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Introduction
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Approaches to (Inclusive) Quarkonium Production

See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

No consensus on the mechanism at work in quarkonium production
Yet, nearly all approaches assume a factorisation between the production of
the heavy-quark pair, QQ̄, and its hadronisation into a meson

Di�erent approaches di�er essentially in the treatment of the hadronisation
3 fashionable models:

1 Colour Evaporation Model: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) so� gluons ?

2 Colour Singlet Model: hadronisation w/o gluon emission; each emission
costs αs�mQ� and occurs at short distances; bleaching at the pair-production time

3 Colour Octet Mechanism (encapsulated in NRQCD): higher Fock states of the
mesons taken into account; QQ̄ can be produced in octet states with
di�erent quantum # as the meson; bleaching with semi-so� gluons ?
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�e current situation in one slide ...
See JPL, arXiv:1903.09185 [hep-ph] for a recent review.

Colour-Singlet Model (CSM) long thought to be insu�cient
. . .not as clear now

[large NLO and NNLO correction to the PT spectrum ; but not perfect� need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

CSM is doing well for the PT integrated yield
S.J. Brodsky, JPL PRD 81 (2010) 051502; Y. Feng, JPL. J.X.Wang Eur.Phys.J. C75 (2015) 313

Colour-Octet Mechanism (COM) helps in describing the PT spectrum
Yet, the COM NLO �ts di�er a lot in their conclusions owing to their
assumptions (data set, PT cut, polarisation �tted or not, etc.)

Colour-Evaporation Mechanism (CEM)� quark-hadron duality
tends to overshoot the data at large PT – issue shared by some COM �ts

All approaches have troubles with ep, ee or pp polarisation and/or the ηc data
�is motivates the study of new observables

which can be more discriminant for speci�c e�ects [e.g. associated production]
However, as we will now see, these o�er new ways to study DPS
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Part II

New observables in quarkonium production
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Associated-quarkonium production

See section 3 of JPL, arXiv:1903.09185 [hep-ph]
Observables Experiments CSM CEM NRQCD Interest

J/ψ+J/ψ LHCb, CMS, ATLAS, D0 
(+NA3)

NLO,
NNLO*

LO ? LO Prod. Mechanism (CS dominant) + 
DPS + gluon TMD

J/ψ+D LHCb LO LO ? LO Prod. Mechanism  (c to J/psi 
fragmentation) + DPS

J/ψ+ϒ D0 (N)LO LO ? LO Prod. Mechanism (CO dominant) + 
DPS

J/ψ+hadron STAR LO -- LO B feed-down; Singlet vs Octet 
radiation

J/ψ+Z ATLAS NLO NLO Partial 
NLO

Prod. Mechanism + DPS

J/ψ+W ATLAS LO NLO NLO (?) Prod. Mechanism (CO dominant) + 
DPS

J/ψ vs mult. ALICE,CMS (+UA1) -- -- -- Initial vs Final state effects ?
J/ψ in jet. LHCb, CMS LO -- LO Prod. Mechanism (?)

J/ψ(ϒ) + jet -- -- -- Prod. Mechanism (QCD corrections)
Isolated J/ψ(ϒ) -- -- -- -- Prod. Mechanism (CS dominant ?) 

J/ψ+b -- -- -- LO Prod. Mechanism (CO dominant) + 
DPS

ϒ+D LHCb LO LO ? LO DPS
ϒ+γ -- NLO,

NNLO*
LO ? LO Prod. Mechanism (CO LDME mix) + 

gluon TMD/PDF 
ϒ vs mult. CMS -- -- --
ϒ+Z -- NLO LO ? LO Prod. Mechanism + DPS
ϒ+ϒ CMS NLO ? LO ? LO ? Prod. Mechanism (CS dominant ?) + 

DPS +  gluon TMD
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On the importance of QCD corrections to J~ψ � J~ψ production
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

At Born (LO) order, the PψψT spectrum is δ�PψψT �: 2� 2 topologies

It can be a�ected by initial parton kT [� interest for TMD studies]
By far insu�cient (blue) to account for the CMS measured spectrum
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A puzzle at large ∆y (orMψψ) ?
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�emost natural solution for this excess is the independent production of two J~ψ
� double parton scattering
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Double parton scatterings in double J~ψ production

If the DPS are independent, one can write

σDPS
ψψ �

1
2
σψσψ
σeff

[σψ can either be measured or computed]
�e smaller σeff , the larger the DPS yield

and the larger the parton correlations in the proton
D0 : σeff � 4.8 � 2.5 mb D0 Coll. PRD 90 (2014) 111101

CMS: σeff � 8.2 � 2.0 � 2.9 mb JPL, H.-S.Shao PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094

ATLAS : σeff � 6.3 � 1.6�stat� � 1.0�syst� � 0.1�BF� � 0.1�lumi�mb
ATLAS Eur. Phys. J. C (2017) 77:76

NB: Agreement not perfect with the ATLAS kinematical distributions
(yet bins at largeMψψ and ∆y contain very few events)
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Predictions: excited states and more
JPL, H.-S.Shao PLB 751 (2015) 479; JPL 1903.09185

Even though we �nd it a natural, accounting for DPS introduces another parameter
How to check that one is not playing with a further d.o.f. on the theory side?
DPS vs SPS dominance are characterised by di�erent feed-down patterns
We de�ne F χcψψ (F

ψ�
ψψ) as the fraction of events containing at least one χc (ψ�)

Under DPS dominance (e.g. large ∆y), σDPS
ab �

m
2
σaσb
σeff
(m: symmetry factor)

F χcψψ � F χcψ � �F χcψ � 2Fdirect
ψ � 2Fψ

�

ψ �, Fψ�ψψ � Fψ
�

ψ � �Fψ�ψ � 2Fdirect
ψ � 2F χcψ �, Fdirect

ψψ � �Fdirect
ψ �2

Under SPS CSM dominance,

Fψ
�

ψψ is slightly enhanced by symmetry factors,
F χcψψ , unlike single quarkonium production, is not enhanced and is found to be small

Overall : (CSM) SPS Low PT DPS High PT DPS
Fψ

�

ψψ 50% 15% 15%
F χcψψ small 25% 50%

Based on up-to-date feed-down values (J~ψ is 80% direct at low PT) JPL, 1903.09185

Hence the importance of measuring J~ψ � ψ� and J~ψ � χc
J~ψ � ηc can also tell something about DPS and about σeff
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Our re-analysis of Z�prompt J~ψ at NLO and with DPS
JPL, H.S. Shao, JHEP 1610 (2016) 153

Signi�cant tensions between the ATLAS measurement and the SPS NRQCD yields:
normalisation, PT and ∆ϕ distributions

ATLAS Collaboration, Eur. Phys. J. C 75 (2015) 229
B. Gong et al., JHEP 1303 (2013) 115
L.Gang et al., JHEP 1102 (2011) 071

We employ a NLO CEM computation of J~ψ � Z with the single non-perturbative
CEM parameter Pprompt

ψ �t to the latest single-J~ψ ATLAS data at 8 TeV.
Just as the CEM tends to produce too many J~ψ at large PT , we expect it to be the
same for J~ψ � Z and to provide us with an upper SPS limit.

we obtain (ATLAS quoted ratio converted to σ)

exp LO CEM SPS NLO CEM SPS DPS (σeff � 15 mb)
ATLAS inclusive 1.6 � 0.4 0.10�0.03

�0.03 0.19�0.05
�0.04 0.46

The theoretical uncertainty for the (N)LO SPS is from the renormalisa-
tion and factorisation scales. All quantities are in units of pb.

�is gives a 3-σ discrepancy without DPS contribution
DPS yield evaluated with σeff � 15 mb is too small; Fit: σeff � 4.7�2.4�1.5 mb
However presence of a peak at ∆ϕ � π in the azimuthal spectrum
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Issue with the azimuthal distribution ?

It is important to note that the ATLAS ∆ϕ spectrum is a raw yield distribution
Since ATLAS e�ciency increases with PT , large-PT events more likely to be recorded
Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS
dominate at low PT and SPS at large PT [�in blue histogram vs. the light red one]
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�e last plot has been made by folding our DPS and SPS cross sections by an
estimation of the ATLAS e�ciency, and it works.

We are waiting for an ATLAS update to con�rm our explanation
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�e last plot has been made by folding our DPS and SPS cross sections by an
estimation of the ATLAS e�ciency, and it works.

We are waiting for an ATLAS update to con�rm our explanation

J.P. Lansberg (IPNO) New Observables in Quarkonium Production April 23, 2019 12 / 21



Issue with the azimuthal distribution ?

It is important to note that the ATLAS ∆ϕ spectrum is a raw yield distribution
Since ATLAS e�ciency increases with PT , large-PT events more likely to be recorded
Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS
dominate at low PT and SPS at large PT [�in blue histogram vs. the light red one]

B
r(

J/
ψ

→
µ+

µ- )/
σ(

Z
)d

σ(
J/

ψ
+

Z
)/

dp
T
 [G

eV
-1

]

pT(J/ψ) [GeV]

Prompt J/ψ+Z production at 8 TeV LHC

DPS:σeff=4.7 mb

LO CEM SPS
NLO CEM SPS

DPS
NLO CEM SPS+DPS

ATLAS data

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 0  10  20  30  40  50  60  70  80  90  100

Can the ∆ϕ peak (with only 1/6 of SPS events overall) be due to that ? YES !

E
ve

nt
s 

(π
/5

)

∆φ(Z,J/ψ)

Prompt J/ψ+Z production at 8 TeV LHC

DPS:σeff=4.7 mb
Assumption: B/S=17/pT(J/ψ)

NLO CEM SPS
DPS

NLO CEM SPS+DPS
ATLAS data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1  2  3

�e last plot has been made by folding our DPS and SPS cross sections by an
estimation of the ATLAS e�ciency, and it works.

We are waiting for an ATLAS update to con�rm our explanation

J.P. Lansberg (IPNO) New Observables in Quarkonium Production April 23, 2019 12 / 21



Issue with the azimuthal distribution ?

It is important to note that the ATLAS ∆ϕ spectrum is a raw yield distribution
Since ATLAS e�ciency increases with PT , large-PT events more likely to be recorded
Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS
dominate at low PT and SPS at large PT [�in blue histogram vs. the light red one]

B
r(

J/
ψ

→
µ+

µ- )/
σ(

Z
)d

σ(
J/

ψ
+

Z
)/

dp
T
 [G

eV
-1

]

pT(J/ψ) [GeV]

Prompt J/ψ+Z production at 8 TeV LHC

DPS:σeff=4.7 mb

LO CEM SPS
NLO CEM SPS

DPS
NLO CEM SPS+DPS

ATLAS data

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 0  10  20  30  40  50  60  70  80  90  100

Can the ∆ϕ peak (with only 1/6 of SPS events overall) be due to that ? YES !

E
ve

nt
s 

(π
/5

)

∆φ(Z,J/ψ)

Prompt J/ψ+Z production at 8 TeV LHC

DPS:σeff=4.7 mb
Assumption: B/S=17/pT(J/ψ)

NLO CEM SPS
DPS

NLO CEM SPS+DPS
ATLAS data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1  2  3

�e last plot has been made by folding our DPS and SPS cross sections by an
estimation of the ATLAS e�ciency, and it works.

We are waiting for an ATLAS update to con�rm our explanation
J.P. Lansberg (IPNO) New Observables in Quarkonium Production April 23, 2019 12 / 21



Our analysis of Z�non-prompt J~ψ at NLO and with DPS
JPL, H.S. Shao, Nucl.Phys. B916 (2017) 132

In the same analysis, ATLAS reported on Z�non-prompt J~ψ.
�is gives an original handle on Z � b at lower PT than b-jets
Interesting check that nothing went wrong with the prompt analysis
SPS predictions were absent at the time of the publication. We �lled this gap in the
litserature usingMadGraph5 aMC@NLO and Pythia 8.1.
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Di�erential cross section/distributions for non-prompt J~ψ � Z production: pT distribution of J~ψ
(le�) and azimuthal angle distribution (right)

Good agreement. Owing to the data uncertainties at low PT , we cannot constrain σeff
more than with a lower limit, 5.0 mb, at 68 % CL.
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Good agreement. Owing to the data uncertainties at low PT , we cannot constrain σeff
more than with a lower limit, 5.0 mb, at 68 % CL.
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Our re-analysis ofW�prompt J~ψ at NLO and with DPS

Similarly to Z�prompt J~ψ, signi�cant tensions between the ATLAS measurement
and the SPS NRQCD yields: normalisation, PT and ∆ϕ distributions

ATLAS Collaboration, JHEP 1404 (2014) 172
L. Gang et al., PRD 83 (2011) 014001

J.P. Lansberg, C. Lorce, PLB 726 (2013) 218

Just as above, we employ a NLO CEM computation of J~ψ � Z (upper SPS limit)
JPL, H.S. Shao, N. Yamanaka, PLB 781 (2018) 485

we obtain (for the cross section)

exp LO CEM SPS NLO CEM SPS DPS (σeff � 15 mb)
ATLAS inclusive 4.5�1.9

�1.5 pb 0.16 � 0.05 0.28 � 0.07 1.7

The theoretical uncertainty for the (N)LO SPS is from the renormalisa-
tion and factorisation scales. All quantities are in units of pb.

�is gives a 2+σ discrepancy without DPS contribution. �e discrepancy rises up to
3+ σ with the di�erential x-section: evidence for DPS (see next)

DPS yield evaluated with σeff � 15 mb is also too small
Fitting σeff gives 6.1�3.3�1.9 mb
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Comparisons with the di�erential distributions

Like for Z � J~ψ, DPS dominate at low PT and SPS at large PT in the ATLAS
acceptance, [black histogram vs. the blue one]
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�e ∆ϕ plot has been made by folding our DPS and SPS cross sections by an
estimation of the ATLAS e�ciency

Agreement but large exp. uncertainties
We are waiting for ATLAS data at 13 TeV
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Υ � Υ
CMS JHEP05(2017)013

A single analysis by CMS at
º
s � 8 TeV for SyΥ S @ 2.0 using 20.7  �1 of data

Only 40 events collected; no kinematical distributions
σΥΥ � 68.8 � 12.7 (stat) � 7.4 (syst) � 2.8�Br� pb [Polarisation uncertainty : 40 %]
LO CS/NRQCD expectations: 26 � 13 pb; LO CEM expectations : O�0.2�pb

R. Li et al. PRD 80 (2009) 014020; P. Ko et al.JHEP 1101 (2011) 070; A.V Berezhnoy et al.PRD 87 (2013) 054023; JPL et al.to appear

[Mass uncertainty not accounted for, but likely large; CO below % level]

Lacking a control region where σDPS
Q σ SPS or, as a makeshi�, some kinematical

distributions, impossible to extract σDPS, and thus σeff w/o precisely knowing σSPS
I thus obviously disagree with the statement made about the DPS in the CMS paper
One can however present some expectations about the DPS yield to assess its impact

In the same acceptance, CMS measured single Υ and obtained σΥ � 7.5 � 0.6 mb
Taking σeff � 7.5 mb (approx. onium world average), one gets σ theo.DPS

ΥΥ � 4 � 2 pb
�erefore DPSs likely have a very small impact

Yet, too early to call for a discrepancy between σ exp.CMS and σ theo.DPS
� σ theo.SPS given

both uncertainties on σ exp.CMS and σ theo.SPS, but let’s stay tuned for RUN-2 data !
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Harvesting quarkonium data: 5 extractions using theory
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LHCb (Υ(1S)+D0)
CDF (4 jets)
CDF (γ + 3 jets)
D0 (γ + 3 jets)
ATLAS (W + 2 jets)
CMS (W + 2 jets)

J~ψ+charm and Υ+charm data point at σeff � 20 mb
J~ψ � J~ψ LHCb region: SPS computations with too large uncertainties to conclude
Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
J~ψ � Υ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

Except for both LHCb extractions, all the quarkonium-based extraction point at very
small σeff values: dependence on the avour, the rapidity or the scale(s) ?
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J~ψ � J~ψ LHCb region: SPS computations with too large uncertainties to conclude
Looking at the feed-down pattern likely necessary to check the SPS/DPS ratio
J~ψ � Υ data clearly points at a very large DPS

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001

Except for both LHCb extractions, all the quarkonium-based extraction point at very
small σeff values: dependence on the avour, the rapidity or the scale(s) ?
J.P. Lansberg (IPNO) New Observables in Quarkonium Production April 23, 2019 17 / 21
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Summary

�e quarkonium-inclusive-production mechanisms
not yet the object of a consensus

QCD corrections via new NLO, and perhaps NNLO topologies,
matter much for some mechanisms and some observables

Novel Observables are necessary:
pseudoscalar states and associated production

Beside the production-mechanism debate, quarkonia already allow us to
probe the parton correlation through DPS studies

�ey also start to tell us new information on the gluon Transverse
Momentum Distribution distributions

e.g. JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217
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NLOAccess [in2p3.fr/nloaccess]
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HELAC-Onia Web [in2p3.fr/nloaccess/HO]
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Part IV

Backup
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CEM vs. CSM vs. COM in a little more details

1 Colour Evaporation Model
any QQ̄ state contributes to a speci�c quarkonium state
colourless pair via a simple 1/9 factor
one non-perturbative parameter per meson, supposedly universal

2 Colour Singlet Model
colourless pair via colour projection; quantum numbers enforced by spin projection
one non-perturbative parameter per meson but equal to

the Schrödinger wave function at the origin� no free parameter
this parameter is �xed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)
3 Colour Octet Mechanism
one non-perturbative parameter per Fock State
expansion in v2; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and

to a speci�c quarkonium polarisation
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QCD corrections to the COM – NRQCD

At LO, PT spectrum driven by the combination
of 2 CO components : 3S�8�1 vs. 1S�8�0 & 3P�8�J

ψ data: a little less hard than the blue curve

At NLO, the so� component becomes
harder (same e�ect as for CSM)

3P�8�J becomes as hard as 3S�8�1 and interferes with it; 1S�8�0 a little so�er

Due to this interference, it is possible to make the so�er 1S�8�0 dominant yet
with nonzero 3P�8�J and 3S�8�1 LDMEs

Since the 3 associated LDMEs are �t, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

What signi�cantly changes is the size of the LDMEs

Polarisation: 1S�8�0 : unpolarised; 3S�8�1 & 3P�8�J : transverse
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QCD corrections to the CEM PT dependence
JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute
�e gluon fragmentation (� 3S�8�1 ) dominant at large PT
No reason for a change at NLO.�e �t can yield another CEM parameter value
but this will not modify the PT spectrum

Con�rmed by our �rst NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

Tend to overshoot the ψ data at large PT
�e (LO) ICEM not signi�cantly better at large PT Y.Q. Ma, R. Vogt PRD 94 (2016) 114029
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QCD corrections to the CEM PT dependence
JPL, H.S. Shao JHEP 1610 (2016) 153

All possible spin and colour combinations contribute

�e gluon fragmentation (� 3S�8�1 ) dominant at large PT
No reason for a change at NLO.�e �t can yield another CEM parameter value
but this will not modify the PT spectrum

Con�rmed by our �rst NLO study: JPL, H.S. Shao JHEP 1610 (2016) 153

Tend to overshoot the ψ data at large PT
�e (LO) ICEM not signi�cantly better at large PT Y.Q. Ma, R. Vogt PRD 94 (2016) 114029
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Feed downs from the excited states

JPL, arXiv:1903.09185 [hep-ph]
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QCD corrections to the CSM for Υ at colliders

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

CDF PRL 88 (2002) 161802; LHCb EPJC 72 (2012) 2025
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�e last piece in the puzzle: the ηc
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Data LHCb : EPJC 75 (2015) 311 (plot from H. Hanet al. PRL 114 (2015) 092005)

ηc x-section measured by LHCb very well described by the CS contribution (Solid Black Curve)
Any CO contribution would create a surplus
Even neglecting the dominant CS, this induces constraints on CO J~ψ LDMEs

via Heavy-Quark Spin Symmetry : `J~ψ�1S�8�0 �e � `ηc�3S�8�1 �e @ 1.46 � 10�2 GeV3

Rules out the �ts yielding the 1S�8�0 dominance to get unpolarised yields
Even the PKU �t has now troubles to describe CDF polarisation data
Nobody foresaw the impact of measuring ηc yields: 3 PRL published right a�er the LCHb data

came out (Hamburg) M. Butenschoen et al. PRL 114 (2015) 092004; (PKU) H. Han et al. 114 (2015) 092005; (IHEP) H.F. Zhang et al. 114 (2015) 092006

[Additional relations: `ηc�1S�8�0 �e � `J~ψ�3S�8�1 �e~3 and `ηc�1P�8�1 �e � 3 � `J~ψ�3P�8�0 �e]
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�e next one : the ηc�2S� ?
JPL, H.S. Shao, H.F. Zhang, PLB 786 (2018) 342

HQSS also relates the LDMEs for the ψ�2S� and ηc�2S�
To avoid the same situation as with the ψ�2S�, we have performed the �rst
study of its possible prompt production at the LHC

�anks to existing (LHCb, e�e�) data, we identi�ed tractable branchings onO�10�4�
Using HQSS, we evaluated the theory uncertainty on ηc�2S� production
From the expected yields, we evaluated the expected experimental uncertainties
A forthcoming (LHCb) measurement would further constrain (or exclude) the

existing NLO ψ�2S� LDME �ts of Shao et al. and Gong et al. and
con�rm/exclude the hypotheses underlying the Bodwin et al. �t.
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� Belle-II data on the inclusive ψ�2S� production will also be crucial
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On the importance of understanding low-PT production

If color is bleaching at short distances (Color Singlet Model), low-PT
quarkonia can be used to extract the distribution of linearly polarised
gluon in unpolarised protons, hÙg1 �x, kT , µ� D. Boer, C. Pisano. PRD 86 (2012) 094007

Di�erent nuclear suppression depending on how the pair hadronizes
J.W. Qiu, J. P. Vary, X.F. Zhang, PRL 88 (2002) 232301

Saturation e�ects depend on the colour state of the propagating pair
D. Kharzeev, et al. PRL 102 (2009) 152301; F. Dominguez, et al. PLB 710 (2012) 182; Y.Q. Ma, et al. PRD 92 (2015) 071901

Most of the proton-nucleus and nucleus-nucleus collision data lie at PT ß mQ
In the QGP, do quarkonia behave more like colorful gluons

or colorless photons ?
If regeneration is at work, how does it happen ? statistically ? according to the
charm-quark distribution in the charmonium (wave-function) ?

etc ...
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Why is it important to know how low-PT quarkonia are produced

Also because, some very high PT quarkonia which we study can be as rare as a
few millionth of the produced quarkonia
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Most probably the production of a Υ with PT � 90 GeV, even also 20 GeV,
has very few things to do with the bulk of Υ
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Comparison with the new LHCb data at 13 TeV

LHCb JHEP06(2017)047

σ�ψψ�nb no PT cut PT A 1 GeV PT A 3 GeV
NLO� CS 15.4 � 2.2�51

�12 14.8 � 1.7�53
�12 6.8 � 0.6�22

�5
NLOCS 11.9�4.6

�3.2 — —
DPS [σeff � 14.5 � 1.7�1.7

�2.3 mb] 8.1 � 0.9�1.6
�1.3 7.5 � 0.8�1.5

�1.2 4.9 � 0.5�1.0
�0.8

Data 15.2 � 1.0 � 0.9 13.5 � 0.9 � 0.9 8.3 � 0.6 � 0.5

Agreement between CSM NLO and data
Large scale uncertainty for the NLO�, greatly reduced at NLO
REMINDER: it is not an option to ”switch o�”/ignore the NLO CS
contribution [parameter free]
Yet, room for DPS; however tension if σe� � 7 mb
Tension between LHCb and other di-J~ψ extractions [rapidity e�ect ?]
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Gluon TMDs in unpolarised protons

Gauge-invariant de�nition:
Φµν

g �x, kT , ζ , µ� � S d�ξ�P�d2ξT�xP�n�2�2π�3 ei�xP�kT��ξ`PSFnν�0�U�0,ξ�F
nµ�ξ�U �

�ξ ,0�SPeU
ξ�P��0

U and U � are process dependent gauge links
Parametrisation: P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021; D. Boer et al. JHEP 1610 (2016) 013

Φµν
g �x, kT , ζ , µ� � � 12x�g µνT f g1 �x, kT , µ� � �kµTkνT

M2
p
� g µνT

k2T
2M2

p
�hÙ g

1 �x, kT , µ�¡ � suppr.

f g1 : TMD distribution of unpolarised gluons
hÙ g1 : TMD distribution of linearly polarised gluons

[Helicity-ip distribution]
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Processes proposed to study the gluon TMD at hh colliders

�gg� � γγ : J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

gg � �J~ψ, Υ� � γ : W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112,
212001 (2014)

gg � ηc � ηc : G.P. Zhang, PRD 90 (2014) 9 094011
�gg� � H0 � jet : D. Boer, C. Pisano, PRD 91 (2015) 074024

gg � �J~ψ, Υ� � Z~γ� : JPL , C. Pisano, M. Schlegel, NPB 920 (2017) 192

None are measured so far . . .
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J~ψ � J~ψ at low PψψT

J~ψ:relatively easy to detect. Already studied by
LHCb, CMS, ATLAS & D0

LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094;
ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101

Negligible qq̄ contributions even at
AFTER@LHC (

º
s � 115 GeV) energies

J.P.L., H.S. Shao NPB 900 (2015) 273

Negligible CO contributions, in particular at
low PψψT [black/dashed curves vs. blue]

JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07. See also N. Yamanaka’s tomorrow at 10h10, WG5. (2013) 051

No �nal state gluon needed for the Born
contribution: pure colourless �nal state

JPL, H.S. Shao PRL 111, 122001 (2013)

In the CMS & ATLAS acceptances (PT cut),
small DPS e�ects, but required by the data at large ∆y

DPS in LHCb data [kinematical distributions well controlled : independent scatterings]
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JPL, H.S. Shao PLB 751 (2015) 479; P. Ko, C. Yu, and J. Lee, JHEP
01 (2011) 070; Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, JHEP
07. See also N. Yamanaka’s tomorrow at 10h10, WG5. (2013) 051

No �nal state gluon needed for the Born
contribution: pure colourless �nal state
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In the CMS & ATLAS acceptances (PT cut),
small DPS e�ects, but required by the data at large ∆y

DPS in LHCb data [kinematical distributions well controlled : independent scatterings]
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What’s special about double vector onium production ?

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

In general, the hard scattering coe�cients are bounded : F2,3,4 B F1

gg � Q �Q in the limit whereMψψ QMψ and cos�θCS�� 0 :

F1 �
256N

M4
QQ

M2
Q

� F4,
F2
F1
�

81M4
Q cos�θCS�2
2M4

QQ

,
F3
F1
�

�24M2
Q cos�θCS�2
M2
QQ

F4 � F1 at largeMQQ

� di-J~ψ (or di-Υ) maximise the observability of cos 4ϕ modulations
in a kinematical region where data are already taken !
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TMDmodelling : f g1 and the relevance of the LHCb data

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217

f g1 modelled as a Gaussian in ÑkT : f g1 �x, Ñk2T� � g�x�
π`k2Te

exp � �
Ñk2T

`k2Te
�

where g�x� is the usual collinear PDF
First experimental determination [with a pure colorless �nal state] of `k2Te
by �tting C�f g1 f g1 � over the normalised LHCb dσ~dPψψT spectrum at 13 TeV
from which we have subtracted the DPS yield determined by LHCb
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> = 3.3 ± 0.8 GeV
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<Mψψ> = 8 GeV

reduced χ2
 = 0.36

Integration over ϕ� cos�nϕ�-terms
cancel out
F2 P F1 � only C�f g1 f g1 � contributes to
the cross-section
No evolution so far: `k2Te � 3 GeV2

accounts both for non-perturbative and
perturbative broadenings at a scale close
toMψψ � 8 GeV
Disentangling such (non-)perturbative
e�ects requires data at di�erent scales
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Expected azimuthal asymmetries
JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784 (2018) 217
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Leading Order results

Basic pQCD approach: the Colour Singlet Model (CSM)
C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

×

×

Q

α3
s
(2mQ)4

P 8
T

LO

ë Perturbative creation of 2 quarks Q and Q̄ BUT

ß on-shell (�)
ß in a colour singlet state
ß with a vanishing relative momentum
ß in a 3S1 state (for J~ψ, ψ� and Υ)

ë Non-perturbative binding of quarks � Schrödinger wave function
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CDF, PRL 79:572 & 578,1997
CDF, PRL 88:161802,2002

ë Large QCD corrections from new topologies reduce the gap with data at mid and
large PT P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008
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Leading Order results

�e LO CSM accounts for the PT-integrated yield
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

Þ�e yield vs.
º
s, y

Good agreement with RHIC, Tevatron and LHC data [LHC J~ψ points to be updated, sorry]

(multiplied by a constant Fdirect , considered to be constant)
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Unfortunately, very large th. uncertainties: masses, scales (µR, µF), gluon PDFs at
low x and Q2, . . .
Earlier claims that CSM contribution to dσ~dy was small were based on the
incorrect assumption that χc feed-down was dominant
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From LO to NLO

NLO CSM at RHIC
S. J. Brodsky and JPL, PRD 81 051502 (R), 2010.
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From LO to NLO

NLO NRQCD up to RHIC
Physics Letters B 638 (2006) 202–208

www.elsevier.com/locate/physletb

Analysis of charmonium production at fixed-target experiments

in the NRQCD approach

F. Maltoni a, J. Spengler b, M. Bargiotti c, A. Bertin c, M. Bruschi c, S. De Castro c, L. Fabbri c,

P. Faccioli c, B. Giacobbe c, F. Grimaldi c, I. Massa c, M. Piccinini c, N. Semprini-Cesari c, R. Spighi c,

M. Villa c, A. Vitale c, A. Zoccoli c,∗

Analysis based on the hard partonic cross sections computed at NLO in
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514 (1998) 245

At α2
S , one only has CO contributions

(� virtual correction at α3
S)

:
2� 1 processes � q � q̄� QQ̄�3S�8�1 � and g � g � QQ̄�1S�8�0 ,3P�8�J�0,1,2�

At α3
S , one has in addition real emissions (including one CS process)

g � g � QQ̄�1S�8�0 ,3S�8�1 ,3P�8�J�0,2� � g , g � q�q�� QQ̄�1S�0�8 ,3S�8�1 ,3P�8�J�0,2� � q�q�
q � q� QQ�1S�8�0 ,3S�8�1 ,3P�8�J�0,1,2� � g and g � g � QQ�3S�1�1 � � g

Done with NRQCD LDMEs �tted at LO on PT spectra from CDF (� 2 TeV)
Table 1

Reference NRQCD matrix elements for charmonium production. The color-

singlet matrix elements are taken from the potential model calculation of [14,

15]. The color-octet matrix elements have been extracted from the CDF data

[16] in Ref. [17]

H 〈OH
1

〉 〈OH
8

[3S1]〉 〈OH
8

[1S
(8)
0

]〉 = 〈O8[3P
(8)
0

]〉/m2
c

J/ψ 1.16 GeV3 1.19 × 10−2 GeV3 1.0 × 10−2 GeV3

ψ(2S) 0.76 GeV3 0.50 × 10−2 GeV3 0.42 × 10−2 GeV3

χc0 0.11 GeV 0.31 × 10−2 GeV3 –
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[3S1]〉 〈OH
8

[1S
(8)
0

]〉 = 〈O8[3P
(8)
0

]〉/m2
c

J/ψ 1.16 GeV3 1.19 × 10−2 GeV3 1.0 × 10−2 GeV3

ψ(2S) 0.76 GeV3 0.50 × 10−2 GeV3 0.42 × 10−2 GeV3

χc0 0.11 GeV 0.31 × 10−2 GeV3 –
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Our up-to-date NLO analysis

What we did[Y. Feng, JPL, J.X. Wang, EPJC (2015)75:313]

We used

FDC� a�er complete cross-check of the Petrelli et al. results
� : FDC J. -X. Wang, Nucl. Instrum. Meth. A 534 (2004) 241

only direct J~ψ, ψ� and Υ�1S� yields
Nota: in principle, we can also predict total-yield polarisation
an updated data set with:

only pp and pp̄ data with more than 100 events (no pA data), only for y � 0
CDF results a�er a small PT extrapolation from 1.5 GeV to 0
LHC data

constant feed-down (FD) fractions

Fdirect
J~ψ � 60 � 10%

Fdirect
Υ�1S� � 66 � 10%

Fdirect
Υ�1S�2S�3S� � 60 � 10%
Uncertainty on Fdirect combined in quadrature with that of data

Arguable but accounts for a possible energy dependence of the FD fraction
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Our up-to-date NLO analysis

What we did II

We used LDMEs �tted at NLO/one loop on the PT spectra

J~ψ

Ref. `OJ~ψ�
3P�8�0 �e `OJ~ψ�

1S�8�0 �e `OJ~ψ�
3S�8�1 �e

(in GeV5) (in GeV3) (in GeV3)
�2.0 � 10�3 7.8 � 10�2 0

Y.-Q. Ma,et al. PRL 106 (2011) 042002. 2.1 � 10�2 3.5 � 10�2 5.8 � 10�3

4.1 � 10�2 0 1.1 � 10�2

B. Gong,et al. PRL 110 (2013) 042002 �2.2 � 10�2 9.7 � 10�2 �4.6 � 10�3

M.Butenschoen, B.Kniehl. PRD (2011) 051501 �9.1 � 10�2 3.0 � 10�2 1.7 � 10�3

ψ�

Ref. `Oψ�2S��
3P�8�0 �e `Oψ�2S��

1S�8�0 �e `Oψ�2S��
3S�8�1 �e

(in GeV5) (in GeV3) (in GeV3)

B. Gong,et al. PRL 110 (2013) 042002 9.5 � 10�3 �1.2 � 10�4 3.4 � 10�3

�4.8 � 10�3 2.9 � 10�2 0
Y.-Q. Ma,et al. PRL 106 (2011) 042002 7.9 � 10�3 5.6 � 10�3 3.2 � 10�3

1.1 � 10�2 0 3.9 � 10�3

Υ�1S� Ref. `OΥ�1S��
3P�8�0 �e `OΥ�1S��

1S�8�0 �e `OΥ�1S��
3S�8�1 �e

(in GeV5) (in GeV3) (in GeV3)

B. Gong, et al. PRL 112 (2014) 3, 032001. �10.36 � 10�2 11.15 � 10�2 �4.1 � 10�2

[We have also added the �t of G.T. Bodwin, et al., PRL 113, 022001 (2014) even though it is based
on a fragmentation function approach]
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Our up-to-date NLO analysis

Results for the J~ψ
Wang – Ma – Buttenschoen
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First 2 �ts: 10 times above the data
around 200 GeV – as Maltoni et al.

�e third �t –which btw has the lowest
Pmin
T – overshoots the least

�e third �t is however the only which
does not account for the polarisation
data

Weird energy behaviour of Ma’s �t, due
to 3P�8�J channel – we’ll come back to
that later

�e CS component alone does a pretty
good job, even excellent in the TeV
range

Taken at face value, these results show a
clear violation of NRQCD
universality

Not a surprise since the CSM alone
accounts well for the data; adding any
contribution creates a ‘‘surplus’’
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�e CS component alone does a pretty
good job, even excellent in the TeV
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Taken at face value, these results show a
clear violation of NRQCD
universality
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Our up-to-date NLO analysis

A glimmer of hope: Low PT χQ1~χQ2
LHCb, JHEP 10(2013)115 & JHEP 1410 (2014) 88 ; CMS, EPJC, 72, 2257 (2012); ATLAS, JHEP 07(2014)154

At low PT , test of χQ1 suppression following the Landau-Yang theorem
At larger PT , test of production mechanism of χQJ (not of J~ψ or Υ)
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�e Landau-Yang suppression shows up for χc in the Low PT~mQ region
�e nature (quantum #) of the produced �nal state seems still relevant !
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Energy dependence of the CEM and of its NRQCD Ersatz

Basics of the Colour Evaporation Model

Based on Quark-Hadron duality argument, one writes
H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

σ�N�LO, direct
Q

� Fdirect
Q S

2mH

2mQ

dσ�N�LO
QQ̄

dmQQ̄
dmQQ̄

Using a simple statistical counting [Pi runs over all the charmonium states below the DD̄ threshold]

J. F. Amundson,et al. PLB 372 (1996)

Fdirect
J~ψ �

1
9
2Jψ � 1

Pi�2Ji � 1�
�

1
45
,

most of the data could accounted for !
Ramona Vogt’s �ts roughly give the same number for direct J~ψ’s

M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048

It can easily be check by MCFM at NLO for instance http://mcfm.fnal.gov/
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Energy dependence of the CEM and of its NRQCD Ersatz

NRQCD Ersatz of the CEM

In 2005, Bodwin, Braaten and Lee derived relations between NRQCD LDMEs
provided that the CEM is interpreted as part NRQCD

G.T. Bodwin, E. Braaten, J. Lee, PRD 72 (2005) 014004

�ese violate the velocity scaling rules also violated by the NLO �ts btw

At LO in v, one has

`O3S1�3S�1�1 �e �3 � `O3S1�1S�1�0 �e,
`O3S1�1S�8�0 �e �4

3
� `O3S1�1S�1�0 �e,

`O3S1�3S�8�1 �e �4 � `O3S1�1S�1�0 �e.
(1)

If, as it should be in NRQCD, `O3S1�3S�1�1 �e is the usual CS LDME,
i.e. 2NC

4π �2J � 1� SR�0�S2, everything is �xed
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