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QED and Schwinger term 3 / 120

• To provide a systematic quantization for both electron and
electromagnetic field (photon), we need quantum field theory.
In this case, the theory is quantum electrodynamics - QED.

• Electron magnetic moment is one of its early successful applications.
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ū(p′)γνu(p)

g = 2

q = p′ − p, ν

p p′
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(Euclidean space time)

• The quantity a is called the anomalous magnetic moments.

• Its value comes from quantum correction.
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1-loop: a(1) = 0.5
(α
π

)
Schwinger 1948

q = p′ − p, ν
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2-loop: a(2) = −0.328478444 . . .
(α
π

)2
Petermann 1957, Sommerfield 1958

3-loop: a(3) = 1.181234017 . . .
(α
π

)3
Laporta and Remiddi 1996

4-loop: a(4) = −1.911321 . . .
(α
π

)4
Laporta 2017

5-loop: a(5) = 6.671(192)
(α
π

)5
Aoyama, Kinoshita, and Nio 2018
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• Finally, include weak and hadronic contribution, one obtain:

atheorye = 1159652181.606(11)QED(12)QCD(229)α × 10−12

• This can be compared with experimental result:

aexpe = 1159652180.72(28)× 10−12

• The difference is tiny (2.4σ):

aexpe − atheorye = (−0.88± 0.36)× 10−12

• QED is very successful in this example.

• However, does this 2.4σ difference indicate something?
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Accurate Determination of the y+ Magnetic Moment*
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Using a precession technique, the magnetic moment of the positive mu meson is determined to an accuracy
of 0.007% Muons are brought to rest in a bromoform target situated in a homogeneous magnetic Geld,
oriented at right angles to the initial muon spin direction. The precession of the spin about the Geld direction,
together with the asymmetric decay of the muon, produces a periodic time variation in the probability
distribution of electrons emitted in a Gxed laboratory direction. The period of this variation is compared
with that of a reference oscillator by means of phase measurements of the "beat note" between the two.
The magnetic Geld at which the precession and reference frequencies coincide is measured with reference to
a proton nuclear magnetic resonance magnetometer. The ratio of the muon precession frequency to that of
the proton in the same magnetic Geld is thus determined to be 3.1834+0.0002. Using a re-evaluated lower
limit to the muon mass, this is shown to yield a lower limit on the muon g factor of 2 (1.00122+0.00008), in
agreement with the predictions of quantum electrodynamics.

I. INTRODUCTION

ECKKT developments in the theory of weak
interactions' make it appear that many of the

properties of the mu meson can be accounted for on the
assumption that it enters into interactions in the same
way as the electron but has a much larger mass. The
electromagnetic properties of the muon, therefore,
acquire increased interest as a further test of the
identity of the interactions of the two particles.

Quantum electrodynamics' makes the prediction
that the magnetic moment of a spin —, Dirac particle is
1.00116' times that predicted by Dirac theory, eh/mc.
The anomalous magnetic moment of the electron does
indeed agree with this prediction. 4 Application of
similar calculations to the muon involves the extension
of electrodynamics into a more relativistic region than
required in the case of the electron. For instance,
existence of a finite cutoff to the theory would result in
a magnetic moment closer to the Dirac prediction. '

The present experiment is a measurement of the
magnetic moment of the mu meson. Comparison of the
result with theory depends on accurate knowledge of
the muon mass. In Sec. VI, the experimental determi-
nation of the lower limit to the muon mass is discussed,
and a corresponding lower limit to the g factor is
derived.

The existence of polarized muon beams and a means
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2

of detecting the direction of polarization via their
asymmetric decay' made possible the measurement of
the muon magnetic moment. In the original experiment
it was found necessary, to obtain agreement with the
asymmetry curve, to assume a value of the moment
close to the Dirac prediction. In this way the value was
determined to an accuracy of 1%The Liverpool group, '
using an analog time-to-height converter to record the
distribution in time of the emitted electrons, achieved
an accuracy of 0.7%%u~. A resonance technique, in which
the muons were stopped in a large static magnetic
field oriented parallel (or antiparallel) to the direction
of initial polarization, and were then re-oriented by an
rf oscillating Geld perpendicular to it, was employed at
this laboratory. ' The reversal in polarization was de-
tected by a change in the counting rate of electrons
emitted along the initial muon spin direction. The
result of that experiment for the ratio of the muon
moment to that of the proton is 3.1865~0.0022.

The 6nite lifetime of the muon introduces a width
into any frequency determination given by Acvdt=1,
Higher accuracy, therefore, necessitates going to higher
fields and higher frequencies. The resonance technique
sufII'ers from the dif6culty of producing rf fields of su%-
ciently high intensity. The precession method, making
more sophisticated use of the electron time distribution
was, therefore, employed. The Chicago group' formed
coincidences between the emitted electron and the
negative half of a 48.63 Mc/sec oscillator triggered
by the stopping muon. They report f„/f„=3.1838
~0.0008."

In the present case, a precession technique is again
employed. Muons brought to rest in a bromoform

R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev.
105, 1415 (1957).
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Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm
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The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm
(ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected
in 2001, and is over an order of magnitude more precise than the previous measurement for the nega-
tive muon. The result a�� � 11 659 214�8��3� � 10�10 (0.7 ppm), where the first uncertainty is sta-
tistical and the second is systematic, is consistent with previous measurements of the anomaly for
the positive and the negative muon. The average of the measurements of the muon anomaly is
a��exp� � 11 659 208�6� � 10�10 (0.5 ppm).

DOI: 10.1103/PhysRevLett.92.161802 PACS numbers: 13.40.Em, 12.15.Lk, 14.60.Ef

The anomalous magnetic moments of the muon and the
electron have played an important role in the develop-
ment of the standard model. Compared to the electron,
the muon anomaly has a relative sensitivity to heavier
mass scales which typically is proportional to �m�=me�

2.
At the present level of accuracy, the muon anomaly gives
an experimental sensitivity to virtual W and Z gauge
bosons as well as a potential sensitivity to other, as yet
unobserved, particles in the few hundred GeV=c2 mass
range [1].

We report our result for the negative muon anomalous
magnetic moment a�� � �g� 2�=2 from data collected
in early 2001. The measurement is based on muon spin
precession in a magnetic storage ring with electrostatic
focusing. The same experimental technique was used as
in our most recent measurements of a�� [2,3], and a
similar precision of 0.7 ppm was achieved. Detailed de-
scriptions of the apparatus may be found elsewhere [4–8].

For polarized muons moving in a uniform magnetic
field ~BB perpendicular to the muon spin and to the plane of

the orbit and in an electric quadrupole field ~EE, which is
used for vertical focusing [8], the angular frequency
difference, !a between the spin precession frequency
and the cyclotron frequency, is given by

~!! a �
e
mc

�
a� ~BB�

�
a� �

1

�2 � 1

�
~��� ~EE

�
: (1)

The dependence of !a on the electric field is eliminated
by storing muons with the ‘‘magic’’ � � 29:3 [9], which
corresponds to a muon momentum p � 3:09 GeV=c.
Hence, measurement of !a and of B, in terms of the
free proton NMR frequency !p and the ratio of muon
to proton magnetic moments �, determines a�. At the
magic �, the muon lifetime is approximately 64:4 �s
and the (g� 2) precession period is 4:37 �s. With a
field of 1.45 T in our storage ring [4], the central orbit
radius is 7.11 m.

The difference frequency !a was determined by count-
ing the number N�t� of decay electrons above an energy

P H Y S I C A L R E V I E W L E T T E R S week ending
23 APRIL 2004VOLUME 92, NUMBER 16
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Muon g − 2: BNL E821 10 / 120

aµ = 11659208.9(6.3)× 10−10

ae = 1159652180.72(28)× 10−12

sensitivity to new physics ratio =
m2µ
m2e

σae
σaµ
= 206.82 ×

1

2250
= 19



Muon g − 2: Fermilab E989 11 / 120
Standard Model 11659181.3± 4.0
BNL E821 Exp 11659208.9± 6.3
Diff (Exp − SM) 27.6± 7.5

3.7σ deviations
New Physics?
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Muon g − 2: Weak contribution 13 / 120

Leading weak contribution. a = 38.87; b = −19.39; c = 0.00 [in units 10−10]

Value ± Error Reference
QED incl. 5-loops 11658471.8853± 0.0036 Aoyama, et al, 2012
Weak incl. 2-loops 15.36± 0.10 Gnendiger et al, 2013

We will be using the unit 10−10 by default.



Muon g − 2: Hadronic contribution 14 / 120
q = p′ − p, ν

p p′

q = p′ − p, ν

p p′

HVP (LO)
Hadronic Vacuum Polarization

HLbL
Hadronic Light-by-Light

HVP (LO) 692.5± 2.7 RBC-UKQCD and FJ17 combined
693.26± 2.46 KNT18

HLbL 10.3± 2.9 Fred Jegerlehner, 2017
10.5± 2.6 Glasgow Consensus, 2007
7.41± 6.32stat ± 0.32sys,a2 RBC-UKQCD prelim (QEDL)
11.40± 1.27stat±???sys RBC-UKQCD prelim (QED∞ & LMD)
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HLbL models 4/50

q = p
′
− p, ν

p p
′

Various contributions to aµ
HLbL× 1010

PdRV09 JN09 FJ17
(Glasgow consensus)

π0, η , η ′ 11.4± 1.3 9.9± 1.6 9.5± 1.2

π , K loops −1.9± 1.9 −1.9± 1.3 −2.0± 0.5
axial-vector 1.5± 1.0 2.2± 0.5 0.8± 0.3

scalar −0.7± 0.7 −0.7± 0.2 −0.6± 0.1
quark loops 0.2 (charm) 2.1± 0.3 2.2± 0.4

tensor - - 0.1± 0.0
NLO - - 0.3± 0.2

Total 10.5± 4.9 11.6± 3.9 10.3± 2.9
10.5± 2.6 (quadrature)
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QED 5-loops 11658471.8853± 0.0036 Aoyama, et al, 2012
Weak 2-loops 15.36± 0.10 Gnendiger et al, 2013
HVP (LO) 692.5± 2.7 RBC-UKQCD and FJ17 combined

693.26± 2.46 KNT18
HVP (NLO) −9.93± 0.07 Fred Jegerlehner, 2017
HVP (NNLO) 1.22± 0.01 Fred Jegerlehner, 2017
HLbL 10.3± 2.9 Fred Jegerlehner, 2017

10.5± 2.6 Glasgow Consensus, 2007
7.41± 6.32stat ± 0.32sys,a2 RBC-UKQCD prelim (QEDL)
11.40± 1.27stat±???sys RBC-UKQCD prelim (QED∞ & LMD)

SM Theory 11659181.3± 4.0
BNL E821 Exp 11659208.9± 6.3
Exp − SM 27.6± 7.5
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HLbL: diagrams 19 / 120

q = p′ − p, ν

p p′
xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ→

• There are additional four different permutations of photons not shown.

• There are quark loop and muon line.

• Gluons and sea quark loops (not directly connected to photons) are
included automatically to all orders!

• The photons can be connected to different quark loops, will be
discussed later.
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HLbL: subtraction method 21 / 120
Subtraction method 11/50

• Introduced in LATTICE 2005.

• PoS LAT2005 (2006) 353. hep-lat/0509016.

• T. Blum, S. Chowdhury, M. Hayakawa, T. Izubuchi.

〈 quark 〉

QCD+quenched QEDA

−
〈

quark

〉

QCD+quenched QEDB〈 〉

quenched QEDA

= 3×

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ ···

• Evalutate the quark and muon propagators in the background quenched QED fields,
generating all kinds of diagrams.
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Subtraction Method 12/50

• QED field subscript “A” and “B” correspond to the same set of QED fields.

• Both “A” and “B” QED fields are averaged independently.

• Factor “3” is related with the special photon already explicitly included.

〈 quark 〉

QCD+quenched QEDA

−
〈

quark

〉

QCD+quenched QEDB〈 〉

quenched QEDA

= 3×
xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ ···

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the background of QED fields.

• Unwanted higher order effects. In practice, one normally choose e=1.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge

conjugation average on the muon line, the noise is still O(e4).

• “Disconnect diagram” problem. Noise will likely increase in larger volume.



Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic
Moment from Lattice QCD
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The most compelling possibility for a new law of nature beyond the four fundamental forces comprising
the standard model of high-energy physics is the discrepancy between measurements and calculations of
the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light
contribution, has only been accessible from models of QCD, the quantum description of the strong force,
whose accuracy at the required level may be questioned. A first principles calculation with systematically
improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the
first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous
magnetic moment is computed in such a framework, lattice QCDþ QED and QED. A nonperturbative
treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated
for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for
which statistically significant signals are obtained. Initial results are promising, and the prospect for a
complete calculation with physical masses and controlled errors is discussed.

DOI: 10.1103/PhysRevLett.114.012001 PACS numbers: 12.38.Gc, 12.20.-m, 12.38.-t, 13.40.Em

Introduction.—The muon anomalous magnetic moment,
or anomaly aμ ¼ ðgμ − 2Þ=2, provides one of the most
stringent tests of the standard model because it has been
measured to great accuracy (0.54 ppm) [1] and calculated to
even better precision [2–4]. At present, the difference
observed between the experimentally measured value and
the standard model prediction ranges between 249ð87Þ ×
10−11 and 287ð80Þ × 10−11, or about 2.9 to 3.6 standard
deviations [2–4]. In order to confirm such a difference,
which then ought to be accounted for by new physics, new
experiments are under preparation at Fermilab (E989) and
J-PARC (E34), aiming for an accuracy of 0.14 ppm. This
improvement in the experiments, however, will not be useful
unless the uncertainty in the theory is also reduced.
Table I summarizes the contributions to aμ fromQED [2],

electroweak (EW) [5], and QCD sectors of the standard
model. The uncertainty in the QCD contribution saturates
the theory error. The precision of the leading-order (LO)
hadronic vacuum polarization (HVP) contribution requires
subpercent precision on QCD dynamics, reached using a
dispersion relation and either the experimental production
cross section for hadrons (þγ) in eþe− collisions at low
energy or the experimental hadronic decay rate of the τ
leptonwith isospin breaking taken into account.Meanwhile,
lattice QCD calculations of this quantity are improving
rapidly [8] and will provide an important cross-check.
Unlike the case for the HVP, it is difficult, if not

impossible, to determine the hadronic light-by-light

scattering (HLbL) contribution (Fig. 1), aμðHLbLÞ, from
experimental data and a dispersion relation [9,10]. So far,
only model calculations have been done. The uncertainty
quoted in Table I was estimated by the “Glasgow con-
sensus” [7]. Note that the size of aμðHLbLÞ is the same
order as the current discrepancy between theory and experi-
ment. Thus, a first principles calculation, which is system-
atically improvable, is strongly desired for aμðHLbLÞ. In
this Letter we present the first result for the magnetic form
factor yielding aμðHLbLÞ using lattice QCD.
Nonperturbative QED method.—We start by observing

the difficulty computing aμðHLbLÞ using lattice QCD and
then explain our strategy to overcome it. Figure 1 shows
two (of seven) types of diagrams, classified according to
how photons are attached to the quark loop(s). In the lattice

TABLE I. The standard model contributions to the muon
gμ − 2, scaled by 1010. For the LO HVP, three results obtained
without (first two) and with (last) τ → hadrons are shown.

QED up to Oðα5Þ 116 584 71.8 951 (9)(19)(7)(77) [2]
EW Oðα2Þ 15.4 (2) [5]
QCD LO HVP Oðα2Þ 692.3 (4.2) [3]

694.91 (3.72) (2.10) [4]
701.5 (4.7) [3]

NLO HVP Oðα3Þ −9.84 (6)(4) [4,6]
HLbL Oðα3Þ 10.5 (2.6) [7]

NNLO HVP Oðα4Þ 1.24 (1) [6]

PRL 114, 012001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
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0031-9007=15=114(1)=012001(5) 012001-1 © 2015 American Physical Society



HLbL: subtraction method works! 24 / 120
Subtraction method works! (RBC-UKQCD - QEDL) 13/50

• Ten years after the method is proposed.

• Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923

• T. Blum, S. Chowdhury, M. Hayakawa, T. Izubuchi.
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q = 2π/L ; Nprop = 81000

• RBC/UKQCD 243× 64 DWF, with a−1= 1.785GeV, mπ= 342MeV. mµ= 178.5MeV.

• Only connected diagrams is calculated.
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HLbL: Exact photon propagator 26 / 120
Point Source Photon Method 14/50

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

• We can use two point source photons at x and y, which are chosen randomly. It is a very
standard 8-dimentional Monte Carlo integral over two space-time points.

• Major contribution comes from the region where x and y are not far separated. Importance
sampling is needed. In fact, we can evaluate all possible (upto discrete symmetries) relative
positions for distance less than a certain value rmax, which is normally set to be 5 lattice
units.

Improvement over the previous method:

• The muon line is not suffered from long distance noise of a stochastic QED field anymore.

• Two points of the four point function are exactly summed over, previously only one.

• Benefit from the fact that QCD has a mass gap => importance sampling.
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ iMν(q~)=
∑

x,y,z
iFν(q~;x, y, z, xop=0)

⇓
iMν(q~)=

∑
r,z,xop

eiq~ ·x~op iFν(q~;x, y, z, xop)

x=xref+ r/2 y= xref− r/2

Fν(q~;x, y, z, xop)= (−ie)6 Gρ,σ,κ(q~;x, y, z)Hρ,σ,κ,ν(x, y, z, xop) (2)

i4Hρ,σ,κ,ν(x, y, z, xop) (3)

=
∑

q=u,d,s

(eq/e)
4

〈
tr

[
−iγρSq(x, z)iγκSq(z, y)iγσSq(y, xop)iγνSq(xop, x)

]〉

QCD

i3 Gρ,σ,κ(q~;x, y, z) (4)

= e
mµ

2+q~2/4
√

(tsnk−tsrc)
∑

x′,y ′,z ′
Gρ,ρ′(x, x′)Gσ,σ ′(y, y ′)Gκ,κ′(z, z ′)

×
∑

x~ snk,x~ src

e−iq~/2·(x~ snk+x~ src)Sµ(xsnk, x
′)iγρ′Sµ(x

′, z ′)iγκ′Sµ(z
′, y ′)iγσ ′Sµ(y

′, xsrc)

+ other 5 permutations
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q = p′ − p, ν

p p′

q = p′ − p, µ

p p′

Figure 2. (L) Muon Vertex Function Diagram (R) Schwinger Term Diagram.

〈
p~ ′, s′

∣∣jν
(
x~ op=0~

)∣∣p~ , s
〉

=

〈
p~ ′, s′

∣∣∣∣∣
∑

f

qf ψ̄f(x~ op=0) γνψf(x~ op=0)

∣∣∣∣∣
p~ , s

〉

= −e ūs′(p~ ′)

[
F1(q

2)γν+ i
F2(q2)

4m
[γν , γρ]qρ

]
us(p~) (5)

= −e ūs′(p~ ′)Mν(p
′, p)us(p~) (6)

µ~ = −g e
2m

s~ =−(F1(0)+F2(0))
e
m
s~ (7)

F1(0) = 1 (8)

F2(0) =
g − 2

2
≡ a (9)
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

iMν(q~) =
∑

x,y,z

iFν(q~;x, y, z, xop)

(1: shift coordinates) =
∑

r,z,xop

eiq~ ·x~op iFν(q~;x, y, z, xop)

(2: more permuations) =
∑

r,z,xop

eiq~ ·x~op iFν
C(q~;x, y, z, xop)

Fν
C(q~;x, y, z, xop) = (−ie)6 Gρ,σ,κ(q~;x, y, z)Hρ,σ,κ,ν

C (x, y, z, xop) (10)

i4Hρ,σ,κ,ν
C (x, y, z, xop) (11)

=
∑

q=u,d,s

(eq/e)4

6

〈
tr

[
−iγρSq(x, z)iγκSq(z, y)iγσSq(y, xop)iγνSq(xop, x)

]〉

QCD

+ other 5 permutations



HLbL diagram (3: subtract “1”) 31 / 120
HLbL diagram (3: subtract “1”) 18/50

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

iMν(q~) =
∑

x,y,z

iFν(q~;x, y, z, xop)

(1: shift coordinates) =
∑

r,z,xop

eiq~ ·x~op iFν(q~;x, y, z, xop)

(2: more permuations) =
∑

r,z,xop

eiq~ ·x~op iFν
C(q~;x, y, z, xop)

(3: subtract “1”) =
∑

r,z,xop

eiq~ ·x~ ref
(
eiq~ ·(x~op−x~ ref)− 1

)
iFν

C(q~;x, y, z, xop)
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Consider a vector field Jρ(x). It satisfies two conditions:

• ∂ρ Jρ(x)= 0.

• Jρ(x)= 0 if |x| is large.
We can conclude (the result is a little bit unexpected, but actually correct):

∫
d4xJρ(x) =

∫
d4x ∂σ(xρ Jσ(x))= 0 (12)

In three dimension, this result have a consequence which is well-known.

Consider a finite size system with stationary current. We then have

• ∇~ · j~(x~ )= 0, because of current conservation.

• j~(x~ )= 0 if |x~ | large, because the system if of finite size.

Within a constant external magnetic field B~ , the total magnetic force should be

∫ [
j~(x~ )×B~

]
d3x =

[∫
j~(x~ ) d3x

]
×B~ =0 (13)
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

iMν(q~) =
∑

x,y,z

iFν(q~;x, y, z, xop)

(1: shift coordinates) =
∑

r,z,xop

eiq~ ·x~op iFν(q~;x, y, z, xop)

(2: more permuations) =
∑

r,z,xop

eiq~ ·x~op iFν
C(q~;x, y, z, xop)

(3: subtract “1”) =
∑

r,z,xop

eiq~ ·x~ ref
(
eiq~ ·(x~op−x~ ref)− 1

)
iFν

C(q~;x, y, z, xop)

(4: q→ 0 limit) =
∑

r,z,xop

i q~ · (x~ op−x~ ref) iFν
C
(
0~ ;x, y, z, xop

)

ūs′(0) iMν(q~) us
(
0~
)

= i ūs′
(
0~
)[
i
F2(q2)

4m
[γν , γρ]qρ

]
us
(
0~
)

(14)
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

ūs′(0) iMν(q~)us
(
0~
)

= i ūs′
(
0~
)[
i
F2(q2)

4m
[γν , γρ]qρ

]
us
(
0~
)

iMν(q~) =
∑

r,z,xop

i q~ · (x~ op− x~ ref) iFν
C
(
0~ ;x, y, z, xop

)

ūs′
(
0~
)[
i
F2(q2)

4m
[γk, γj]

]
us
(
0~
)

=
∑

r,z,xop

(x~ op−x~ ref)j iFk
C
(
0~ ;x, y, z, xop

)

ūs′
(
0~
)[
i
F2(q2)

4m

1

2
ǫi,j ,k[γk, γj]

]
us
(
0~
)

=
∑

r,z,xop

1

2
ǫi,j,k (x~ op−x~ ref)j iFk

C
(
0~ ;x, y, z, xop

)

• Recall x= xref+ r/2 and y= xref− r/2. Also Σi=
1

4i
ǫi,j,k [γj , γk].
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

ūs′
(
0~
)[
i
F2(q2)

4m

1

2
ǫi,j ,k[γk, γj]

]
us
(
0~
)

=
∑

r,z,xop

1

2
ǫi,j,k (x~ op−x~ ref)j iFk

C
(
0~ ;x, y, z, xop

)

F2(0)

m
ūs′

(
0~
)Σ~
2
us
(
0~
)

=
∑

r,z,xop

1

2
(x~ op−x~ ref)× ūs′

(
0~
)
iF~ C(0~ ;x, y, z, xop

)
us
(
0~
)

• Recall x= xref+ r/2 and y= xref− r/2. Also Σi=
1

4i
ǫi,j,k [γj , γk] =

(
σi 0
0 σi

)
.
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Classicaly, magnetic moment is simply

µ~ =

∫
1

2
x~ × j~ d3x (15)

• This formula is not correct in Quantum Mechanics, because the magnetic moment result
from the spin is not included.

• In Quantum Field Thoery, Dirac equation automatically predict fermion spin, so the naive
equation is correct again!

〈µ~ 〉 =

〈
ψ

∣∣∣∣
∫

1

2
x~ op× i j~(x~ op) d

3xop

∣∣∣∣ψ
〉

(16)

• i j~(x~ op) is the conventional Minkovski spatial current, because of our γ matrix convention.

• The right hand generate the total magnetic moment for the entire system, including
magnetic moment from spin.

• Above formula applies to normalizable state with zero total current. Not practical on
lattice because it need extremely large volume to evaluate.

L ≫ ∆xop∼ 1/∆p (17)
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

F2(0)

m
ūs′

(
0~
)Σ~
2
us
(
0~
)

=
∑

r=x−y

[ ∑

z,xop

1

2
(x~ op−x~ ref)× ūs′

(
0~
)
iF~ C(0~ ;x, y, z, xop

)
us
(
0~
)
]

• The initial and final muon states are plane waves instead of properly normalized states.

• The time coordinate of the current, (xop)0 is integrated instead of being held fixed.

• For x and y, only r=x− y is summed over, instead of both x and y.

These features allow us to perform the lattice simulation efficiently in finite volume.

Note that we set the reference point the average of the two sampled points.

xref = (x+ y)/2 (18)
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

• The points x, y, z are equivalent, we are free to re-label them.

• Since we sum over z, but sample over r = y − x. It is beneficial to keep r small, where
the fluctuation is small and sampling can be complete.

• So, when we sum over z, we only sum the region where z is far from x, y compare with
the distance between x and y.

• This way, we move most of the contribution into the small r region, where the fluctuation
is small and sampling can be complete.
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

F2(0)

m
ūs′

(
0~
) Σ~
2
us
(
0~
)

=
∑

r,z

Z (x, y, z)
∑

xop

1

2
(x~ op−x~ ref)j × ūs′

(
0~
)
iF~ C(x, y, z, xop)us

(
0~
)

Z(x, y, z) =





3 if |x− y |< |x− z | and |x− y |< |y− z |
3/2 if |x− y |= |x− z |< |y− z | or |x− y |= |y− z |< |x− z |
1 if |x− y |= |x− z |= |y− z |
0 otherwise

(68)

• Here x= xref+ r/2 and y=xref− r/2.
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The quark-connected part of the hadronic light-by-light scattering contribution to the muon’s anomalous
magnetic moment is computed using lattice QCD with chiral fermions. We report several significant
algorithmic improvements and demonstrate their effectiveness through specific calculations which show a
reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is
performed with a near-physical 171 MeV pion mass on a ð4.6 fmÞ3 spatial volume using the 323 × 64

Iwasakiþ DSDR gauge ensemble of the RBC/UKQCD Collaboration.

DOI: 10.1103/PhysRevD.93.014503

I. INTRODUCTION

New particles and interactions which occur at a very large
energy scale Λ, above the reach of present-day accelerators,
may be first discovered through their indirect effects at low
energy. A particularly promising low-energy quantity that
may reveal such effects is the anomalous moment of the
muon. This “anomalous” difference gμ − 2 between the
muon’s gyromagnetic ratio gμ and the Dirac value of 2 for
a noninteracting particle can receive contributions from such
new high-energy phenomena, contributions which are sup-
pressed by the ratio of the squares of the energy scales
ðmμ=ΛÞ2 and the strength of the coupling of these new
phenomena to themuon. (Heremμ ¼ 105 MeV is themass of
themuon.) Theknowncouplings of themuonare its relatively
weak interaction with the photon, the W�, Z and Higgs
bosons, which can be accurately described by perturbation
theory. This implies that even very small differences between
gμ − 2 and the predictions of the standard model can be
recognized, making gμ − 2 an attractive place to search for
new, beyond-the-standard-model phenomena [1].
In fact, the use of gμ − 2 to search for new phenomena

has reached a very high level of precision. This quantity has
been measured with an accuracy of 0.54 ppm [2], and the
corresponding theoretical calculations have achieved a
similar level of precision. The present status of experiment
and theory is summarized in Table I. As this table shows,
there is at present a 3 standard deviation discrepancy
between the experimental result and the standard model
prediction. This discrepancy provides strong motivation
both for new experiments, which are either underway or

planned at Fermilab (E989) and J-PARC (E34) with a
targeted precision as small as 0.14 ppm, and for a reduction
in the theoretical errors.
The two components of the theoretical calculation with

the largest errors involve couplings to the up, down and
strange quarks: the hadronic vacuum polarization (HVP)
and hadronic light-by-light scattering (HLbL). These are
the first cases in which the effects of the strong interaction
enter the determination of gμ − 2. The HVP effects enter
beginning at order α2, while those from HLbL are of order
α3, where α ¼ 1=137.036 is the fine structure constant.
These two types of contributions are shown in Fig. 1 and,
because of the strong interactions of the quarks, these
quantities must be evaluated using methods which treat the
strong interactions nonperturbatively.
The strong-interaction contribution to HVP can be deter-

mined directly from the experimentally measured cross
section for the single-photon eþ-e− annihilation into hadrons
using a dispersion relation—a well-developed method with
fractional percent errors. These same nonperturbative strong-
interaction effects can be determined using lattice QCD [9],
but accuracy comparable to that obtained from experimen-
tally measured eþ − e− annihilation has yet to be achieved.
The determination of the HVP contribution by both methods
is an active area of research [10,11], and further reduction of
these errors is expected.
The HLbL contribution is less well studied and is the

topic of this paper. Unlike the HVP case, it is presently
not known how to determine the HLbL contribution from
experimental data and dispersion relations, although
progress is being made in this direction [12–16]. The
HLbL contribution to gμ − 2 has been evaluated in model
calculations [7,11] whose errors cannot be systematically
improved and whose estimates, which are used in Table I,*ljin.luchang@gmail.com

PHYSICAL REVIEW D 93, 014503 (2016)
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• Phys.Rev. D93 (2016) no.1, 014503.

• T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Lehner.
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• RBC/UKQCD 243× 64 DWF, with a−1= 1.785GeV, mπ= 342MeV. mµ= 178.5MeV.

• Only connected diagrams is calculated.

• Statistical error significantly reduced with less cost. Error do not increase with increasing
tsep. In the future, we will always compute with tsep=T /2.
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• We test our setup by computingmuon leptonic light by light contribution to muon g−2.

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

0

10

20

30

40

50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

a
µ
×
1
0
1
0

1/(mµL)
2

analytic
a = 0

mµa = 0.1000
mµa = 0.1333
mµa = 0.1500
mµa = 0.2000

F2(a, L)=F2

(
1− c1

(mµL)2
+

c1
′

(mµL)4

)
(1− c2 a

2+ c2
′ a4) → F2= 46.6(2)× 10−10 (19)

• Pure QED computation. Muon leptonic light by light contribution to muon g − 2.
Phys.Rev. D93 (2016) 1, 014503. arXiv:1510.07100.

• Analytic results: 0.371× (α/π)3= 46.5× 10−10.

• O(1/L2) finite volume effect, because the photons are emitted from a conserved loop.
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• One diagram (the biggest diagram below) do not vanish even in the SU(3) limit.

• We extend the method and computed this leading disconnected diagram as well.

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnkz′, κ′
y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

• Permutations of the three internal photons are not shown.

• Gluons exchange between and within the quark loops are not drawn.

• We need to make sure that the loops are connected by gluons by “vacuum” subtraction.
So the diagrams are 1-particle irreducible.
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xsrc xsnkx′, ρ′ y′, σ′ z′, κ′

xop, ν

x, ρ y, σ z, κ

• Point x is used as the reference point for the moment method.

• We can use two point source photons at x and y, which are chosen randomly. The points
xop and z are summed over exactly on lattice.

• Only point source quark propagators are needed. We computeM point source propagators
and all M2 combinations of them are used to perform the stochastic sum over r=x− y.
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xsrc xsnkx′, ρ′ y′, σ′ z′, κ′

xop, ν

x, ρ y, σ z, κ

F2
dHLbL(0)

m

(σs′,s)i
2

=
∑

r=x−y,z

∑

xop

1

2
ǫi,j,k(xop−x)j · i ūs′

(
0~
)
Fk

D(x, y,z,xop)us
(
0~
)

(20)

Fν
D(x, y, z, xop) = (−ie)6 Gρ,σ,κ(x, y, z)Hρ,σ,κ,ν

D (x, y, z, xop) (21)

Hρ,σ,κ,ν
D (x, y, z, xop) =

〈
1

2
Πν,ρ(xop, x) [Πσ,κ(y, z)−Πσ,κ

avg(y− z)]

〉

QCD

(22)

Πσ,κ(y, z) = −
∑

q

(eq/e)
2Tr[γσSq(y, z) γκSq(z, y)]. (23)
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x′

x

y′

y

x′

x

y′

y

For the four-point-function, when its two ends, x and y, are far separated, but x′ is close to
x and y ′ is close to y, the four-point-function is dominated by π0 exchange.

Both the connected and the disconnected diagram will contribute in these region. We can
find a connection between the connnected diagram and the disconnected diagram by first
investigating the η correlation function.

〈ūγ5u(x)(ūγ5u+ d̄γ5d)(y)〉 ∼ e−mη|x−y | (24)

〈ūγ5u(x)(ūγ5u− d̄γ5d)(y)〉+2〈ūγ5u(x)d̄γ5d(y)〉 ∼ e−mη|x−y | (25)

That is

〈ūγ5u(x)d̄γ5d(y)〉 = −1

2
〈ūγ5u(x)(ūγ5u− d̄γ5d)(y)〉+O

(
e−mη|x−y|) (26)

Above is a relation between disconnected diagram π0 exchange (left hand side) and connected
diagram π0 exchange (right hand side).
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x′

x

y′

y

x′

x

y′

y

The nearby two current operater can be viewed as an interpolating operator for π0, just like
ūγ5u or d̄γ5d with appropriate charge factors.

Multiplied by appropriate charge factors:

Connected contribution

[(
2

3

)
4

+

(
−1

3

)
4
]
=

17

81
(27)

Disconnected contribution

[(
2

3

)
2

+

(
−1

3

)
2
]
2
(
−1

2

)
=

25

81

(
−1

2

)
(28)

Connected :Disconnected = 34 :−25 (29)

Different approach by J. Bijnens and J. Relefors: JHEP 1609 (2016) 113.
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We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous
magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the
leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our
previous work. The calculation was performed on the 483 × 96 ensemble generated with a physical pion
mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall
fermion formulation. We find aHLbLμ ¼ 5.35ð1.35Þ × 10−10, where the error is statistical only. The finite-
volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The
omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

DOI: 10.1103/PhysRevLett.118.022005

Introduction.—The lattice calculation of the hadronic
light-by-light contribution to the muon anomalous magnetic
moment is part of the ongoing effort to better understand the
approximately 3 standard deviation difference between the
extremely accurate BNL E821 experimental result and
the current theoretical calculation with similar accuracy
[1]. The muon anomalous magnetic moment is characterized
by the small dimensionless number aμ ¼ ðgμ − 2Þ=2, the
muon anomaly. Here, the g factor gμ determines themagnetic
moment of muon, ~μ ¼ ~sgμe=2mμ where ~s is the spin angular
momentum of the muon. The muon anomaly can be
determined from the form factor F2 that appears in the
matrix element of the electromagnetic current:

hμð~p0ÞjJνð0Þjμð~pÞi

¼ −eūð~p0Þ
�
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ�qρ
�
uð~pÞ; ð1Þ

where aμ ¼ F2ð0Þ. Here, Jνð0Þ is the electromagnetic
current, jμð~pÞi and jμð~p0Þi are the initial and final muon
states, q¼p0−p, and Euclidean-space conventions are
used.
A particle’s anomalous magnetic moment results from its

extended spatial structure. For an elementary Dirac particle,
such as an electron, muon, or tau lepton, with only
electroweak interactions, such a structure will arise from
the electroweak interactions themselves. These effects can
be computed with high precision using perturbation theory,
with the leading term being the well known result of
Schwinger: a ¼ α=2π [2], where α is the fine structure

constant. However, new, high-energy phenomena that
appear at an energy scale Λ can introduce additional
structure, leading to new contributions to al that are
typically suppressed by the ratio ðml=ΛÞ2, where l ¼ e,
μ, or τ and ml is the mass of the corresponding lepton. The
muon anomaly may be the best place to search for such
phenomena since aμ can be more accurately measured than
aτ while mμ is 207 times larger than me.
The current result of the BNL experiment E821 is aexpμ ¼

11 659 208.0ð6.3Þ × 10−10 [3]. More accurate experiments
are planned at Fermilab (E989) [4] and J-PARC (E34) [5],
which aim to reduce the error by a factor of 4. Theoretically,
the contributions to gμ − 2 can be divided into four
categories. The first is the QED contribution, which is
the largest [6]. The second is the electroweak correction,
which is small but not negligible [7]. Both the QED and
electroweak contribution can be computed with perturba-
tion theory and the uncertainties are very small.
The third and fourth contributions enter at second and

third order in α and involve virtual quark loops, introducing
the nonperturbative challenges of QCD. The third is the
hadronic vacuum polarization (HVP) contribution, which
enters at order α2 and corresponds to the left diagram in
Fig. 1. The fourth is the hadronic light by light (HLbL)
contribution, corresponds to the right diagram in Fig. 1 and
enters at order α3.
The HVP contribution is the largest hadronic contribution

and can be computed from a dispersion relation and experi-
mental eþe− annihilation data. This is a well-developed
method with a fractional-percent error. The leading-order

PRL 118, 022005 (2017) P HY S I CA L R EV I EW LE T T ER S
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• Left: connected diagrams. Right: leading disconnected diagrams.

• 483× 96 lattice, with a−1= 1.73GeV, mπ= 139MeV, mµ= 106MeV.

• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.

aµ
cHLbL = (11.60± 0.96)× 10−10 (30)

aµ
dHLbL = (−6.25± 0.80)× 10−10 (31)

aµ
cHLbL = (5.35± 1.35)× 10−10 (32)
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• We are using Domain wall fermion (DWF) in all our lattice calculations for HLbL. DWF
respects Chiral symmetry, which helps systematically eliminating the O(a) discretization
error. The remaing discretization error are in general quite small. The fifth dimension is
needed in order to fullfil the Chiral symmetry. This results numerical cost proportion to
the length in the fifth dimension, Ls, and large Ls is needed to reach the Chiral limit.

• Mobius DWF allows us to use a smaller value for Ls and having almost the same Chiral
property. For 48I, we use Ls= 24 (also in evolution) to mimic the original Ls= 48 DWF.

• The zMobius formulation allows us to obtain a very good approximate of the original
(M)DWF propagator with a significantly reduced Ls. For 48I, we further reduce the Ls

from 24 to 10. PoS LATTICE2015, 019 (2016)

• Multigrid Lanczos algorithm help us efficiently generate the low modes of the DWF
operator which accelerate the inversion roughly by a factor of 20 for light quarks.
arXiv:1710.06884

• All-mode-averaging (AMA) allows us to perform the inversion with much less iterations
most of the time, and only compute the small correction term for a small portion of the
entire calculation. This can bring an addition factor of 5 speed up. Phys. Rev. D 91,
no. 11, 114511 (2015)

• We use highly optimized DWF Dirac operator inverter from the BFM and Grid to perform
the inversion. https://github.com/paboyle
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• Left: connected diagrams. Right: leading disconnected diagrams.

• 483× 96 lattice, with a−1= 1.73GeV, mπ= 135MeV (corrected from 139MeV).

• 65 configs for connected, 99 configs for disconnected diagrams.

aµ
cHLbL = (12.35± 1.18)× 10−10 (33)

aµ
dHLbL = (−6.15± 0.61)× 10−10 (34)

aµ
cHLbL = (6.21± 1.41)× 10−10 (35)
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This is slightly partial quenched calculation performed on the 139MeV pion mass ensemble.
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• Left: connected diagrams. Right: leading disconnected diagrams.

• 483× 96 lattice, with a−1= 1.73GeV, mπ= 135MeV (corrected from 139MeV).

• 643× 128 lattice, with a−1= 2.36GeV, mπ= 135MeV.

aµ
cHLbL = (16.94± 3.77)× 10−10 (36)

aµ
dHLbL = (−12.29± 3.34)× 10−10 (37)

aµ
HLbL = (4.66± 4.38)× 10−10 (38)
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• Very large statistical error (48I: (6.21± 1.41)× 10−10, 48I-64I: (4.66± 4.38)× 10−10).

• Can we do better than this? => Split the aµ into two parts:

aµ = aµ
short+ aµ

long (39)

• aµ
short= aµ(r6 1fm): most of the contribution, small statistical error.

• aµ
long= aµ(r > 1fm): small contribution, large statistical error.

Treat aµ
short and aµ

long separately:

• aµ
short: just like before, continuum extrapolation assuming a2 scaling.

• aµ
long: simply use the results from 48I, estimate the O(a2) error.

aµ
cHLbL = (16.94± 3.77)× 10−10⇒ (17.35± 1.97stat± 0.20sys,a2)× 10−10 (40)

aµ
dHLbL = (−12.29± 3.34)× 10−10⇒ (−7.21± 1.03stat± 1.02sys,a2)× 10−10 (41)

aµ
HLbL = (4.66± 4.38)× 10−10⇒ (5.06± 3.67stat± 0.20sys,a2)× 10−10 (42)

• The above systematic error is the estimated O(a2) error. In addition, there can be addi-
tional O(a4) error.
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Photons: Feynman gauge, QEDL [Hayakawa and Uno, 2008] (omit all modes with ~q = 0)
Gluons: Iwasaki (I) (+DSDR) gauge action (RG improved, plaquette+rectangle)
muons: Ls =∞ free domain-wall fermions (DWF)
quarks: Möbius-DWF
Lanczos, AMA, and zMöbius techniques used to speed up the calculation

2+1f Möbius-DWF, I and I-DSDR physical point QCD ensembles (RBC/UKQCD) [Blum et al., 2014]

48I 64I 24D 32D 48D

a−1 (GeV) 1.73 2.36 1.0 1.0 1.0
a (fm) 0.114 0.084 0.2 0.2 0.2
L (fm) 5.47 5.38 4.8 6.4 9.6
Ls 48 64 24 24 24

mπ (MeV) 139 135 140 140 140
mµ (MeV) 106 106 106 106 106

meas (con, disco) 65, 99 43, 44 158, 157 71, 70 64, 0
8 / 25
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Phys. Rev. D 93, 074505
(2016)

48I: 483× 96, 5.5fm box 64I: 643× 128, 5.5fm box

24D: 243× 64, 4.8fm box 32D: 323× 64, 6.4fm box 48D: 483× 64, 9.6fm box

32Dfine: 323× 64, 4.8fm box
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• MDWF+Iwasaki: continuum limit (5.4fm)

• MDWF+DSDR: a−1=1.015GeV: 243×64 (4.8fm), 323×64 (6.4fm), 483×64 (9.6fm).

• MDWF+DSDR: a−1= 1.371GeV: 323× 64 (4.6fm).

F2(a, L) = F2

(
1− c1

(mµL)2

)
(1− c2 a

2) (43)
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aµ
cHLbL = (27.61± 3.51stat± 0.32sys,a2)× 10−10 (44)

aµ
dHLbL = (−20.20± 5.65stat)× 10−10 (45)

aµ
HLbL = (7.41± 6.32stat± 0.32sys,a2)× 10−10 (46)
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Fν
C(x, y, z, xop) = (−ie)6 Gρ,σ,κ(x, y, z)Hρ,σ,κ,ν(x, y, z, xop)

The QED part, Gρ,σ,κ(x, y, z) can be evaluated in infinite volume QED box.

The QCD part, Hρ,σ,κ,ν(x, y, z, xop) can be evaluated in a finite volume QCD box.

QCD Box

QED Box

z
′

y
′

x
′

y

x
z

xop

i3 Gρ,σ,κ(x, y, z) = Gρ,σ,κ(x, y, z)+Gσ,κ,ρ(y, z, x)+ other 4 permutations. (47)

Gρ,σ,κ(x, y, z) = emµ(tsnk−tsrc)
∑

x′,y ′,z ′
Gρ,ρ′(x, x′)Gσ,σ ′(y, y ′)Gκ,κ′(z, z ′) (48)

×
∑

x~ snk,x~ src

Sµ(xsnk, x
′)iγρ′Sµ(x

′, y ′)iγσ ′Sµ(y
′, z ′)iγκ′Sµ(z

′, xsrc)
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Position-space approach to hadronic light-by-light
scattering in the muon g−2 on the lattice

Nils Asmussen∗, Jeremy Green, Harvey B. Meyer and Andreas Nyffeler
PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz,
Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
E-mail: {asmussen, green, meyerh, nyffeler}@kph.uni-mainz.de

The anomalous magnetic moment of the muon currently exhibits a discrepancy of about three
standard deviations between the experimental value and recent Standard Model predictions. The
theoretical uncertainty is dominated by the hadronic vacuum polarization and the hadronic light-
by-light (HLbL) scattering contributions, where the latter has so far only been fully evaluated us-
ing different models. To pave the way for a lattice calculation of HLbL, we present an expression
for the HLbL contribution to g−2 that involves a multidimensional integral over a position-space
QED kernel function in the continuum and a lattice QCD four-point correlator. We describe our
semi-analytic calculation of the kernel and test the approach by evaluating the π0-pole contribu-
tion in the continuum.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/
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How to evaluate Gρ,σ,κ(x, y, z)? arXiv:1705.01067.

First, we need to regularize the infrard divergence in Gρ,σ,κ(x, y, z).

Gρ,σ,κ(x, y, z) =
1+ γ0

2
[(aρ,σ,κ(x, y, z))kΣk+ i bρ,σ,κ(x, y, z)]

1+ γ0
2

(49)

where aρ,σ,κ(x, y, z) and bρ,σ,κ(x, y, z) are real functions.

Gρ,σ,κ
(1)

(x, y, z) =
1

2
Gρ,σ,κ(x, y, z)+

1

2
[Gκ,σ,ρ(z, y, x)]

† (50)

It turned out that Gρ,σ,κ
(1) (x, y, z) is infrard finite.

Gρ,σ,κ
(1) (x, y, z) =

γ0+1
2

iγσ
(
∂ζ+ γ0+1

)
i γκ

(
∂ξ+ γ0+1

)
i γρ

γ0+1
2

(51)

×
∫

d4η

4π2

f(η− y+ ζ)f(x− η+ ξ)− f(y− η+ ζ)f(η− x+ ξ)

2(η− z)2

∣∣∣∣
ξ=ζ=0

f(x)= f(|x|, xt/ |x|) =
1

8π2

∫

0

1

d y e−yxtK0(y |x|) (52)

The 4 dimensional integral is calculated numerically with the CUBA library cubature rules.
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Subtraction on Gρ,σ,κ

(1) (x, y, z) 43/50

Eventually, we need to compute

∑

x,y,z

Gρ,σ,κ(x, y, z)Hρ,σ,κ,ν
C (x, y, z, xop) (53)

Hρ,σ,κ,ν
C (x, y, z, xop) satisfies current conservation condition, which implies:

∑

x

Hρ,σ,κ,ν
C (x, y, z, xop) = 0 (54)

∑

z

Hρ,σ,κ,ν
C (x, y, z, xop) = 0 (55)

So, we have some freedom in changing Gρ,σ,κ(x, y, z). One choice we find particularly helpful
is:

Gρ,σ,κ
(2)

(x, y, z) = Gρ,σ,κ
(1)

(x, y, z)−Gρ,σ,κ
(1)

(y, y, z)−Gρ,σ,κ
(1)

(x, y, y)+Gρ,σ,κ
(1)

(y, y, y)



Consequence of current conservation 66 / 120
Consequence of current conservation 44/50

Consider a vector field Jρ(x). It satisfies two conditions:

• ∂ρ Jρ(x)= 0.

• Jρ(x)= 0 if |x| is large.
We can conclude (the result is a little bit unexpected, but actually correct):

∫
d4xJρ(x) =

∫
d4x ∂σ(xρ Jσ(x))= 0 (56)

In three dimension, this result have a consequence which is well-known.

Consider a finite size system with stationary current. We then have

• ∇~ · j~(x~ )= 0, because of current conservation.

• j~(x~ )= 0 if |x~ | large, because the system if of finite size.

Within a constant external magnetic field B~ , the total magnetic force should be

∫ [
j~(x~ )×B~

]
d3x =

[∫
j~(x~ ) d3x

]
×B~ =0 (57)
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In our previous work, Blum et al. [Phys. Rev. Lett. 118, 022005 (2017)], the connected and leading
disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g − 2)
have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the
RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-
volume error that scales like 1=L2 where L is the spatial size of the lattice. In this paper, we demonstrate
that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting
in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy. We
present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected
exponential approach to the infinite volume limit and consistency with the known analytic result. We have
implemented an improved weighting function which reduces both discretization and finite-volume effects
arising from the hadronic part of the amplitude.

DOI: 10.1103/PhysRevD.96.034515

I. INTRODUCTION

Precision measurements of lepton magnetic dipole
moments provide a powerful tool for testing the standard
model (SM) of particle physics at high precision. The
magnetic dipole moment μ⃗ originating from the lepton’s
spin s⃗ is commonly expressed as

μ⃗ ¼ g

�
e
2m

�
s⃗; ð1Þ

where e is the lepton’s electromagnetic charge and m is its
mass. The anomalous magnetic moment, or anomaly,
a ¼ ðg − 2Þ=2 expresses the deviation from Dirac’s rela-
tivistic quantum-mechanical prediction g ¼ 2. It is gener-
ated by small radiative corrections, which, by a careful
comparison between its experimental measurement to its
theory prediction, may reveal physics beyond the standard
model. Experimental measurements have determined these
anomalous moments at very high precision. The electron
anomaly, ae ¼ 0.00115965218073ð28Þ [1], currently
yields the most precise value of the fine structure constant
α ¼ 1=137.035999157ð33Þ [2]. In general, contributions
from a new physics scale ΛNP to the anomalous magnetic
moment of a lepton l ¼ e, μ, τ are suppressed by m2

l=Λ2
NP.

One therefore expects the muon to be 5 orders of magnitude
more sensitive to such contributions than the electron

which outweighs a loss in experimental precision. With
the τ being experimentally inaccessible, aμ is the most
promising channel to reveal physics beyond the standard
model.
Interestingly, current experimental and theoretical deter-

minations of aμ differ at the 3.1–3.5 standard deviation
level,

aEXPμ − aSMμ ¼ ð27.6� 8.0Þ × 10−10 ½17�;
ð25.0� 8.0Þ × 10−10 ½18�; ð2Þ

depending on which value for the hadronic vacuum
polarization contribution is used (see Table I).
In this tension the theory and experimental uncertainties

are approximately balanced, with the theory uncertainty
dominated by the hadronic vacuum polarization and
hadronic light-by-light (HLbL) contributions. With future
experiments at Fermilab (E989) [9] and J-PARC (E34) [10]
aiming for a fourfold decrease in experimental uncertainty,
a careful first-principles determination of these hadronic
contributions and a similar reduction in uncertainty is
desirable.
In this work we present an improved method of

computing the HLbL contribution from first principles in
lattice quantum chromodynamics (QCD). We build on the
optimized sampling strategy of the HLbL diagrams, which
we have introduced in Ref. [11], and which has reduced the
statistical uncertainties, at the same cost, by more than an*ljin.luchang@gmail.com

PHYSICAL REVIEW D 96, 034515 (2017)
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• Compare the two Gρ,σ,κ(x, y, z) in pure QED computation.
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• Notice the vertical scales in the two plots are different.
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• Compare the finite volume effects in different approaches in pure QED computation,
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• QEDL: O(1/L2) finite volume effect, because the photons are emitted from a conserved
loop. Phys.Rev. D93 (2016) 1, 014503.

• Inf QED (no sub): O(e−mL) finite volume effect. Everything except the four-point-cor-
relation function is evaluated in infinite volume. arXiv:1705.01067.

• Inf QED (with sub): smaller O(e−mL) finite volume effect. arXiv:1705.01067.
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1. Introduction

2. HLbL: QEDL approach

3. HLbL: QED∞ approach

• QED kernel and subtraction

• QCD calculation

4. HVP



HLbL:Rmax 71 / 120QCD Simulations 47/50

QCD Box

QED Box

z
′

y
′

x
′

y

x
z

xop

We will plot the data based on Rmax=max {|x− y |, |y− z |, |z− x|}.
For π0 exchange contribution:

• Rmax is the limit on the distance the π0 travels.
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Figure 3. RBC-UKQCD preliminary results. Rmax=max{|x− y |, |y− z |, |z − x|}.

aµ
cHLbL(mπ= 340MeV, L= 2.66 fm, a=0) = 8.67(47)× 10−10 (58)

aµ
cHLbL(mπ= 340MeV, L= 3.54 fm, a=0) = 11.02(71)× 10−10 (59)

There is sizable difference between these two volumes. Further study is required to extrapolate
to infinite volume limit.
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xsrc xsnkx′ y′ z′

xop

x
y

z

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

a
µ
(1
0
−
1
0
)

Rmax (fm)

Rmax = max {|x− y |, |y− z |, |z− x|} (60)

Currently, we use the LMD (Lowest Meson Dominance) pion TFF model [Talk by Luchang
Jin and Taku Izubuchi at Mainz g−2 workshop in June 2018] with the following parameters:

mV = 770MeV Fπ= 93MeV (61)

• Connected diagram: multiply by 34/9.

• Leading disconnected diagram: multiply by −25/9.

• [JHEP 1609 (2016) 113, PoS LATTICE2016 (2016) 181]

For the QED part, we use the weighting function developed in [arXiv:1705.01067] by us.
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LMD model.

• max (|x− y |, |x− z |, |y− z |)=Rmax

• Short distance: lattice calculation with 32D (6.4 fm, 1.015 GeV) (partial sum upto Rmax).

• Long distance: LMD model multiplied by 34/9 (partial sum from Rmax upto infinity).

• At Rmax= 2.5fm, the combined result is aµ
cHLbL= 29.19(0.73)stat× 10−10.

• Previous extrapolated results with QEDL is aµ
cHLbL= 27.61(3.51)stat(0.32)sys,a2× 10−10.
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xsrc xsnkx′, ρ′ y′, σ′ z′, κ′

xop, ν

x, ρ y, σ z, κ

• For QEDL, we can compute the QED function for all x given the y location fixed and z
summed over. Allow us to compute all combination of x, y with little cost.

• For QED∞, although we can compute all the function Gρ,σ,κ(x, y, z) simply by interpo-
late, we cannot easily compute this function (even after fixing y) for all x and z, simply

because of its cost is proportion to Volume2.

• However, we with QED∞ and interpolation, we can freely choose which coordinates we
compute. For example, we may compute all z for |z− y |65, and sample z for |z− y |>5.
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139MeV pion, leading discon diagram, 32D (prelim) 52/50
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• max (|x− y |, |x− z |, |y− z |)=Rmax

• Short distance: lattice calculation with 32D (6.4 fm, 1.015 GeV) (partial sum upto Rmax).

• Long distance: LMD model multiplied by −25/9. (partial sum from Rmax upto infinity).

• At Rmax= 2.5fm, the combined result is aµ
discon=−17.79(1.13)stat× 10−10.

Previous extrapolated results with QEDL is aµ
discon=−20.20(5.65)stat× 10−10.
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139MeV pion, con+leading discon, 32D (prelim) 53/50
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• max (|x− y |, |x− z |, |y− z |)=Rmax

• Short distance: lattice calculation with 32D (6.4 fm, 1.015 GeV) (partial sum upto Rmax).

• Long distance: LMD model. (partial sum from Rmax upto infinity).

• At Rmax= 2.5fm the combined results is aµ
total= 11.40(1.27)stat× 10−10

the part from lattice is 6.78(1.27)stat× 10−10.

Previous extrapolated results with QEDL is aµ
total= 7.41(6.32)stat(0.32)sys,a2× 10−10.
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xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

• These are the subleading disconnected diagrams in the SU(3) limit.

• The right diagram has a factor of 1/3 suppression from the multiplicity of the diagram
compare with the left diagram, i.e. the external photon is more likely to be on the loop
with three photons.

• For the left diagram, the moment method works just like the connected case. We can
sample x, y and sum over z. TheM2 trick can be used for the x, y sampling. Low-modes-
averaging for the loop with z.

• For the right diagram, The moment method still works, however, we have to use a point
on the other loop as the reference point, which may be more noisy. But as mentioned
above, the right diagram is more suppressed.
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139MeV pion, first sub-leading discon diagram, 24D (prelim) 55/50
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1. Introduction

2. HLbL: QEDL approach

3. HLbL: QED∞ approach

4. HVP

• Master formula

• Long distance part
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No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

Mainz 2019
FNAL/HPQCD/MILC 2019

SK 2019
ETMC 2018

RBC/UKQCD 2018
BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750

Lattice + R-ratio

Lattice

R-ratio

aµ × 1010
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Dispersive method - Overview

e+

e−

γ e+e− → hadrons(γ)

Jµ = V I=1,I3=0
µ + V I=0,I3=0

µ

τ → νhadrons(γ)

Jµ = V I=1,I3=±1
µ − AI=1,I3=±1

µ

ν

τ W

Knowledge of isospin-breaking corrections and separation of vector and axial-vector
components needed to use τ decay data. Can do this from LQCD+QED (Bruno,
Izubuchi, CL, Meyer, 1811.00508)!

Can have both energy-scan and ISR setup.

3 / 18
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Tension in 2π experimental input. BaBar and KLOE central values differ by
δaµ = 9.8(3.5)× 10−10, compare to quoted total uncertainties of dispersive results of
order δaµ = 3× 10−10.
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Figure 4: The comparison of the integration of the individual radiative return measurements and the
combination of direct scan ⇡+⇡� measurements between 0.6  p

s  0.9 GeV.
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Figure 5: Contributing data in the ⇢ resonance region of the ⇡+⇡� channel plotted against the new fit
of all data (left panel), with an enlargement of the ⇢� ! interference region (right panel).

error instead of a global one is clearly visible. Tensions arise in particular in the ⇢ resonance
region, where the cross section is large.

The full combination of all ⇡+⇡� data is found to give

a⇡
+⇡�

µ [0.305  p
s  1.937 GeV] = 502.97 ± 1.14 ± 1.59 ± 0.06 ± 0.14

= 502.97 ± 1.97 (3.3)

and
�↵⇡+⇡�(M2

Z)[0.305  p
s  1.937 GeV] = 34.26 ± 0.12 . (3.4)
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Conflicting input limits the precision and reliability of the dispersive results. Can we
replace some of this data with LQCD+QED?

Looking for more data and insight: energy-scans update from CMD-3 in Novosibirsk
and ISR updates from KLOE2, BaBar, Belle, BESIII and BelleII.
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Lattice Calculation of the Lowest-Order Hadronic Contribution
to the Muon Anomalous Magnetic Moment

T. Blum
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 18 December 2002; published 30 July 2003)

We present a quenched lattice calculation of the lowest order [O��2�] hadronic contribution to the
anomalous magnetic moment of the muon which arises from the hadronic vacuum polarization. A
general method is presented for computing entirely in Euclidean space, obviating the need for the usual
dispersive treatment which relies on experimental data for e�e� annihilation to hadrons. While the
result is not yet of comparable precision to those state-of-the-art calculations, systematic improvement
of the quenched lattice computation to this level is straightforward and well within the reach of present
computers. Including the effects of dynamical quarks is conceptually trivial; the computer resources
required are not.

DOI: 10.1103/PhysRevLett.91.052001 PACS numbers: 12.38.Gc, 13.40.Em, 14.60.Ef, 14.65.Bt

The magnetic moment of the muon is defined by the
q2 ! 0 (static) limit of the vertex function which de-
scribes the interaction of the electrically charged muon
with the photon,

���p2; p1� � ��F1�q
2� �

i
4m�

��� 6q� 6q���F2�q
2�; (1)

where m� is the muon mass, q � p2 � p1 is the photon
momentum, and p1; p2 are the incoming and outgoing
momentum of the muon. Lorentz invariance and current
conservation have been used in obtaining Eq. (1). Form
factors F1�q2� and F2�q2� contain all information about
the muon’s interaction with the electromagnetic field. In
particular, F1�0� � 1 is the electric charge of the muon in
units of e, and g � 2F1�0� � 2F2�0� � 2� 2F2�0� is the
Landé g factor, proportional to the magnetic moment. The
anomaly, defined as half of the difference of g from its
tree level value, which the Dirac equation predicts to be 2
for an elementary spin 1=2 particle, is a� � F2�0�. Thus,
F2�0� � 0 at tree level, and corrections to F2�0�, and
therefore a�, start at O��� in QED, where � � e2=4�
is the fine structure constant. F1�0� � 1 to all orders due
to charge conservation.

The most precise measurement ever of the muon’s
anomalous magnetic moment was recently carried out at
Brookhaven National Laboratory [1]. In [2,3], the authors
quote three standard deviation discrepancies between the
standard model and experiment [1]. The theoretical and
experimental uncertainties are roughly the same and
were added in quadrature. The dominant theoretical un-
certainty resides in hadronic loop corrections arising
from the hadronic vacuum polarization [O��2�] (see
Fig. 1) and hadronic light-by-light scattering [O��3�],
and it is clearly of interest to reduce these errors.
Presently, the O��2� hadronic contribution is calculated
by using a dispersion relation and the experimental value
of the total cross section for e� e� annihilation to had-
rons to relate the imaginary part of the vacuum polariza-
tion to the real part. This calculation is very precise,

though a discrepancy with a calculation that uses � decay
data may indicate a theory error as large as 5% [2] and
reduces the disagreement with experiment to roughly 1.6
standard deviations. A purely theoretical, first principles,
calculation has been lacking and is desirable, and also has
several advantages over the conventional approach. For
instance, the separation of QED effects from hadronic
corrections is automatic, as is the treatment of isospin
corrections if different quark masses are used in the
simulation. Thus, it is possible that lattice calculations
may eventually help to settle the above-mentioned dis-
crepancy between e� e� annihilation and � decay.

The method described here is simple and direct. We
begin with Ref. [5] which describes the computation of
multiloop graphs in perturbation theory through the
expansion of the integrand in terms of hyperspherical
polynomials. The key is that the entire integral, including
external momenta, can be Wick rotated into Euclidean
space and the angular integrals done so that what is left is
an integral over the magnitude of the loop momentum. If
the graph can be set up in a certain way then, after the
external momenta are analytically continued on shell, the

FIG. 1. The lowest order hadronic contribution to the muon
anomalous magnetic moment [4]. The muon has outgoing
momentum p� q=2 after scattering from a photon with mo-
mentum q. The loop momentum is k. The blob represents the
nonperturbative hadronic vacuum polarization.
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Two-Flavor QCD Correction to Lepton Magnetic Moments at Leading Order
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We present a reliable nonperturbative calculation of the QCD correction, at leading order in the

electromagnetic coupling, to the anomalous magnetic moment of the electron, muon, and tau leptons

using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes, and a broad range of

quark masses to control the continuum, infinite-volume, and chiral limits. We examine the impact of the

commonly ignored disconnected diagrams and introduce a modification to the previously used method

that results in a well-controlled lattice calculation. We obtain 1:513ð43Þ � 10�12, 5:72ð16Þ � 10�8, and

2:650ð54Þ � 10�6 for the leading-order two-flavor QCD correction to the anomalous magnetic moment of

the electron, muon, and tau, respectively, each accurate to better than 3%.

DOI: 10.1103/PhysRevLett.107.081802 PACS numbers: 13.40.Em, 12.38.Gc, 14.60.Ef

Introduction.—The experimental [1] and theoretical [2]
determinations of the anomalous magnetic moment of the
muon a� have both reached an accuracy that is better

than six parts per million. This high precision reveals a
discrepancy of over 3 standard deviations (3�), which
raises the possibility of physics beyond the standard model.
However, the dominant error in the theory computation is
due to hadronic effects that are currently not calculated but
are instead either separately measured or simply modeled.
This obscures the significance of the 3� effect and makes it
difficult to improve the accuracy of the standard model
calculation.

In this Letter, we present a reliable lattice QCD determi-
nation of the leading-order hadronic correction for themuon,

ahvp� , which is the single largest source of error in the theory
calculation of a�. Additionally, we calculate the leading-

order corrections ahvpe for the electron and ahvp� for the tau,
achieving an accuracy of better than 3% for each. This was
accomplished by introducing a modification of the existing
method that results in a significantly more well-controlled
calculation. After examining all sources of systematic error
and performing our own extraction of the two-flavor contri-
bution to the experimental measurements, we find agree-
ment for all three charged leptons in the standard model.

Our current computation is performed in two-flavor
QCD, but the technique presented in this work is readily
generalized to a realistic four-flavor calculation that is
already under way [3]. The precision of our calculation
and the prospects for improving it demonstrate that lattice
QCD can realistically provide a first-principles determina-
tion of the leading-order hadronic contributions to the
magnetic moments of the standard model leptons.

Leading-order hadronic correction.—The anomalous
magnetic moment al of a lepton l can be written as a

perturbative expansion in the electromagnetic coupling
�. Contributions from QCD first occur at the order �2

and can be written as [4]

a
hvp
l ¼ �2

Z 1

0
dQ2 1

Q2
wðQ2=m2

l Þ�RðQ2Þ; (1)

where ml is the mass of the lepton, Q is the Euclidean
momentum, and wðQ2=m2

l Þ is a known function. The com-

bination �RðQ2Þ ¼ �ðQ2Þ ��ð0Þ is the renormalized
hadronic vacuum polarization function �ðQ2Þ, which is
defined shortly. The weight functionwðQ2=m2

l Þ vanishes asðQ2Þ�2 for large Q2. This ensures that the integral above is

dominated by the low Q2 region, making it clear that a
hvp
l

must be evaluated nonperturbatively.
Experimental determination.—The electron and muon

magnetic moments have been measured in dedicated ex-
periments [1,5]. To compare to the standard model predic-
tion, the leading-order hadronic correction is determined
by using unitarity and causality to relate the expression in
Eq. (1) to

a
hvp
l ¼ �2

Z 1

0
ds

1

s
w0ðs=m2

l ÞRðsÞ: (2)

Here w0 is another known weight function and RðsÞ is the
ratio of the hadronic cross section �ðeþe� ! hadronsÞ to
the leptonic cross section �ðeþe� ! �þ��Þ. The deter-
mination of RðsÞ relies on the results of many experiments,
and the integral in Eq. (2) has been evaluated by several
groups, most recently [2,6–8]. Additionally, there are
higher-order corrections, including the so-called light-by-
light contribution, which is difficult to measure and is
modeled instead.
Our calculation is performed in QCD with only up

and down quarks, so we need to extract the two-flavor
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Introduce the vector correlatiors in momentum space:

(δµ,νq
2 − qµqν)Π(q2) =

∑
x

e iq·x⟨Jµ(x)Jν(0)⟩

Jµ(x) = i
∑
f

QfΨf (x)γµΨf (x)

Obtain the LO HVP contribution to muon g − 2:

aHVP LO
µ = 4α2

∫ ∞

0

dq2f (q2)[Π(q2)− Π(q2 = 0)]

where f (q2) is from perturbative calculation:

f (q2) =
m2µq

2Z3(q2)(1− q2Z(q2))
1 +m2µq

2Z2(q2)

Z(q2) =

√
q4 + 4m2µq

2 − q2

2m2µq
2
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aHVP LO
µ = 4α2

∫ ∞

0

dq2f (q2)[Π(q2)− Π(q2 = 0)]

(δµ,νq
2 − qµqν)Π(q2) =

∑
x

e iq·x⟨Jµ(x)Jν(0)⟩

• The aHVP LO
µ is a linear combination of Π(q2), which is a linear

combination of ⟨Jµ(x)Jν(0)⟩

• It should be possible to express aHVP LO
µ as a linear combination of

⟨Jµ(x)Jν(0)⟩ directly?

• Target: obtain w(t) such that

aµ =

+∞∑
t=0

w(t)C(t), C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩.
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Obtain Π(q2) from C(t):

(δµ,νq
2 − qµqν)Π(q2) =

∑
x

e iq·x⟨Jµ(x)Jν(0)⟩

⇓

3q2Π(q2) =
∑
t

e iqt
∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

⇓

Π(q2) =
∑
t

e iqt

q2

[
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

]

=
∑
t

e iqt

q2
C(t)

At small t, C(t) ∼ log(1/t)/t3. Therefore, the above summation over t will
be badly divergent, i.e. Π(q2) ∼ log(1/a)/a2.
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Consequence of current conservation 19/50

Consider a vector field Jρ(x). It satisfies two conditions:

• ∂ρ Jρ(x)= 0.

• Jρ(x)= 0 if |x| is large.
We can conclude (the result is a little bit unexpected, but actually correct):

∫
d4xJρ(x) =

∫
d4x ∂σ(xρ Jσ(x))= 0 (12)

In three dimension, this result have a consequence which is well-known.

Consider a finite size system with stationary current. We then have

• ∇~ · j~(x~ )= 0, because of current conservation.

• j~(x~ )= 0 if |x~ | large, because the system if of finite size.

Within a constant external magnetic field B~ , the total magnetic force should be

∫ [
j~(x~ )×B~

]
d3x =

[∫
j~(x~ ) d3x

]
×B~ =0 (13)
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• In field theory, if you recall, the power divergence should not appear for

vacuum polarization calculations. The reason is current conservation.

∂xµ⟨Jµ(x)Jν(0)⟩ = 0 and lim
|x |→∞

⟨Jµ(x)Jν(0)⟩ = 0

⇓∑
x

⟨Jµ(x)Jν(0)⟩ = 0 ⇒
∑
t

C(t) = 0

⇓

Π(q2) =
∑
t

e iqt−1
q2

C(t) ⇒ Π(q2) =
∑
t

cos(qt)−1
q2

C(t)

⇓

Π(q2)− Π(q2 = 0) =
∑
t

(
cos(qt)−1

q2
+
1

2
t2
)
C(t)

• You can verify that Π(q2) ∼ log(1/a) and Π(q2)− Π(q2 = 0) is finite
in the a→ 0 limit.
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Combine

aHVP LO
µ = 4α2

∫ ∞

0

dq2f (q2)[Π(q2)− Π(q2 = 0)]

and

Π(q2)− Π(q2 = 0) =
∑
t

(
cos(qt)− 1

q2
+
1

2
t2
)
C(t)

One can obtain:

aµ =

+∞∑
t=0

w(t)C(t)
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Abstract. We discuss the calculation of the leading hadronic vacuum polarization in lattice QCD. Ex-
ploiting the excellent quality of the compiled experimental data for the e+e− → hadrons cross-section, we
predict the outcome of large-volume lattice calculations at the physical pion mass, and design computa-
tional strategies for the lattice to have an impact on important phenomenological quantities such as the
leading hadronic contribution to (g − 2)μ and the running of the electromagnetic coupling constant. First,
the R(s) ratio can be calculated directly on the lattice in the threshold region, and we provide the formulae
to do so with twisted boundary conditions. Second, the current correlator projected onto zero spatial mo-
mentum, in a Euclidean time interval where it can be calculated accurately, provides a potentially critical
test of the experimental R(s) ratio in the region that is most relevant for (g − 2)μ. This observation can
also be turned around: the vector correlator at intermediate distances can be used to determine the lattice
spacing in fm, and we make a concrete proposal in this direction. Finally, we quantify the finite-size effects
on the current correlator coming from low-energy two-pion states and provide a general parametrization
of the vacuum polarization on the torus.

1 Introduction
In quantum field theory, the information encoded in the
correlation functions of conserved currents has important
phenomenological applications. The correlation function
of the electromagnetic current, in particular, quantifies the
polarization of the “vacuum” by virtual particles induced
by the passage of a photon. This virtuality-dependent
vacuum polarization Π(Q2) affects the propagation of
the photon and has physically observable consequences,
see, for instance, [1]. One of them is the running of the
fine structure constant α(Q2), which now depends on
the four-momentum squared of the photon via eq. (11)
below. Another consequence of the polarization of the
vacuum is a contribution of all virtual particles to the
magnetic moments of leptons, which can be measured to
very high precision in the case of the electron and the
muon (see [2] for a review of the subject). We will discuss
this application extensively below.

One important contribution to the vacuum polariza-
tion comes from QCD. At high virtuality Q2, this con-
tribution to Π(Q2) is calculable in perturbation theory,
due to the asymptotic freedom property of QCD. Below
a scale of a few GeV, the vacuum polarization receives
large non-perturbative contributions, making it inacces-
sible to known analytic methods. From here on, we will
focus exclusively on the QCD contribution to Π(Q2), but
will keep using the same symbol. In particle phenomenol-

a e-mail: meyerh@kph.uni-mainz.de

ogy, it has been customary to extract the low-Q2 part
of the function Π(Q2) from experiments via a dispersion
relation (eq. (16) below). However it is also possible to
directly calculate Π(Q2) from first principles using nu-
merical lattice QCD methods [3–6], roughly for a range
of momenta 0.1GeV2 � Q2 � 4.0GeV2. What limits the
upper end of the momentum range is the size of the lat-
tice spacing a, whose inverse provides a momentum cutoff
∼ π/a. On the lower end, it is the discreteness of the
available momenta in a finite volume (|Qmin| = 2π

L on a
torus of dimension L) that limits the accessible Q2 values.
We note that current correlators involving heavy flavors
of quarks have been used on the lattice for other purposes,
namely determining the charm quark mass and the QCD
coupling constant [7].

To obtain the leading hadronic contribution to the
anomalous magnetic moment of the muon aHLO

μ , the
imaginary part of the vacuum polarization at timelike
momenta is folded with an analytically known QED
kernel [8] which involves only the scale mμ. The same
quantity aHLO

μ can also be expressed as an integral over
spacelike momenta [9]. An important observation of
Blum [3] was that this opens the possibility to evaluate it
in the Euclideanized theory, which can be simulated non-
perturbatively by Monte Carlo methods [3–6]. Because
the muon mass μ ≈ 105MeV is small on hadronic scales,
the contribution to aμ is dominated by the region of
small Q2 or, alternatively, by long-distance contributions.
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We present a first-principles lattice QCDþ QED calculation at physical pion mass of the leading-order
hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total
contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects
is aHVP LO

μ ¼ 715.4ð18.7Þ × 10−10. By supplementing lattice data for very short and long distances with

R-ratio data, we significantly improve the precision to aHVP LO
μ ¼ 692.5ð2.7Þ × 10−10. This is the currently

most precise determination of aHVP LO
μ .
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Introduction.—The anomalous magnetic moment of the
muon aμ is defined as the deviation of the Landé factor gμ
from Dirac’s relativistic quantum mechanics result,
aμ ¼ ½ðgμ − 2Þ=2�. It is one of themost precisely determined
quantities in particle physics and is currently known both
experimentally (BNL E821) [1] and from a standard model
theory calculation [2] to approximately1=2parts permillion.
Interestingly, the standard model result aSMμ deviates

from the experimental measurement aexptμ at the 3–4σ level,
depending on which determination of the leading-order
hadronic vacuum polarization aHVP LO

μ is used. One finds
[3–6]

aexptμ − aSMμ ¼ 25.0ð4.3Þð2.6Þð6.3Þ × 10−10 ½3; 4�;
31.8ð4.1Þð2.6Þð6.3Þ × 10−10 ½4; 5�;
26.8ð3.4Þð2.6Þð6.3Þ × 10−10 ½4; 6�; ð1Þ

where the quoted errors correspond to the uncertainty in
aHVP LO
μ , aSMμ − aHVP LO

μ , and aexptμ . This tension may hint at
new physics beyond the standard model of particle physics
such that a reduction of uncertainties in Eq. (1) is highly
desirable. New experiments at Fermilab (E989) [7] and
J-PARC (E34) [8] intend to decrease the experimental

uncertainty by a factor of 4. First results of the E989
experiment may be available before the end of 2018 [9]
such that a reduction in uncertainty of the aHVP LO

μ con-
tribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
μ in lattice QCDþ QED at physical

pion mass with nondegenerate up and down quark masses
and present results for the up, down, strange, and charm
quark contributions. Our lattice calculation of the light-
quark QED correction to aHVP LO

μ is the first such calcu-
lation performed at physical pion mass. In addition, we
replace lattice data at very short and long distances by
experimental eþe− scattering data using the compilation of
Ref. [10], which allows us to produce the currently most
precise determination of aHVP LO

μ .
Computational method.—The general setup of our non-

perturbative lattice computation is described in Ref. [11].
We compute

aμ ¼ 4α2
Z

∞

0

dq2fðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ�; ð2Þ

where fðq2Þ is a known analytic function [11] and Πðq2Þ is
defined as

P
xe

iqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ
with sum over space-time coordinate x and JμðxÞ ¼
i
P

f QfΨ̄fðxÞγμΨfðxÞ. The sum is over up, down, strange,
and charm quark flavors with QED chargesQup;charm ¼ 2=3
and Qdown;strange ¼ −1=3. For convenience we do not
explicitly write the superscript HVP LO. We compute
Πðq2Þ using the kernel function of Refs. [12,13]
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.

 0
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections
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Figure 2: SIB corrections

4

Diagrams – Strong isospin breaking

8 / 20

and fit d!.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d! and E! and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E! and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections

x

x

x

(a) M

x

x

x

(b) R

x

(c) Rd

x

x

x

(d) O

Figure 2: SIB corrections

4

and fit d!.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d! and E! and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E! and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections

x

x

x

(a) M

x

x

x

(b) R

x

(c) Rd

x

x

x

(d) O

Figure 2: SIB corrections

4

7 / 18



HVP: isospin limit 99 / 120
Diagrams – Isospin limit

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.
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(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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HVP: ud, conn, isospin 100 / 120
2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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HVP: s, conn, isospin 101 / 120
2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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HVP: c, conn, isospin 102 / 120
2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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HVP: uds, disc, isospin 103 / 120
2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.
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(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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HVP: QED corrections 104 / 120
Diagrams – QED corrections

and fit d!.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d! and E! and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E! and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections

x

x

x

(a) M

x

x

x

(b) R

x

(c) Rd

x

x

x

(d) O

Figure 2: SIB corrections

4

For diagram F we enforce exchange of gluons between the quark loops as otherwise a
cut through a single photon line would be possible. This single-photon contribution is
counted as part of the HVP NLO and not included for the HVP LO.
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HVP: QED, conn 105 / 120

and fit d!.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d! and E! and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E! and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.
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For the HVP R is negligible since ∆mu ≈ −∆md and O is SU(3) and 1/Nc suppressed.
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and fit d!.
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Window method (implemented in RBC/UKQCD 2018)

We therefore also consider a window method. Following Meyer-Bernecker
2011 and smearing over t to define the continuum limit we write

aµ = aSD
µ + aW

µ + aLD
µ

with

aSD
µ =

∑

t

C (t)wt [1−Θ(t, t0,∆)] ,

aW
µ =

∑

t

C (t)wt [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

aLD
µ =

∑

t

C (t)wtΘ(t, t1,∆) ,

Θ(t, t ′,∆) = [1 + tanh [(t − t ′)/∆]] /2 .

In this version of the calculation, we use
C (t) = 1

12π2

∫∞
0

d(
√
s)R(s)se−

√
st with R(s) = 3s

4πα2σ(s, e+e− → had)
to compute aSD

µ and aLD
µ .
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HVP: window method in position and momentum space 110 / 120
How does this translate to the time-like region?

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di↵erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di↵er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ππ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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1. Introduction

2. HLbL: QEDL approach

3. HLbL: QED∞ approach

4. HVP

• Master formula

• Long distance part



HVP: long distance part from lattice calculation 112 / 120
• Main idea is that: one does not have to calculate the long distance

part of the correlation function directly.

C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

=
∑
n

V

3

∑
j=0,1,2

⟨0|Jj(0)|n⟩⟨n|Jj(0)|0⟩e−Ent

• The summation over n is limited to zero momentum states and states
are normalized to “1”.

• At large t, only lowest few states contribute. We only need the matrix
elements ⟨n|Jj(0)|0⟩ and the corresponding energy En.

• Need to study the spectrum of the ππ system!
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24ID data not at plateau, but improved with fit to data
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GEVP Results - 4π Operators
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Breakdown of formalism for phase shifts +FVC could occur at 4π threshold
Compute 2π → 4π and 4π → 4π correlation functions and check explicitly

4π → 4π has ∼ 1000 independent Wick contractions
Spectrum unaffected by inclusion of 4π operator, but state is resolvable

Overlap of 4π state with local vector current unresolvable
Overlap of state with 4π operator significant
=⇒ 4π state safely negligible in local vector current
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GEVP Results - 4π Operators
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Correlation Function Reconstruction - 48I
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GEVP results to reconstruct long-distance behavior of
local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance,
missing excited states at short-distance

More states =⇒ better reconstruction, can replace C(t) at shorter distances

Aaron S. Meyer Section: Bounding Method and the Muon HVP 17/ 25



HVP: outlook C. Lehner 2019 118 / 120
Conclusions and Outlook

I Target precision for HVP is of O(1× 10−10) in a few years; for now
consolidate error at O(3× 10−10)

I Dispersive result from e+e− → hadrons right now is at 3× 10−10

but limited by experimental tensions

I Two-pion channel from DHMZ17, KNT18 (e+e−) and DHMYZ13
(τ) are scattered by 12.5× 10−10

Experimental updates and first-principles calculation of
isospin-breaking corrections desirable. Combination of dispersive
and lattice results can in short term lessen dependence on contested
experimental data.

I New methods to reduce statistical and systematic errors and a lot of
additional data.

I By end of this year, first-principles lattice result could have error of
O(5× 10−10)
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2. HLbL: QEDL approach

3. HLbL: QED∞ approach

4. HVP



120 / 120

Thank You!


	Outline
	Spin, magnetic moment, and g factor
	QED and Schwinger term
	QED and Schwinger term
	QED and Schwinger term
	Electron g-2
	Electron g-2
	Muon g-2: BNL E821
	Muon g-2: Fermilab E989
	Muon g-2: QED contribution
	Muon g-2: Weak contribution
	Muon g-2: Hadronic contribution
	HLbL: models
	Muon g-2: Summary
	Outline
	HLbL: diagrams
	Outline
	HLbL: subtraction method
	HLbL: subtraction method
	HLbL: subtraction method works!
	Outline
	HLbL: Exact photon propagator
	HLbL diagram (1: shift coordinate)
	Magnetic moment - QFT
	Outline
	HLbL diagram (2: more permutations)
	HLbL diagram (3: subtract ``1'')
	Consequence of current conservation
	HLbL diagram (4: q0 limit)
	HLbL diagram (match with F2)
	HLbL diagram (match with F2)
	Magentic moment - E&M
	HLbL: moment method
	HLbL: reorder the summation
	HLbL: reorder the summation
	HLbL: method improved RBC-UKQCD 2016
	Muon leptonic LbL RBC-UKQCD 2016
	Outline
	HLbL: disconnected diagrams
	HLbL: disconnected formula
	HLbL: disconnected formula
	HLbL: long distance contribution - 0 exchange
	HLbL: long distance contribution - 0 exchange
	Outline
	HLbL: 48I m=139 MeV RBC-UKQCD 2017
	zMobius + Multigrid Lanczos + AMA
	HLbL: 48I m=135 MeV RBC-UKQCD prelim
	HLbL: 64I m=135 MeV RBC-UKQCD prelim
	HLbL: hybrid continuum RBC-UKQCD prelim
	HLbL: RBC-UKQCD lattices
	HLbL: RBC-UKQCD lattices
	HLbL: inf vol & contiuum RBC-UKQCD prelim
	Outline
	HLbL: QCD box inside QED box
	Outline
	HLbL: QED kernel
	HLbL: subtracted QED kernel
	Consequence of current conservation
	Muon leptonic LbL RBC-UKQCD 2017
	Muon leptonic LbL RBC-UKQCD 2017
	Outline
	HLbL: Rmax
	HLbL: m= 340 MeV RBC-UKQCD prelim
	HLbL: Long distance 0-pole RBC-UKQCD prelim
	Connected diagram m= 140 MeV RBC-UKQCD prelim
	HLbL: disconnected diagram and M2 trick
	Leading discon diagram m= 140 MeV RBC-UKQCD prelim
	Con+Leading discon m= 140 MeV RBC-UKQCD prelim
	HLbL: subleading discon
	Subleading discon m= 140 MeV RBC-UKQCD prelim
	Outline
	HVP: status
	HVP: dispersive method - overview
	HVP: dispersive method - e+ e- status
	Outline
	HVP: master formula
	HVP: master formula
	HVP: master formula
	Consequence of current conservation
	HVP: master formula
	HVP: master formula
	HVP: all diagrams
	HVP: isospin limit
	HVP: ud, conn, isospin
	HVP: s, conn, isospin
	HVP: c, conn, isospin
	HVP: uds, disc, isospin
	HVP: QED corrections
	HVP: QED, conn
	HVP: QED, disc
	HVP: strong isospin breaking
	HVP: SIB
	HVP: window method
	HVP: window method in position and momentum space
	Outline
	HVP: long distance part from lattice calculation
	HVP: GEVP Results - J+ 2  operators only
	HVP: GEVP Results - J+ 2+ 4  operators
	HVP: GEVP Results - J+ 2+ 4  operators
	HVP: Correlation Function Reconstruction - 48I
	HVP: outlook C. Lehner 2019
	Summary
	

