

Heavy quarkonium in *p*Pb collisions and fixed-target results at LHCb

Jiayin Sun Tsinghua University

The 2nd FCPPL quarkonium production workshop

Outline

- Quarkonium in *p*Pb
 - J/ψ
 - Upsilon $\Upsilon(nS)$
- Fixed target results
 - Charm production cross-section
 - Antiproton production cross-section

Quarkonia in PbPb Collisions

- Color screening: $Q\overline{Q}$ potential is screened by surrounding color charge, leading to dissociation
 - J/ψ suppression a signature of deconfinement

 T/T_c 1/ $\langle r \rangle$ [fm⁻¹]

Y(15)

χ_b(1P)

(1P)

J/ψ(15) Υ'(25)

_χ, (2P) Υ"(3S)

Ψ(25)

- Sequential melting: quarkonia states (e.g. Υ family) dissociate at different temperatures
 - QGP thermometer

- Hot medium effects:
 - Suppression by color screening
 - Regeneration via statistical recombination
 - Medium induced energy loss
- Cold nuclear matter (CNM) effects
 - Studied via proton-nucleus collisions
 - Crucial for the interpretation of AA results 4/22/2019

Quarkonia in pPb Collisions

Ferreiro et al., PRC 81(2010) 064911 Eskola et al., Eur.Phys.J. C9 (1999) 61-68 Eskola. et al., JHEP 0807 (2008) 102 Eskola et al., JHEP 0904 (2009) 065 De Florian et al., PRD69 (2004) 074028

- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Gluon saturation
 - Multiple scattering of partons in the nucleus
 - Final state:
 - nuclear absorption (negligible at LHC energy)
 - Co-movers effect
 - Break-up of quarkonium by comoving hadrons outside of nuclear remnant
 - study via $\psi(2S)$, $\Upsilon(nS)$

LHCb detector

- A single arm forward spectrometer designed for the study of particles containing *c* or *b* quark.
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution ~ $20 \ \mu m$
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% 1\%$ (5-200 GeV/c)
- RICH
 - K/ π /p separation
- Electromagnetic
 - + hadronic
 - Calorimeters
- Muon systems

pPb @ 8TeV dataset

- Rapidity Coverage
 - *y**: rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

$$\sqrt{s_{NN}} = 8 \text{ TeV} (2016)$$

• *p*Pb (13.6 nb⁻¹) + Pb*p* (21.8 nb⁻¹)

Prompt and nonprompt J/ψ in pPb at 8 TeV PLB 774 (2017) 159

- Sources
 - Prompt: direct production, feed down from heavier states $\psi(2S), \chi_c$
 - Nonprompt: from-*b*-hadrons decays

- First Run2 result in heavy ion collisions
- Reconstructed through $I/\psi \rightarrow \mu^+\mu^-$
- Prompt and nonprompt (from-*b*-hadrons) separated: • the pseudo proper decay time

$$t_z \equiv \frac{\left(z_{J/\psi} - z_{PV}\right) \times M_{J/\psi}}{p_z}$$

Signal extraction with 2D simultaneous fit to mass and the pseudo proper decay time

Prompt and nonprompt J/ψ in *p*Pb at 8 TeV

PLB 774 (2017) 159

- Separation of prompt and nonprompt J/ψ with $p_{\rm T}$ down to 0
- Fraction from *b* hadrons:

$$f_b = \frac{\frac{\mathrm{d}^2 \sigma_{J/\psi\text{-from-}b}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*}}{\frac{\mathrm{d}^2 \sigma_{\mathrm{Prompt}J/\psi}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*} + \frac{\mathrm{d}^2 \sigma_{J/\psi\text{-from-}b}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*}}$$

- *pp*, forward, backward compared:
 - similar trends
 - Increasing with $p_{\rm T}$
 - Small differences at low $p_{\rm T}$: cold nuclear matter effects different for the prompt and nonprompt

Prompt J/ψ at 8 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, \ A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: suppression up to 50% at low $p_{\rm T}$, decreasing with increasing $p_{\rm T}$
- Backward rapidity: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs at low x
- Compatible with 5 TeV results

J/ψ -from-*b*-hadrons at 8 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/dx}, A=208$

- *pp* reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: smaller suppression up to 30% at low $p_{\rm T}$, reach unity at higher $p_{\rm T}$
- Backward: compatible with unity
- FONLL with EPS09NLO consistent with data
- Compatible with 5 TeV results $^{2.0}_{M_{e}^{\mathrm{Pb}}}$ $\overset{0.5}{R}^{\mathrm{Pb}}_{B}$ $R_{p\mathrm{Pb}}$ FONLL with EPS09NLC FONLL with EPS09NLO FONLL with EPS09NLO LHCb (5TeV) LHCb (8.16 TeV) LHCb (8.16 TeV) LHCb (8.16TeV) 1.5 1.5 1.5 1.0 1.01.0 0.5 0.5 0.5 J/ψ -from-*b*-hadrons, *p*Pb J/ψ -from-*b*-hadrons, Pbp J/ψ -from-*b*-hadrons $0 < p_{\rm T} < 14 \,{\rm GeV/c}$ $1.5 < v^* < 4.0$ $-5.0 < y^* < -2.5$ LHCb LHCb LHCb 0.0 0.0 0.05 5 10 10 -2.52.5-5.0 0.0 5.0 $p_{\rm T}[{\rm GeV}/c]$ $p_{\rm T}[{\rm GeV}/c]$ 10 4/22/2019

EPS09 JHEP 04 (2009) 065

Prompt J/ψ at 8 TeV forward-backward production ratio

- $R_{\text{FB}} = \frac{\mathrm{d}\sigma(+|y^*|,p_{\mathrm{T}})/\mathrm{d}x}{\mathrm{d}\sigma(-|y^*|,p_{\mathrm{T}})/\mathrm{d}x}$
- *R*_{FB} does not need inputs from *pp* collisions.
- Prompt J/ψ :
 - Clear forward-backward asymmetry
 - Increasing trend with increasing $p_{\rm T}$
- Nonprompt J/ψ :
 - Closer to unity
- Models for prompt J/ψ only
- Consistent with 5 TeV results

$\Upsilon(nS)$ in *p*Pb collisions

- New differential analysis of 2016 *p*Pb data
 - Double differential for $\Upsilon(1S)$
 - Single differential for $\Upsilon(2S)$
- Cross-section, R_{pPb} , double ratio of $\Upsilon(nS)/\Upsilon(1S)$ for all $\Upsilon(nS)$ states
- Nice Υ(3*S*) signals in forward and backward configurations

Samples	$\Upsilon(1S)$	$\varUpsilon(2S)$	$\Upsilon(3S)$	L
$p \mathrm{Pb}$	2705 ± 87	584 ± 49	262 ± 44	$12.5\mathrm{nb}^{-1}$
$\mathrm{Pb}p$	3072 ± 82	679 ± 54	159 ± 39	$19.3\mathrm{nb}^{-1}$

 $\Upsilon(nS)$ cross-section

$\Upsilon(1S)$ nuclear modification factor

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$$

pp reference: interpolation of LHCb measurements at 2.76, 7, 8 and 13 TeV Forward rapidity: suppression for for $\Upsilon(1S)$ and $\Upsilon(2S)$ states, compatible with nPDFs

Backward rapidity: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation

$\Upsilon(2S)$ nuclear modification factor

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$$

pp reference: interpolation of LHCb measurements at 2.76, 7, 8 and 13 TeV Forward rapidity: suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$ states, compatible with nPDFs

Backward rapidity: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation

$\Upsilon(nS)$ nuclear modification factor

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$$

pp reference: interpolation of LHCb measurements at 2.76, 7, 8 and 13 TeV

Forward rapidity: suppression for both states, compatible with nPDFs Backward rapidity: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation

17

Double ratio

$$R_{(p\mathrm{Pb}|\mathrm{Pb}p)/pp}^{\Upsilon(nS)/\Upsilon(1S)} = \frac{R(\Upsilon(nS))_{p\mathrm{Pb}|\mathrm{Pb}p}}{R(\Upsilon(nS))_{pp}}$$

• Double ratio of $\Upsilon(nS)/\Upsilon(1S)$ in *p*Pb and *pp*

H

$$R(\Upsilon(nS)) = \frac{\left[\mathrm{d}^2\sigma/\mathrm{d}p_{\mathrm{T}}dy^*\right](\Upsilon(nS))}{\left[\mathrm{d}^2\sigma/\mathrm{d}p_{\mathrm{T}}dy^*\right](\Upsilon(1S))}.$$

- Sequential suppression also observed in *p*Pb
- Suggests final state effects...
- Agrees with predictions of "comovers" model

Fixed target physics

- LHCb: only experiment at the LHC can operate in fixed-target mode
- The System for Measuring Overlap with Gas (SMOG) allows a small amount of noble gas injection inside the LHC beam close to the interaction point
- Allows *p*-gas and ion-gas collisions
- $\sqrt{s_{NN}}$ region between 20 GeV (SPS) and 200 GeV (RHIC)
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon

Fixed target physics

- LHCb: only experiment at the LHC can operate in fixed-target mode
- The System for Measuring Overlap with Gas (SMOG) allows a small amount of noble gas injection inside the LHC beam close to the interaction point
- Allows *p*-gas and ion-gas collisions
- $\sqrt{s_{NN}}$ region between 20 GeV (SPS) and 200 GeV (RHIC)
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon

Data samples:

- *p*Ar at $\sqrt{s_{NN}} = 110.4$ GeV (2015)
 - $\sim 4 \times 10^{22}$ Protons On Target
- *p*Ne at $\sqrt{s_{NN}} = 86.6$ GeV (2016)

• $\mathcal{L}_{pNe} = 7.6 \pm 0.5 \text{nb}^{-1}$

• pNe at
$$\sqrt{s_{NN}} = 110 \text{GeV} (2016)$$

• $\mathcal{L}_{pNe} \sim 0.5 \text{nb}^{-1}$

Charm production in fixed-target pN collision Phys. Rev. Lett. 122 (2019) 132002

21

- J/ψ and D^0 inclusive cross-section in pNe collisions at 86.6 GeV
- First determination of $c\bar{c}$ cross-section at this energy scale •

J/ψ production in fixed-target pN collision

- Differential cross-section (*p*Ne @ 86.6GeV) Phys. Rev. Lett. 122 (2019) 132002
- Differential yields (*p*Ar @ 110.4GeV)
- Helac-Onia underestimate the J/ψ cross-section by a factor of 1.78
- Reasonable agreement in rapidity shape

D^0 production in fixed-target pN collision

Phys. Rev. Lett. 122 (2019) 132002

- Differential cross-section (pNe @ 86.6GeV)
- Differential yields (pAr @ 110.4GeV)
- Helac-Onia underestimate the D^0 x-section by a factor of 1.44
- Reasonable agreement in rapidity shape

Charm production in fixed-target pN collision

LHCD THCP

Phys. Rev. Lett. 122 (2019) 132002

- -2.53<y*<-1.73 → 0.17<*x*<0.37
- Little evidence of intrinsic charm observed

\bar{p} production in pHe collisions

Phys. Rev. Lett. 121 (2018) 222001

- AMS-2: possible anti-proton excess at high energies
- p̄/p ratio predictions limited by uncertainties on p̄ production cross-sections, particularly for p-He
- Prompt production at $\sqrt{s_{NN}} = 110 \text{ GeV}$
- First measurement of \bar{p} production in *p*Ne
- Uncertainty smaller than the spread of models

Conclusion

- Recent results with heavy ions at LHCb
 - Heavy quarkonia in *p*Pb: J/ψ and $\Upsilon(nS)$
 - Fixed-target mode: charm and anriproton
- For the future
 - Analyses of other quarkonia using the pPb dataset
 - 2018 PbPb dataset (20 times larger than 2015)
 - Upgrade for Run3/4
 - Upgrade of SMOG system for Run3
 - More gases (H₂, deuteron...)
 - Density of the target gas increase → luminosity increase up to a factor of 100