Gluon Fragmentation into $\therefore 1$ c1:8]
 Quarkoniazat NiO

Zhang Peng Peking University April 23, 2019

Outline

- Introduction
- LO calculation
- Real calculation
- Virtual calculation
- Discussion
- Conclusion and Summary

Introduction

Heavy quarkonium

- Simple bound states
- Non-relativistic system: $v \ll 1$
- Heavy mass: $m_{Q} \gg \Lambda_{Q C D}$
- Separated momentum scales: $m_{Q}, m_{Q} v, m_{Q} v^{2}, ~ \Lambda_{Q C D}$
- NRQCD factorization Bodwin, Braaten, Lepage, Phys. Rev. D51 (1995) 1125-1171

$$
d \sigma_{A+B \rightarrow H+X}=\sum_{n} d \sigma_{A+B \rightarrow Q \bar{Q}+X}\left\langle\mathcal{O}^{H}(n)\right\rangle
$$

- color-octet mechanism: Fock state expansion
- Short-distance part
- perturbation calculable
- Organized in powers of α_{s}
- Long-distance matrix elements (LDMEs)
- parametrize the non-perturbative part
- Organized in powers of v
- Universal (process independent)

Introduction

Fragmentation Function (FF)

- QCD Collinear Factorization

$$
d \sigma_{A+B \rightarrow H+X}\left(p_{T}\right)=\sum_{i} d \hat{\sigma}_{A+B \rightarrow i+X}\left(\frac{p_{T}}{z}, \mu\right) \otimes D_{i \rightarrow H}(z, \mu)+\mathcal{O}\left(\frac{1}{p_{T}^{2}}\right)
$$

- Evolution by the DGLAP evolution

Gribov, Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438-450 Altarelli, Parisi, Nucl. Phys. B126 (1977) 298-318 Dokshitzer, Sov. Phys. JETP 46 (1977) 641-653

$$
\mu \frac{d}{d \mu} D_{g \rightarrow H}(z, \mu)=\sum_{i} \int_{z}^{1} \frac{d \xi}{\xi} P_{i g}\left(\frac{z}{\xi} ; \alpha_{s}(\mu)\right) D_{i \rightarrow H}(\xi, \mu)
$$

- Compare with the NRQCD factorization

$$
D_{i \rightarrow H}\left(z, \mu_{0}\right)=\sum_{n} d_{n}\left(z, \mu_{0}, \mu_{f}\right)\left\langle\mathcal{O}^{H}(n)\right\rangle
$$

- LDMEs: lattice, potential model, experiment
- SDCs: match from the Full QCD calculation
- Parton fragment into a free $Q \bar{Q}$ state.
- Calculate the Feynman diagrams

Introduction

Present calculation (single parton FFs)

- Up to α_{s}^{2}-order Summary

> Ma, Qiu, Zhang, Phys.Rev. D89 (2014) 094029 Ma, Qiu, Zhang, JHEP o6 (2015) 021

- α_{s}^{3}-order
- $g \rightarrow Q \bar{Q}\left({ }^{3} S_{1}^{[1]}\right)+g g$
- Numerical Braaten, Yuan, Phys. Rev. Lett. 71 (1993) 1673-1676 Braaten, Yuan, Phys. Rev. D52 (1995) 1125-1171
- Analytical

Zhang, Ma, Chen, Chao, Phys. Rev. D96 (2017) 094016

- $g \rightarrow Q \bar{Q}\left({ }^{1} P_{1}^{[1]}\right)+g g$
- Analytical Sun, Jia, Liu, Zhu, Phys. Rev. D98 (2018) 014039
- $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[1]}\right)+X(\mathrm{NLO})$
- Numerical

Artoisenet, Braaten, JHEP. 04 (2015) 121

LO Calculation

- Feynman Diagram
- Form of SDC

$$
\int \mathrm{d} \Phi_{\text {Born }} \frac{1}{k \cdot P+a}
$$

in which $a=0, \frac{1}{2}$,
 and the phase space integral is
$\int \mathrm{d} \Phi_{\text {Born }}=\frac{1}{4 \pi z(1-z)} \int \frac{\mathrm{d}^{D-2} k_{\perp}}{(2 \pi)^{D-2}}$

- Final results
- $g \rightarrow Q \bar{Q}\left(S_{0}^{[1]}\right)+X \quad d_{10}^{[11}(z)=\frac{\alpha_{s}^{2}}{2(1-\epsilon) N_{c} m_{Q}^{3}}\left(\frac{\pi \mu_{\varphi}^{2}}{m_{Q}^{2}}\right)^{\epsilon} d_{\mathrm{LO}}(z)$,
- $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right)+X \quad d_{\mathrm{LO}}^{[8]}(z)=\frac{\alpha_{s}^{2}\left(N_{c}^{2}-4\right)}{4(1-\epsilon) N_{c}\left(N_{c}^{2}-1\right) m_{Q}^{3}}\left(\frac{\pi \mu_{r}^{2}}{m_{Q}^{2}}\right)^{\epsilon} d_{\mathrm{LO}}(z)$

$$
d_{\mathrm{LO}}^{(0)}(z)=\lim _{\epsilon \rightarrow 0} d_{\mathrm{LO}}(z)=(3-2 z) z+2(1-z) \ln (1-z)
$$

Real Calculation

- Feynman Diagram
- Form of SDCs

$$
\begin{aligned}
& \int \mathrm{d} \Phi_{\text {real }} \prod_{i} \frac{1}{E_{i}^{a_{i}}} \\
= & \frac{P \cdot n}{2 z^{2}} \int \frac{\mathrm{~d}^{D} k_{1}}{(2 \pi)^{D-1}} \frac{\mathrm{~d}^{D} k_{2}}{(2 \pi)^{D-1}} \delta_{+}\left(k_{1}^{2}\right) \delta_{+}\left(k_{2}^{2}\right) \delta\left(k_{1} \cdot n+k_{2} \cdot n-\frac{1-z}{z} P \cdot n\right) \prod_{i} \frac{1}{E_{i}^{a_{i}}}
\end{aligned}
$$

in which

$$
\begin{aligned}
& E_{1}=k_{1} \cdot k_{2}, \quad E_{2}=k_{1} \cdot P, \quad E_{3}=k_{2} \cdot P, \\
& E_{4}=2 k_{1} \cdot P+1, \quad E_{5}=2 k_{2} \cdot P+1, \\
& E_{6}=2 k_{1} \cdot k_{2}+k_{1} \cdot P+k_{2} \cdot P, \\
& E_{7}=2 k_{1} \cdot k_{2}+2 k_{1} \cdot P+2 k_{2} \cdot P+1, \\
& E_{8}=k_{1} \cdot n, \quad E_{9}=k_{1} \cdot n+P \cdot n, \\
& E_{10}=k_{2} \cdot n, \quad E_{11}=k_{2} \cdot n+P \cdot n .
\end{aligned}
$$

$$
E_{12}=k_{1}^{2},
$$

$$
E_{13}=k_{2}^{2},
$$

$$
E_{14}=k_{1} \cdot n+k_{2} \cdot n-\frac{1-z}{z} P \cdot n
$$

Real Calculation

- IBP reduction

- For a family of Feynman integrals

$$
F\left(a_{1}, \ldots, a_{n}\right)=\int \cdots \int \frac{\mathrm{d}^{D} l_{1} \ldots \mathrm{~d}^{D} l_{h}}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}}
$$

D_{i} : linear functions with respect to the scalar product of loop momenta and external momenta.

- IBP relations (integrated boundlessly)

$$
\int \cdots \int \mathrm{d}^{D} l_{1} \ldots \mathrm{~d}^{D} l_{h} p_{j}^{\mu} \frac{\partial}{\partial l_{i}^{\mu}} \frac{1}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}}=0
$$

- If D_{i} are independent and complete

$$
\sum c_{i} F\left(a_{1}+b_{i, 1}, \ldots, a_{n}+b_{i, n}\right)=0 \quad b_{i, j} \in\{-1,0,1\}
$$

- Reduce to master integrals (MIs)

Real Calculation

- Transform of delta function

$$
(2 \pi) \delta(x)=\lim _{\eta \rightarrow 0}\left(\frac{i}{x+i \eta}-\frac{i}{x-i \eta}\right)
$$

- Transform $\delta\left(D_{j}\right)$ in phase space to $1 / D_{j}$
- Normally IBP relations independent with in
- Ignore the infinitesimal imaginary parts
- Choose MIs with power of D_{j} no more than 1
- Change $1 / D_{j}$ back to $\delta\left(D_{j}\right)$
- Ignore the MIs with power of D_{j} no more than 0

Real Calculation

Problem in real IBP reduction

- Unregularized rapidity divergence
- For MI

$$
\int \mathrm{d} \Phi_{\text {real }} \frac{1}{E_{1} E_{4}} \quad \rightleftharpoons \begin{gathered}
E_{1}=k_{1} \cdot k_{2} \\
E_{4}=2 k_{1} \cdot P+1
\end{gathered}
$$

- integrated out $k_{1}^{-}, k_{2}^{-}, k_{2}^{+}$, we get

$$
\frac{1}{(4 \pi)^{2} z_{2}^{2}} \int_{0}^{1} \frac{1 z_{1}}{z_{1}} \int \frac{\int^{D-2} k_{1 \perp}\left(\frac{1-2}{D-2} k_{2 \perp}\right.}{(2 \pi)^{-2}\left(\frac{2 \pi}{(2 \pi)^{D-2}}\right.} \frac{1}{\left(k_{21}-k_{1 \perp}\right)^{2}\left(k_{1 \perp}^{2}+\left(\frac{1-z}{\varepsilon}\right)^{2} z_{1}\left(1-z_{1}\right)+\frac{1-z}{\frac{2}{2}}\left(1-z_{1}\right)\right)}
$$

- rapidity divergence
- unregularized in dimensional regularization
- Problems
- IBP relation?
- Value of MI?

Real Calculation

Problem in real IBP reduction

- Gluon mass regularization
- Transform the phase space integral

$$
\mathrm{d} \Phi^{\prime}=\frac{P \cdot n}{z^{2} 2!} \frac{\mathrm{d}^{D} k_{1}}{(2 \pi)^{D-1}} \frac{\mathrm{~d}^{D} k_{2}}{(2 \pi)^{D-1}} \delta_{+}\left(k_{1}^{2}-m_{g}^{2}\right) \delta_{+}\left(k_{2}^{2}-m_{g}^{2}\right) \delta\left(k_{1} \cdot n+k_{2} \cdot n-\frac{1-z}{z} P \cdot n\right)
$$

- Take the limit of $m_{g} \rightarrow 0$
- Calculation of the MI
- integrated out $k_{1 \perp}, k_{2 \perp}$, we get

$$
t=\frac{1-z}{z}
$$

$$
(4 \pi)^{-4+2 c_{g}-2 \epsilon} \Gamma(\epsilon)^{2} z^{-2} \int_{0}^{1} d z_{1} z_{1}^{-1+\epsilon}\left(1-2 z_{1}+2 z_{1}^{2}\right)^{-\epsilon}\left(z^{2} z_{1}+t+m_{g}^{2} / z_{1}\right)^{-\epsilon}
$$

- Only $z_{1} \sim m_{g}^{2}$ values in the limit of $m_{g} \rightarrow 0$
- The final result is

$$
\begin{aligned}
& (4 \pi)^{-4+2 \epsilon} \Gamma(\epsilon)^{2} z^{-2} \int_{0}^{\infty} \mathrm{d} y y^{-1+\epsilon}(t+1 / y)^{-\epsilon} \\
& =(4 \pi)^{-4+2 \varepsilon} z^{-2+2 \epsilon}(1-z)^{-2 \epsilon} \Gamma(2 \epsilon) \Gamma(\epsilon) \Gamma(-\epsilon) .
\end{aligned}
$$

Real Calculation

Problem in real IBP reduction

- Divide the origin express two parts
- Integrals that can be regularized: naive IBP reduction (ignore in directly)
- Integrals that can not be regularized: gluon mass regularization method
- The unregularized integrals cancelled finally
- Test the IBP reduction of $\int \mathrm{d} \Phi \frac{1}{E_{1} E_{4} E_{7}}$ with naive IBP method
- One of MIs is $\int d \Phi_{\text {real }} \frac{1}{E_{1} E_{4}}$, but IBP relation values once we take the gluon mass regularization method in the calculation of this MI
- gluon mass regulator can indeed give correct result
- naïve IBP reduction values once the initial integrals are regularized
- Finally obtain 95 MIs

Real Calculation

Calculation of MIs

- Set up differential equations (DEs)

$$
\frac{\mathrm{d} \boldsymbol{I}(\epsilon, z)}{\mathrm{d} z}=A(\epsilon, z) \boldsymbol{I}(\epsilon, z)
$$

- Asymptotic expansions

$$
\left.I_{k}(z, \epsilon)\right|_{z_{0}}=\sum_{s} \sum_{i=0}^{n_{s}}\left(z-z_{0}\right)^{s} \ln ^{i}\left(z-z_{0}\right) \sum_{j=0}^{\infty} I_{k}^{s i j}(\epsilon)\left(z-z_{0}\right)^{j}
$$

- Singularities in DEs: $0,1 / 2,1$

Real Calculation

Calculation of MIs

- Set up differential equations (DEs)

$$
\frac{\mathrm{d} \boldsymbol{I}(\epsilon, z)}{\mathrm{d} z}=A(\epsilon, z) \boldsymbol{I}(\epsilon, z)
$$

- Asymptotic expansions

$$
\left.I_{k}(z, \epsilon)\right|_{z_{0}}=\sum_{s}^{s} \sum_{i=0}^{n_{s}}\left(z-z_{0}\right)^{s} \ln ^{i}\left(z-z_{0}\right) \sum_{j=0}^{\infty} S_{k}^{i j}(\epsilon)\left(z-z_{0}\right)^{i}
$$

- Singularities in DEs: $0,1 / 2,1$
- estimate values of MIs in regions $0 \sim \frac{1}{4}, \frac{1}{4} \sim \frac{3}{4}, \frac{3}{4} \sim 1$ respectively by the asymptotic expansions of MIs at $z=0,1 / 2,1$
- Coefficients at high order are related with those at lower order
- Calculate the boundary at $z \rightarrow 1$
- Sector analyzation
- Sector decomposition

Virtual Calculation

- Feynman Diagram
- Form of SDCs

$$
\begin{aligned}
& \int \mathrm{d} \Phi_{\text {loop }} \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \prod_{i} \frac{1}{F_{i}^{a_{i}}} \\
= & \frac{P \cdot n}{z^{2}} \int \frac{\mathrm{~d}^{D} k}{(2 \pi)^{D-1}} \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \delta_{+}\left(k^{2}\right) \delta\left(k \cdot n-\frac{1-z}{z} P \cdot n\right) \prod_{i} \frac{1}{F_{i}^{a_{i}}}
\end{aligned}
$$

In which
$F_{1}=k \cdot P, \quad F_{2}=2 k \cdot P+1$,
$F_{3}=l^{2}, \quad F_{4}=(l+k)^{2}, \quad F_{5}=(l+P)^{2}$,

$F_{6}=\left(l+\frac{P}{2}\right)^{2}-\frac{1}{4}, \quad F_{7}=\left(l-\frac{P}{2}\right)^{2}-\frac{1}{4}$,
$F_{8}=\left(l+k+\frac{P}{2}\right)^{2}-\frac{1}{4}$,
$F_{9}=(l+k+P)^{2}, \quad F_{10}=l \cdot n$.

- Use naïve IBP reduction
- Obtain 66 MIs

Virtual Calculation

Calculations of MIs

- Calculate the asymptotic expansions at singularities
- Singularities in DEs: $0,2(\sqrt{2}-1), 1$
complex plane

- $z=2(\sqrt{2}-1)$ does not affect the radius of convergence
- Boundaries at $z \rightarrow 1$ are difficult to calculate

Virtual Calculation

Calculations of MIs

- Use in method to calculate boundaries at $z=z_{0}$
- Add in in the denominators that contains loop momentum l
- Set up the DEs over η
- Calculate the boundaries of new MIs at $\eta \rightarrow \infty$ with $z=$ z_{0} in which z_{0} is a analytical point
- Sector analyzation
- Calculate the values of new MIs at $\eta \rightarrow 0$ with DEs
- Use these values as boundaries of initial MIs at $z=z_{0}$
- estimate values of MIs in regions $0 \sim \frac{1}{4}, \frac{1}{4} \sim \frac{3}{4}, \frac{3}{4} \sim 1$ respectively by the asymptotic expansions of MIs at $z=0,1 / 2,1$

Discussion

Final results

After renormalization $b_{0}=\frac{11 N_{c}-2 n_{f}}{6} d_{\mathrm{LO}}^{(0)}(z)=\lim _{\epsilon \rightarrow 0} d_{\mathrm{LO}}(z)=(3-2 z) z+2(1-z) \ln (1-z)$

$$
\begin{aligned}
& \begin{array}{l}
d_{\mathrm{NLO}}^{[1]}(z)= \\
2 \pi N_{c} m_{Q}^{3}
\end{array}\left(d^{[1]}(z)+\ln \left(\frac{\mu_{r}^{2}}{4 m_{Q}^{2}}\right) b_{0} d_{\mathrm{LO}}^{(0)}(z)+\ln \left(\frac{\mu_{f}^{2}}{4 m_{Q}^{2}}\right) f(z)\right), \\
& \begin{aligned}
& d_{\mathrm{NLO}}^{[8]}(z)= \frac{\alpha_{s}^{3}\left(N_{c}^{2}-4\right)}{4 \pi N_{c}\left(N_{c}^{2}-1\right) m_{Q}^{3}} \times\left(d^{[8]}(z)+\ln \left(\frac{\mu_{r}^{2}}{4 m_{Q}^{2}}\right) b_{0} d_{\mathrm{LO}}^{(0)}(z)+\ln \left(\frac{\mu_{f}^{2}}{4 m_{Q}^{2}}\right) f(z)\right), \\
& f(z)=-\frac{n_{f}}{6} d_{\mathrm{LO}}^{(0)}(z)+N_{c}\left(-2(z+2) \mathrm{Li}_{2}(z)-2(z-1) \ln ^{2}(1-z)+2(z-1) \ln (z) \ln (1-z)\right. \\
&+(z-4) z \ln (z)-\frac{(2 z+1)\left(9 z^{2}-5 z-6\right) \ln (1-z)}{6 z} \\
&\left.+\frac{46 z^{3}+\left(8 \pi^{2}-3\right) z^{2}+4\left(\pi^{2}-9\right) z+4}{12 z}\right),
\end{aligned} \\
& d^{[1 / 8]}(z)=\left\{\begin{aligned}
&\left(-\frac{N_{c}}{2 z}+\sum_{i=0}^{2} \sum_{j=0}^{\infty} \ln ^{i} z(2 z)^{j}\left(A_{i j}^{f} n_{f}+A_{i j}^{[1 / 8]} N_{c}+\frac{A_{i j}^{N}}{N_{c}}\right), \quad \text { for } 0<z<\frac{1}{4}\right. \\
& \sum_{j=0}^{\infty}(2 z-1)^{j}\left(B_{j}^{f} n_{f}+B_{j}^{[1 / 8]} N_{c}+\frac{B_{j}^{N}}{N_{c}}\right), \quad \text { for } \frac{1}{4} \leq z \leq \frac{3}{4} \\
& \sum_{i=0}^{3} \sum_{j=0}^{\infty} \ln ^{i}(1-z)(2-2 z)^{j}\left(C_{i j}^{f} n_{f}+C_{i j}^{[1 / 8]} N_{c}+\frac{C_{i j}^{N}}{N_{c}}\right), \text { for } \frac{3}{4}<z<1
\end{aligned}\right.
\end{aligned}
$$

Discussion

Numerical results

[1] Artoisenet, Braaten, JHEP 04 (2015) 121 [2] Artoisenet, Braaten, JHEP 01 (2019) 227 [3] Feng, Jia, arXiv: 1810.04138

- Agree with Ref $[2,3]$ for $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right)+X$
- Agree with Ref [3] but different with Ref [1] for $g \rightarrow$ $Q \bar{Q}\left(S_{0}^{[1]}\right)+X$ especially at $z \rightarrow 0$

Discussion

Divergence at the endpoints

- Divergence at $z \rightarrow 0$
- Leading behavior: $1 / z$
- Partonic hard part behaves as $z^{n}(n \geq 4)$
- small z region has negligible contributions to physical cross sections
- Divergence at $z \rightarrow 1$
- Leading behavior: $\ln ^{2}(1-z)$
- At specific order, perturbative calculation in this region is not good
- Resummation may help to solve this problem

Discussion

Estimate the cross section

$$
\int_{0}^{1} \mathrm{~d} z z^{n}\left(d_{\mathrm{LO}}^{[1 / 8]}(z)+d_{\mathrm{NLO}}^{[1 / 8]}(z)\right) * c^{[1 / 8]}
$$

For $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}$ moments, the integral results are

State	SDCs $* c^{[1 / 8]}$	z^{2}	z^{4}	z^{6}
	$\mathrm{LO}\left(\times 10^{-3}\right)$	5.55116944444	3.85331761905	2.99519856859
${ }^{1} S_{0}^{[1]}$	$\mathrm{LO}+\mathrm{NLO}\left(\times 10^{-3}\right)$	7.54577896198	3.90413390636	2.31890675630
	K -factor	1.35931339108	1.01318767159	0.774208021001
${ }^{1} S_{0}^{[8]}$	$\mathrm{LO}+\mathrm{NLO}\left(\times 10^{-3}\right)$	8.94021475091	4.99398540596	3.12511443983
	K -factor	1.61051015293	1.29602225917	1.04337471064

- K-factor are moderate

Discussion

Sensitivities to renormalization scale

μ_{r} change from m_{b} to $4 m_{b}$

- In NLO error bands, upper value are larger than lower value by a factor of 2 in the middle z region
- Large theoretical uncertainties

Conclusion and Summary

- Give a semi-analytical calculation of the FFs for processes $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[1,8]}\right)+X$ at NLO
- NLO corrections are large
- Theoretical uncertainties are large
- K-factors are moderate for high moments integrals
- Discover a method to calculate FFs with high-loop integrals
- IBP reduction
- Set up DEs of the MIs
- Calculate the boundaries of MIs
- Solve the asymptotic series at singularities through DEs
- Use the series to estimate the value at near region

