y)

⟩
0
=

∫
dDz

∫
p

eip(x−z)

p2

[
(δµρp

2 − pµpρ)e
−tp2

+ pµpρe
−α0tp

2
]

×
∫

dDw

∫
q

eiq(y−w)

q2

[
(δνσq

2 − qνqσ)e
−sq2 + qνqσe

−α0sq
2
]

× g20δ
ab

∫
k

eik(z−w)

(k2)2

[
(δρσk

2 − kρkσ) +
1

λ0
kρkσ

]
. (2.16)

After the integration over z and w, p = −q = k and we have

⟨
Ba

µ(t, x)B
b
ν(s, y)

⟩
0
= g20δ

ab

∫
p

eip(x−y)

(p2)2

[
(δµνp

2 − pµpν)e
−(t+s)p2

+
1

λ0
pµpνe

−α0(t+s)p2

]
. (2.17)

Note that this free propagator contains Gaussian damping factors.

Similarly, for (black circle: Yang–Mills vertex)

Fig. 2.2

we have the loop flow-line Feynman diagram

Fig. 2.3

Recall that the flowed gauge field is represented as

+ + + + . . .

Fig. 2.4

This expansion can be regarded as the loop expansion, because

Ba
µ(t, x) =

∫
dDy

Kt(x− y)µνA
a
ν(y) +

∫ t

0

ds g20Kt−s(x− y)µν︸ ︷︷ ︸
internal line

1

g20
Ra

ν(s, y)︸ ︷︷ ︸
flow vertex

 , (2.18)
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and ⟨
Ba

µ(t, x)B
b
ν(s, y)

⟩
0
= g20δ

ab

∫
p

eip(x−y)

(p2)2

[
(δµνp

2 − pµpν)e
−(t+s)p2

+
1

λ0
pµpνe

−α0(t+s)p2

]
. (2.19)

2.2.2 Two-point function of flowed gauge field

Now, let us study the two-point function of the flowed gauge field⟨
Ba

µ(t, x)B
b
ν(s, y)

⟩
(2.20)

to the one-loop. We assume that t, s > 0.

In the tree level, as we have observed,

⟨
Ba

µ(t, x)B
b
ν(s, y)

⟩
tree

= g20δ
ab

∫
p

eip(x−y)

(p2)2

[
(δµνp

2 − pµpν)e
−(t+s)p2

+
1

λ0
pµpνe

−α0(t+s)p2

]
. (2.21)

One-loop diagrams that consist only of Yang–Mills vertices are

Fig. 2.5

where the last counter term arises from the parameter renormalization,

g20 = µ2εg2
[
1 +

g2

(4π)2
1

ϵ

(
−11

3

)
CA

]
,

λ0 = λ

[
1 +

g2

(4π)2
1

ϵ

(
−5

3

)
CA

]
, (2.22)

are obtained by our previous calculation in the Yang–Mills theory simply putting the Gaussian factors

to the external lines. In what follows, we set (the “Feynman gauge”)

λ0 = α0 = 1. (2.23)

We have (we used the fact that α0 does not receive the renormalization)⟨
Ba

µ(t, x)B
b
ν(t, y)

⟩
1-loop, divergent+parameter ren.

= µ2ϵg2δab
∫
p

eip(x−y)

(p2)2
e−(t+s)p2 g2

(4π)2
1

ϵ
(−2)CAδµνp

2. (2.24)

If we also included the wave function renormalization, this remaining divergence would be absent.

In the present flowed system, however, we also have diagrams containing the white circles (flow vertex)

Fig. 2.6
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Let us start with the last diagram. It reads∫
dDz

∫ t

0

du

∫
p

eip(x−z)e−(t−u)p2

facdfdef
⟨
Bc

ρ(u, z)B
e
ρ(u, z)B

f
µ(u, z)B

b
ν(s, y)

⟩
0
. (2.25)

After the contraction,

g40

∫
dDz

∫ t

0

du

∫
p

eip(x−z)e−(t−u)p2

∫
q

eiq(y−z)

q2
e−(s+u)q2

∫
ℓ

1

ℓ2
e−2uℓ2(facdfdcbD + facdfdbc)δµν . (2.26)

After the integration over z, q = −p and

g40δ
ab

∫
p

eip(x−z)

p2
e−(t+s)p2

∫ t

0

du

∫
ℓ

1

ℓ2
e−2uℓ2(−D + 1)CAδµν . (2.27)

Now, in the dimensional regularization,∫
ℓ

1

ℓ2
e−2uℓ2 =

1

(4π)D/2

1

D/2− 1
(2u)−D/2+1, (2.28)

and (recall
∫
ℓ

1
ℓ2 = 0!) note that∫ t

0

duu−D/2+1 =
1

−D/2 + 2
t−D/2+2 ∼ 1

ϵ
+ ln t. (2.29)

Thus, the flow time integral can produce the pole singularity 1/ϵ. As the result,

(4th diagram)|div. = g20δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2 g20

(4π)2

[
1

ϵ
+

1

2
ln(4πt) +

1

2
ln(4πs)

]
(−3)CAδµν , (2.30)

where we have added the contribution of the diagram obtained by the exchange, (t, x, a) ↔ (s, y, b).

The above example illiterates the general situation: For a fixed generic value of the flow times, all the

loop integral are absolutely convergent because of the Gaussian damping factors. When the flow time

are integrated, however, the Gaussian factors can becomes unity depending on the value of the flow times

and the integrals generally exhibit UV divergences.

The second diagram yields, after now-familiar manipulations,

g40δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2

∫ t

0

du

∫
ℓ

1

ℓ2(ℓ− p)2
e−2uℓ2e2uℓ·p

× CA [2(D − 2)ℓµℓν − (D − 3)ℓµpν − 4pµℓν + 2δµνℓ · (ℓ+ p)] . (2.31)

It turns out that we can set p = 0 and D = 4 to find the divergent part. Hence,

g40δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2

∫ t

0

du

∫
ℓ

1

(ℓ2)2
e−2uℓ2CA

(
4ℓµℓν + 2δµνℓ

2
)

= g40δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2

∫ t

0

du

∫
ℓ

1

ℓ2
e−2uℓ23CAδµν , (2.32)

and

(2nd diagram)|div. = g20δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2 g20

(4π)2

[
1

ϵ
+

1

2
ln(4πt) +

1

2
ln(4πs)

]
3CAδµν . (2.33)
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A similar but somewhat more tedious calculation shows

(3rd diagram)

= g40δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2

∫ t

0

du

∫ u

0

dv

∫
ℓ

1

ℓ2
e−2uℓ2e−(u−v)2ℓ·p

× CA

{
2
(
ℓ2δµν − 2ℓµℓν + 2pµℓν − ℓ · pδµν

)
+ (2ℓµ + pµ) [(2D − 1)ℓν − pν ]

+ 2 [ℓµ(ℓ+ p)ν − 2(ℓ+ p)µℓν + 2p · (ℓ+ p)δµν − pµ(ℓ+ p)ν ]
}
. (2.34)

In the most singular term, we can neglect the external momentum and

(3rd diagram)|div. = g40δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2

∫ t

0

du

∫ u

0

dv

∫
ℓ

1

ℓ2
e−2uℓ2CA2(ℓ

2δµν + 4ℓµℓν). (2.35)

Hence,

(3rd diagram)|div. = g40δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2

∫ t

0

du

∫ u

0

dv

∫
ℓ

e−2uℓ24CAδµν . (2.36)

Since ∫
ℓ

e−2uℓ2 =
1

(4π)D/2
(2u)−D/2, (2.37)

∫ t

0

du

∫ u

0

dv

∫
ℓ

e−2uℓ2 ∼ 1

(4π)2
1

4

[
1

ϵ
+ ln(4πt)

]
, (2.38)

and, adding the contribution of the diagram with the exchange, (t, x, a) ↔ (s, y, b), we have

(3rd diagram)|div. = g20δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2 g20

(4π)2

[
1

ϵ
+

1

2
ln(4πt) +

1

2
ln(4πs)

]
2CAδµν . (2.39)

Finally, the first diagram is

1

2
g40CAδ

ab

∫
p

eip(x−y)e−(t+s)p2

∫ t

0

du

∫ s

0

dv

∫
ℓ

1

ℓ2(ℓ+ p)2
e−2(u+v)ℓ2e−(u+v)2ℓ·p

× [2δµρℓσ + 2δµσ(ℓ+ p)ρ + δρσ(2ℓ+ p)µ] [2δνρℓσ + 2δνσ(ℓ+ p)ρ + δρσ(2ℓ+ p)ν ] . (2.40)

The most singular part is

1

2
g40CAδ

ab

∫
p

eip(x−y)e−(t+s)p2

∫ t

0

du

∫ s

0

dv

∫
ℓ

1

(ℓ2)2
e−2(u+v)ℓ2

[
8δµνℓ

2 + (24 + 4D)ℓµℓν
]
. (2.41)

However, since ∫ t

0

du

∫ s

0

dv

∫
ℓ

1

ℓ2
e−2(u+v)ℓ2 D→4→ 1

(4π)2
1

2

[
t ln

(
1 +

s

t

)
+ s ln

(
1 +

t

s

)]
, (2.42)

this diagram is finite.

In total, the sum of flow line diagrams (for λ0 = α0 = 1) is

g20δ
ab

∫
p

eip(x−y)

p2
e−(t+s)p2 g20

(4π)2

[
1

ϵ
+

1

2
ln(4πt) +

1

2
ln(4πs)

]
2CAδµν . (2.43)
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This precisely cancels the divergence from the diagrams consisting only from the Yang–Mills vertices.

As the result, recalling g20 = µ2ϵg2 + · · · , to the one-loop,⟨
Ba

µ(t, x)B
b
ν(t, y)

⟩
= g2δab

∫
p

eip(x−y)

(p2)2
e−(t+s)p2

{
1 +

g2

(4π)2
CA

[
ln(4πµ2t) + ln(4πµ2s)

]}
δµνp

2 + (finite). (2.44)

This shows some remarkable facts: First, the two-point function of the flowed gauge field becomes

UV finite only after the renormalization of parameters, g0 and λ0. No wave function renormalization is

required. This is remarkable because the flowed field B is a certain (albeit very complicated) combination

of the bare gauge field A through the flow equation. The latter requires the wave function renormalization,

but the former does not. Second, after the parameter renormalization, the limit t = s → 0 can be

nontrivial as the above expression illustrates. It does not simply reduce to ⟨Aa
µ(x)A

b
ν(y)⟩ that is UV

diverging (unless the wave function renormalization). In a sense, the flow and the renormalization do

not commute. Since ⟨Aa
µ(x)A

b
ν(y)⟩ is UV diverging, it depends on the regularization adopted. On the

other hand, ⟨Ba
µ(t, x)B

b
ν(t, y)⟩ is UV finite and can have a universal meaning that is independent of the

regularization. This feature of the gradient flow is a key to obtain a universal representation of the

energy–momentum tensor by employing the gradient flow.

2.2.3 General cases

The general statement that we will prove later is that any correlation function of the flowed gauge field

⟨Bµ1
(t1, x1) · · ·Bµn

(tn, xn)⟩ , t1 > 0, . . . , tn > 0, (2.45)

when expressed in terms of renormalized parameters, is UV finite without the wave function renormal-

ization.

If this statement is true, we see that the correlation function is finite even if some spacetime points

collide, say x1 → x2.

Fig. 2.7

The new loop always contains the gaussian damping factor ∼ e−tp2

which makes integral finite; no

new UV divergences arise.

Any composite operators of the flowed gauge field Bµ(t, x) are automatically renormalized UV finite

quantities, although the flowed field is a certain combination of the bare gauge field. Such UV finite

quantities must be independent of the regularization.
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Chapter 3

Proof of the renormalizability of the gradient

flow
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Chapter 4

Energy–momentum tensor in gauge theory

4.1 One-loop coefficients by the background field method
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