Triple prompt J/ψ hadroproduction as a hard probe of multiple-parton scatterings

Yu-Jie Zhang

Beihang Univeisity

2nd FCPPL Quarkonium Production workshop @ THU

Based on Hua-Sheng Shao, YJZ, 1902.04949

April 23, 2019

Introduction	The frame of Calculation	Summary
Outline		

- **2** The frame of Calculation
- **3** Numerical Result of $J/\psi + J/\psi + J/\psi + X$

Introduction

Heavy quarkonium provide ideal test of non-perturbative QCD and PQCD: Lansberg, 1903.09185.

- Heavy quarkonium provide ideal test of non-perturbative QCD and PQCD: Lansberg, 1903.09185.
- Sundamental parameters of SM: α_s , m_c , m_b , V_{cq} , V_{bq} .

- Heavy quarkonium provide ideal test of non-perturbative QCD and PQCD: Lansberg, 1903.09185.
- 2 Fundamental parameters of SM: α_s , m_c , m_b , V_{cq} , V_{bq} .
- PDF: collinear PDF, TMD PDF, ...

- Heavy quarkonium provide ideal test of non-perturbative QCD and PQCD: Lansberg, 1903.09185.
- Sundamental parameters of SM: α_s , m_c , m_b , V_{cq} , V_{bq} .
- PDF: collinear PDF, TMD PDF, ...
- Quark-gluon plasma, pA, AA (Wangmei ZHA, Jiayin SUN, Di YANG)...

- Heavy quarkonium provide ideal test of non-perturbative QCD and PQCD: Lansberg, 1903.09185.
- Sundamental parameters of SM: α_s , m_c , m_b , V_{cq} , V_{bq} .
- PDF: collinear PDF, TMD PDF, ...
- Quark-gluon plasma, pA, AA (Wangmei ZHA, Jiayin SUN, Di YANG)...
- Double-parton scattering (DPS), triple-parton scattering (TPS)

Quarkonium productions

NLO J/ψ at LHCb, Chao/Wang/Kniehl, 1506.03981

CO LDMEs, 1212.2037

	Butenschoen, Kniehl ¹⁸	Gong, Wang, Wan, Zhang ⁵³	Chao, Ma, default set	Shao, Wang, Zhang ⁵² set 2 set 3		
$\begin{array}{c} \langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]})\rangle \\ \langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle \\ \langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle \\ \langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]})\rangle \end{array}$	$\begin{array}{c} 1.32 \ {\rm GeV^3} \\ 0.0497 \ {\rm GeV^3} \\ 0.0022 \ {\rm GeV^3} \\ -0.0161 \ {\rm GeV^5} \end{array}$	$\begin{array}{c} 1.16 \ {\rm GeV^3} \\ 0.097 \ {\rm GeV^3} \\ -0.0046 \ {\rm GeV^3} \\ -0.0214 \ {\rm GeV^5} \end{array}$	$\begin{array}{c} 1.16 \ {\rm GeV}^3 \\ 0.089 \ {\rm GeV}^3 \\ 0.0030 \ {\rm GeV}^3 \\ 0.0126 \ {\rm GeV}^5 \end{array}$	$\begin{array}{c} 1.16 {\rm GeV^3} \\ 0 \\ 0.014 {\rm GeV^3} \\ 0.054 {\rm GeV^5} \end{array}$	1.16 GeV^3 0.11 GeV^3 0 0	
$ \begin{array}{c} \langle \mathcal{O}^{\psi'}(^{3}S^{[1]}_{1}) \rangle \\ \langle \mathcal{O}^{\psi'}(^{1}S^{[8]}_{0}) \rangle \\ \langle \mathcal{O}^{\psi'}(^{3}S^{[8]}_{1}) \rangle \\ \langle \mathcal{O}^{\psi'}(^{3}P^{[8]}_{0}) \rangle \end{array} $		$\begin{array}{c} 0.758 \ {\rm GeV^3} \\ -0.0001 \ {\rm GeV^3} \\ 0.0034 \ {\rm GeV^3} \\ 0.0095 \ {\rm GeV^5} \end{array}$				
$ \begin{array}{l} \langle \mathcal{O}^{\chi_0}({}^3P_0^{[1]})\rangle \\ \langle \mathcal{O}^{\chi_0}({}^3S_1^{[8]})\rangle \end{array} $		$0.107 \ { m GeV}^5$ $0.0022 \ { m GeV}^3$				

Double J/ψ at CMS, Sun, Han, Chao, 1404.4042

Double J/ψ at CMS, Lansberg, Shao, 1410.8822

Double J/ψ , Lansberg, Shao, 1410.8822

	Energy and quarkonium cuts	$\sigma_{\rm exp.}$	$\sigma_{\rm LO}^{\rm SPS, prompt}$	$\sigma_{\rm NLO^{(\star)}}^{\rm SPS, prompt}$	$\sigma^{\mathrm{DPS, prompt}}$	χ^2
LHCb	$\sqrt{s} = 7$ TeV, $P_T^{\psi_{1,2}} < 10$ GeV, $2 < y_{\psi} < 5$ [34]	18 ± 5.3 pb	$41^{+51}_{-24}\ pb$	46 ⁺⁵⁸ ₋₂₇	$31^{+11}_{-6.3}(^{+24}_{-15})\ pb$	0.5 - 1.2
D0	$\sqrt{s} = 1.96 \text{ TeV}, P_T^{\psi_{1,2}} > 4 \text{ GeV},$	SPS: 70 ± 23 fb	$53^{+57}_{-27} \ fb$	$170^{+340}_{-110}~\rm{fb}$	-	-
D0	$ \eta_{\psi} < 2.0$ [12] (+ μ cuts in caption)	DPS: 59 ± 23 fb	-	-	$44^{+16}_{-9.1}(^{+7.5}_{-5.1})~{\rm fb}$	0.06 - 0.5
CMS	$\sqrt{s} = 7 \text{ TeV}, P_T^{\psi_{1,2}} > 6.5 \rightarrow 4.5 \text{ GeV}$ depending on $ y_{\psi_{1,2}} \in [0, 2.2]$ (see the caption) [35]	5.25 ± 0.52 pb	$0.35^{+0.26}_{-0.17} \ pb$	$1.5^{+2.2}_{-0.87} \ \text{pb}$	$0.69^{+0.24}_{-0.14}(^{+0.039}_{-0.027}) \ pb$	1.09 - 1.14
ATLAS	$\sqrt{s} = 7 \text{ TeV}, P_T^{\psi_{1,2}} > 5 \text{ GeV and } y_{\psi_{1,2}} < 2.1 (+ \mu \text{ cuts in the caption}) [48]$	-	$6.4^{+4.3}_{-2.6} \ fb$	$36_{-20}^{+49} \; \rm fb$	$19^{+6.8}_{-4.0}(^{+2.2}_{-1.6})~{\rm fb}$	N/A

Summary

Double J/ψ in the color evaporation model (CEM), Yamanaka, Lansberg, Shao, Zhang 1808.09884, 1811.07474

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

• $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- **2** $J/\psi + charm$ and $\Upsilon + charm$ (LHCb, arXiv:1205.0975, 1510.05949)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)
- **3** $\Upsilon + J/\psi$ (D0, arXiv:1511.02428)

Single parton scattering(SPS), double parton scattering(DPS), and triple-parton scattering (TPS)

DPS and TPS, 1708.07519

DPS

$$\sigma_{pp \to a+b+X}^{DPS} = \frac{1}{1 + \delta_{ab}} \frac{\sigma(pp \to a+X) \times \sigma(pp \to b+X)}{\sigma_{eff,2}} (1)$$

TPS

In particular, the TPS has never been observed yet by any experiment.

$$\sigma_{pp \to a+b+c+X}^{DPS} = \frac{1}{(1 + \delta_{ab} + \delta_{ac} + \delta_{bc} - \delta_{ab}\delta_{ac}\delta_{bc})!} \times \frac{\sigma(a+X) \times \sigma(b+X) \times \sigma(c+X)}{\sigma_{eff,3}^2}$$
(2)

 $\sigma_{\text{off 2}} = (0.82 \pm 0.11) \times \sigma_{\text{off 2}}$ is drive after a clobal survey of 3J and MPI

Triple parton scattering

TPS

Figure: TPS of $pP_b \rightarrow c\bar{c} + c\bar{c} + c\bar{c}$ (PRL118, 122001).

Double parton scattering Picture (Enterria, Snigirev, 1708.07519)

DPS

$$P_{pp\to ab}^{DPS} = P_{pp\to a}^{SPS} \times P_{pp\to b}^{SPS}$$
$$= \frac{\sigma(pp \to a + X)}{\sigma^{inel}(pp)} \times \frac{\sigma(pp \to b + X)}{\sigma^{inel}(pp)}$$
(3)

Then $\sigma_{eff}^{nPS} \sim \sigma^{inel}(pp)$. But $\sigma^{inel}(pp) \sim 30 - 50$ mb and $\sigma_{eff}^{nPS} \sim 10 - 15$ mb.

Triple parton scattering

TPS

Figure: TPS of $pP_b \rightarrow c\bar{c} + c\bar{c} + c\bar{c}$ (PRL118, 122001).

Summary

$\sigma^{DPS}_{\scriptscriptstyle eff}$ (Yamanaka, Lansberg, Shao, Zhang, 1811.07474)

σ_{eff}^{DPS} , Atlas, 1811.11094

DPS and W, Z

$J/\psi + \Upsilon$ @ D0, Shao, Zhang, 1605.03061

Quarkonium associated production at hadron colliders

• $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.

Quarkonium associated production at hadron colliders

 σ(J/ψ + cc̄)@α_s⁴: Artoisenet, Lansberg, Maltoni, 0703129.
 σ(Υ + 3jets)@α_s⁵: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.
- **3** $\sigma(B_{ccc} + \bar{c} + \bar{c} + \bar{c}) @ \alpha_s^6$: Chen, Wu, 1106.0193.

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.
- **3** $\sigma(B_{ccc} + \bar{c} + \bar{c} + \bar{c}) @ \alpha_s^6$: Chen, Wu, 1106.0193.
- $\sigma(J/\psi + J/\psi + c\bar{c})@\alpha_s^6$, Lansberg, Shao, 1308.0474.

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.
- **3** $\sigma(B_{ccc} + \bar{c} + \bar{c} + \bar{c}) @ \alpha_s^6$: Chen, Wu, 1106.0193.
- $\sigma(J/\psi + J/\psi + c\bar{c})@\alpha_s^6$, Lansberg, Shao, 1308.0474.
- **5** $\sigma(\Upsilon + J/\psi) @\alpha_s^6$, Shao, Zhang, 1605.03061.

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.
- **3** $\sigma(B_{ccc} + \bar{c} + \bar{c} + \bar{c}) @ \alpha_s^6$: Chen, Wu, 1106.0193.
- $\sigma(J/\psi + J/\psi + c\bar{c})@\alpha_s^6$, Lansberg, Shao, 1308.0474.
- **5** $\sigma(\Upsilon + J/\psi) @\alpha_s^6$, Shao, Zhang, 1605.03061.
- $\sigma(J/\psi + J/\psi + J/\psi + g)@\alpha_s^7$, Shao, Zhang, 1902.04949.

The frame of Calculation

Cross sections

Hadron and Parton level cross sections

$$\sigma(h_1h_2 \to \mathcal{J}\mathcal{J}\mathcal{J}) = \sum_{a,b} f_{a/h_1} \otimes f_{b/h_2} \\ \otimes \hat{\sigma}(ab \to \mathcal{C} + \mathcal{J} + \mathcal{J} + X).$$
(4)

Parton level cross section

$$d\hat{\sigma}(ab \rightarrow \mathcal{J}\mathcal{J}\mathcal{J}) = \sum_{\substack{n_1, n_2, n_2}} \hat{\sigma}(ab \rightarrow c\bar{c}[n_1]c\bar{c}[n_2]c\bar{c}[n_3] + X)$$
$$\langle O^{\mathcal{J}}(n_1) \rangle \langle O^{\mathcal{J}}(n_2) \rangle \langle O^{\mathcal{J}}(n_3) \rangle$$
(5)

DPS and TPS cross sections of $3J/\psi$

$$\sigma^{\text{DPS}}(pp \to 3J/\psi + X) = \frac{\sigma^{\text{SPS}}(J/\psi J/\psi + X)\sigma^{\text{SPS}}(J/\psi + X)}{\sigma_{\text{eff},2}},$$

$$\sigma^{\text{TPS}}(pp \to 3J/\psi + X) = \frac{1}{6} \frac{(\sigma^{\text{SPS}}(pp \to J/\psi + X))^3}{(\sigma_{\text{eff},3})^2}.$$
 (6)

Therefore, we have to calculate three different SPS cross sections for one, two and three J/ψ production in proton-proton collisions, Lansberg, Shao, 1504.06531.

SPS cross sections for one and two J/ψ production

SPS cross sections for J/ψ

We will use the data-driven approach to fit the matrix element of the single J/ψ production with the precise experimental data, Lansberg, Shao, 1410.8822.

SPS cross sections for $J/\psi J/\psi$

We will use partial NLO result of double J/ψ SPS part by including infrared-safe real emission diagrams only (Lansberg, Shao, 1410.8822), which shows a reasonable agreement with the complete NLO calculation (Sun, Han, Chao, 1404.4042).

One of 28774 Feynman Diagrams of SPS cross sections for $J/\psi J/\psi J/\psi$

Numerical Result of $J/\psi J/\psi J/\psi + X$

Cross sections of $J/\psi J/\psi J/\psi$

		inclusive	$2.0 < y_{J/\psi} < 4.5$	$ y_{J/\psi} < 2.4$
	SPS	$0.41^{+2.4}_{-0.34}\pm0.0083$	$(1.8^{+11}_{-1.5}\pm 0.18)\times 10^{-2}$	$(8.7^{+56}_{-7.5}\pm 0.098)\times 10^{-2}$
$13 { m TeV}$	DPS	$(190^{+501}_{-140}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(7.0^{+18}_{-5.1}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(50^{+140}_{-37}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$130 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$1.3 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$18 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$0.46^{+2.9}_{-0.39}\pm0.022$	$(3.2^{+22}_{-2.8}\pm 0.21)\times 10^{-2}$	$(5.8^{+39}_{-5.1}\pm 0.29)\times 10^{-2}$
$27 { m TeV}$	DPS	$(560^{+2900}_{-480}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(19^{+97}_{-16}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(120^{+630}_{-100}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$570 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$5.0 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$57 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$0.59^{+4.4}_{-0.52} \pm 0.016$	$(3.0^{+25}_{-2.7}\pm 0.23)\times 10^{-2}$	$(7.2^{+63}_{-6.5}\pm 0.38)\times 10^{-2}$
$75 { m TeV}$	DPS	$(1900^{+11000}_{-1600}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(57^{+340}_{-50}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(310^{+2000}_{-270}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$
	TPS	$3900 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$27 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$260 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$
	SPS	$1.1^{+8.4}_{-1.0} \pm 0.044$	$(4.5^{+33}_{-4.0}\pm 0.72)\times 10^{-2}$	$(36^{+290}_{-32}\pm1.8)\times10^{-2}$
$100 { m TeV}$	DPS	$(3400^{+19000}_{-2900}) \times \frac{10 \text{ mb}}{\sigma_{\text{eff},2}}$	$(100^{+550}_{-86}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$	$(490^{+3000}_{-430}) \times \frac{10 \text{ mb}}{\sigma_{\rm eff,2}}$
	TPS	$6500 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$45 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$	$380 \times \left(\frac{10 \text{ mb}}{\sigma_{\text{eff},3}}\right)^2$

Cross sections of $J/\psi J/\psi J/\psi$

Cross sections of $J/\psi J/\psi J/\psi$

We performed a first complete theoretical study of $3J/\psi$ by including SPS, DPS and TPS contributions.

The prompt $3J/\psi$ is a very clean process to probe TPS and therefore the possible triple-parton correlations in a proton.

Although the process is rare, LHC Run2 is already more than enough to measure this process.

Finally, the minimal rapidity gap among $3J/\psi s$ is a very useful observable to separate the TPS events from DPS and SPS.

n	 0	~		~	••	0	n	
	 u	u	u	•		u		

n	 0	~		~	••	0	n	
	 u	u	u	•		u		

Multi parton scattering

The inclusive cross section to produce *n* hard particles in hadronic colliders is a convolution of generalized *n*-parton distribution functions (PDF) and elementary partonic cross sections summed over all involved partons,

$$\sigma_{hh' \to a_{1}...a_{n}}^{\text{NPS}} = \left(\frac{m}{n!}\right) \sum_{i_{1},..,i_{n},i_{1}',..,i_{n}'} \int \Gamma_{h}^{i_{1}...i_{n}}(x_{1},..,x_{n};\mathbf{b}_{1},..,\mathbf{b}_{n};Q_{1}^{2},..,Q_{n}^{2}) \\
\times \hat{\sigma}_{a_{1}}^{i_{1}i_{1}'}(x_{1},x_{1}',Q_{1}^{2}) \cdots \hat{\sigma}_{a_{n}}^{i_{n}i_{n}'}(x_{n},x_{n}',Q_{n}^{2}) \\
\times \Gamma_{h'}^{i_{1}'...i_{n}'}(x_{1}',...,x_{n}';\mathbf{b}_{1}-\mathbf{b},...,\mathbf{b}_{n}-\mathbf{b};Q_{1}^{2},...,Q_{n}^{2}) \\
\times dx_{1}...dx_{n} dx_{1}'...,dx_{n}' d^{2}b_{1},...,d^{2}b_{n} d^{2}b.$$
(7)

The *n*-parton distribution function (1708.07519)

It encodes all the 3D structure information of the hadron.

 Assumption 1: the n-PDF are factored in terms of longitudinal and transverse components,

$$\Gamma_{h}^{i_{1}...i_{n}} = D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2})f(\mathbf{b_{1}})...f(\mathbf{b_{n}})$$
(8)

- We can get hadron-hadron overlap function $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} \mathbf{b}) d^2 b_1$, where $1 = \int T(\mathbf{b}) d^2 b$.
- Assumption 2: the longitudinal components reduce to the product of independent single PDF

$$D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2}) = D_{h}^{i_{1}}(x_{1};Q_{1}^{2})\cdots D_{h}^{i_{n}}(x_{n};Q_{n}^{2})$$
(9)

The cross sections and σ_{eff}^{nPS} (Enterria, Snigirev, 1708.07519)

The cross sections of *n*-particle associated production

Then we can get

$$\sigma_{hh' \to a_1 \dots a_n}^{nPS} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh' \to a_1}^{SPS} \cdots \sigma_{hh' \to a_n}^{SPS}}{\left(\sigma_{eff}^{nPS}\right)^{n-1}},$$
 (10)

 $\sigma_{\rm eff}^{\rm nPS}$

$$\left(\frac{1}{\sigma_{\text{eff}}^{n\text{PS}}}\right)^{n-1} = \int d^2 b \, T^n(\mathbf{b}) \tag{11}$$