

Charmonia production in pp collisions @ LHCb

Decays to hadronic final states

Sergey Barsuk, LAL Orsay sergey.barsuk@lal.in2p3.fr

Core part of the talk: Recent LHCb results by Andrii, Jibo, Valeriia et al. Recent theory input by Hua-Sheng, Jean-Philippe, Hong-Fei and Yu-Feng

FCPPL QUARKONIUM PRODUCTION WORKSHOP

 \Box (Short) Introduction

 \square Production of η_c using decays to $p\bar{p}$

 \Box Production of χ_c and $\eta_c(2S)$ using decays to $\varphi\varphi$

Other examples

□ (No) Summary

n_c and Co. at LHCb FCPPL Quarkonia workshop, Beijing, 22-23.04.2019

A (very short) introduction: generic

n_c and Co. at LHCb FCPPL Quarkonia workshop, Beijing, 22-23.04.2019

Charmonia production

□ Study of charmonium production provides powerful QCD tests

Michelangelo: 创建

Botticelli: 分娩

□ Comprehension of **quarkonia production mechanism**, predictive model robust against experimental verifications wanted, yielding :

- □ Simultaneous description of hadroproduction and production in b-decays ;
- □ Simultaneous description of different charmonia ;

□ Simultaneous description of production and polarization in the entire pT range.

Extract LDMEs from pT dependence of x-sections

n_c and Co. at LHCb

Charmonium production

□ Two scales of production:

hard process of $Q\overline{Q}$ formation and hadronization of $Q\overline{Q}$ at softer scales

Factorization:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle \mathcal{O}^{H}(n) \rangle$$

Short distance: perturbative cross-sections + pdf for the production of a $Q\overline{Q}$ pair

Long distance matrix elements (LDME), non-perturbative part

 \square <u>Colour-singlet model</u>: intermediate $Q\overline{Q}$ state is colourless and has the same J^{PC} quantum numbers as the final-state quarkonium

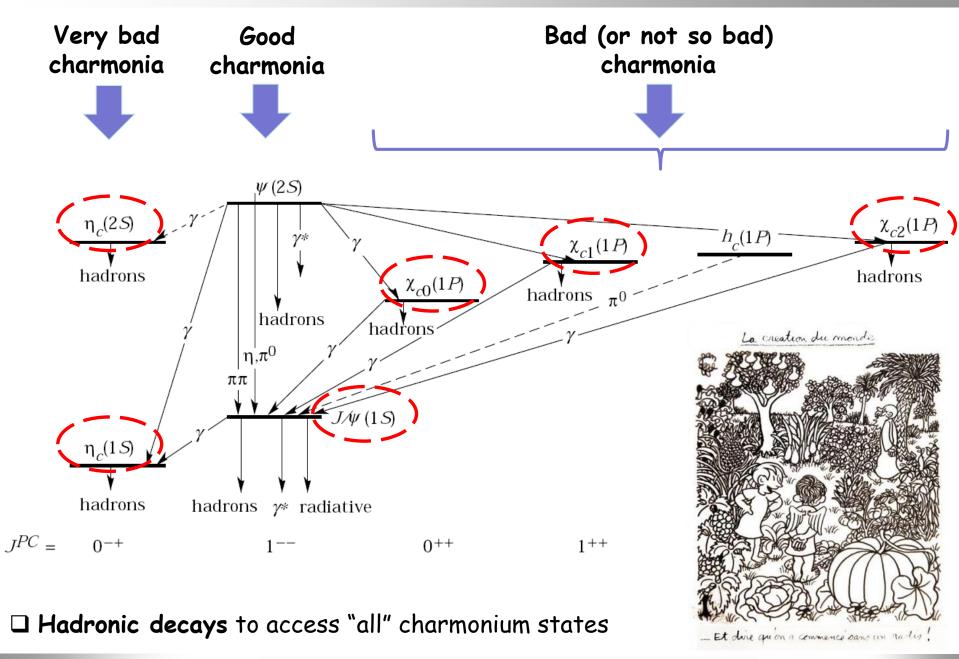
□ <u>NRQCD</u>: all viable colours and J^{PC} allowed for the intermediate $Q\overline{Q}$ state, they are adjusted in the long-distance part with a given probability. Long-Distance Matrix Elements (LDME) from experimental data

□ Universality: same LDME for prompt production and production in b-decays

□ Heavy-Quark **Spin-Symmetry** (HQSS): links between colour-singlet (CS) and colour-octet (CO) LDME of different quarkonium states

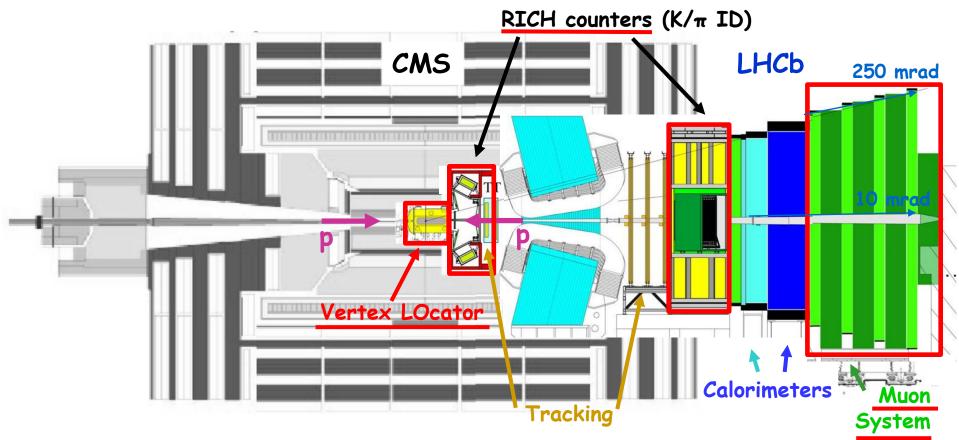
 n_c and Co. at LHCb

Charmonia production


□ Over-constrain to test universality, factorization and HQ spin symmetry

 $\hfill\square$ Impressive effort and progress in theory

□ Joint theory and experimental effort


Canonical charmonium states

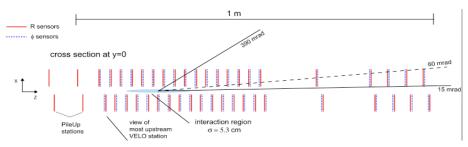
n_c and Co. at LHCb

LHCb detector - single-arm forward spectrometer 10-250 mrad (V), 10-300 mrad (H) JINST 8 (2013) P08002, INT.J.MOD.PHYS.A30 (2015) 1530022

□ Forward peaked HQ production at the LHC, second b in acceptance once the first b is in □ Forward region 1.9 < η < 4.9, ~4% of solid angle, but ~40% of HQ production x-section

□ Complementary cross-section measurements and overlap in terms of rapidity

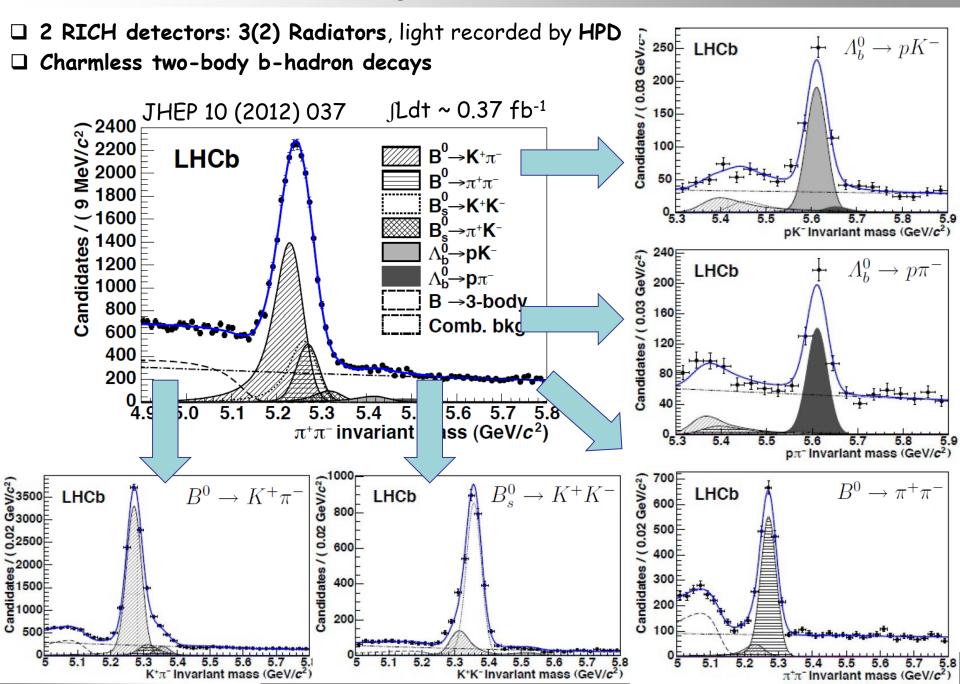
□ Key detector systems for production measurements: vertex reconstruction (VELO), particle identification (Muon detector, RICHs), Trigger


 \mathbf{n}_{c} and Co. at LHCb

VELO: Vertex LOcator

New J. Phys. 15 (2013) 053021 • Tagged mixed • Tagged unmixed • Tagged unmixed • Tagged unmixed • Fit mixed • Fit unmixed • LHCb • Call of the second secon JINST 8 (2013) P08002, arXiv:1405.7808

- 88 semi-circular microstrip Si sensors
- Double-sided, R and φ layout, in each module
- \square 300 μ thick n-on-n sensors
- \Box Strip pitches from 40 to 120 μ

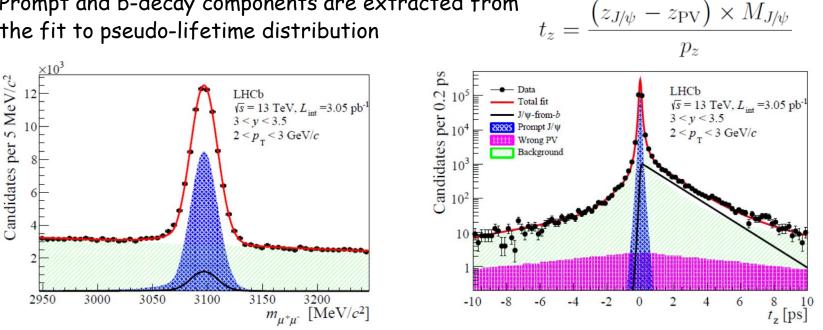


- First active strip at 8.2mm from the beam axis
- Moves away every fill and centers around the beam with self measured vertices

□ Vertex resolution allows to resolve fast (x~27) $B_s \overline{B}_s$ oscillations

n_c and Co. at LHCb

LHCb: charged hadron ID with RICH

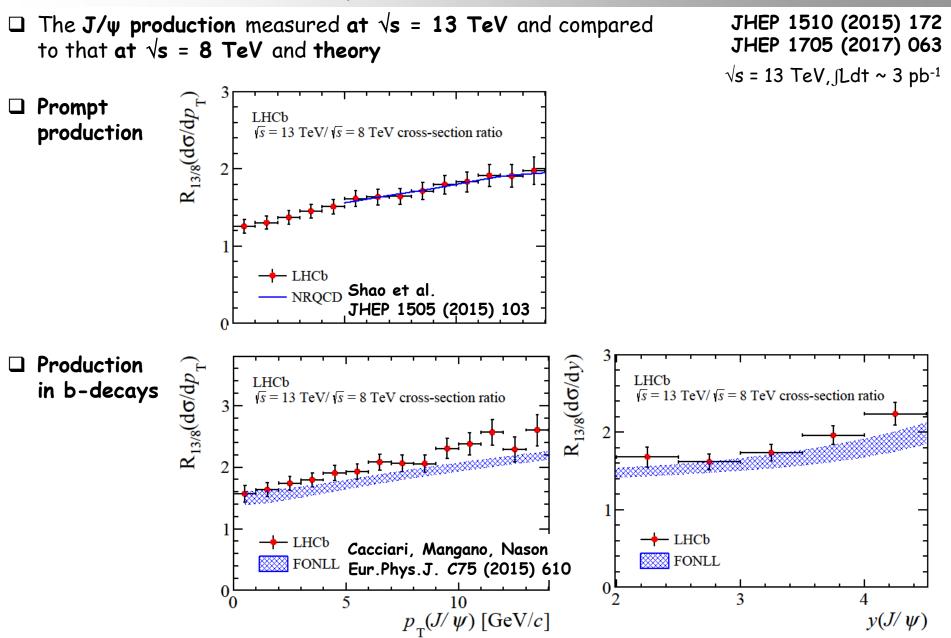


A (very short) introduction: good charmonia

□ Example of J/ψ production □ $\psi(2S)$ production discussed yesterday by Miroslav

- **Prompt J/\psi production** and production in b-hadron decays
- Double differential cross-sections from two-dimensional fit in bins of p_{T} and y
- Prompt and b-decay components are extracted from the fit to pseudo-lifetime distribution

JHEP 1510 (2015) 172 JHEP 1705 (2017) 063 \sqrt{s} = 13 TeV, $\int Ldt \sim 3 \text{ pb}^{-1}$


Production cross-section, integrated over acceptance :

 σ (prompt J/ψ , $p_{\rm T} < 14 \,\text{GeV}/c$, 2.0 < y < 4.5) = $15.03 \pm 0.03 \pm 0.94 \,\mu\text{b}$. $\sigma(J/\psi \text{-from-}b, p_{\rm T} < 14 \,{\rm GeV}/c, 2.0 < y < 4.5) = 2.25 \pm 0.01 \pm 0.14 \,{\mu b}$

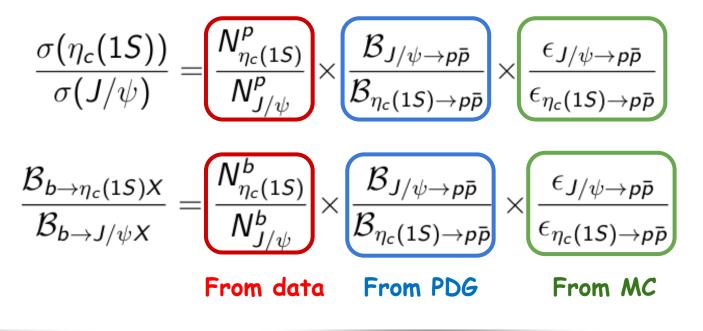
bb cross-section, integrated over 4π :

 $\sigma(pp \rightarrow b\overline{b}X) = 495 \pm 2 \pm 52 \,\mu b$

using extrapolation factor $a_{4\pi}$ = 5.2 from the LHCb tuning of PYTHIA 6 JHEP 0605 (2006) 026 J/ψ production at $\sqrt{s} = 13$ TeV



Perfect (good) theory-experiment agreement for prompt (b-decay) production

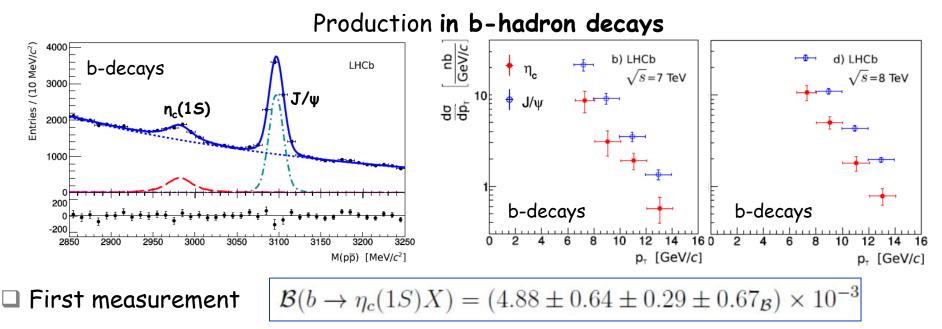

Concept of leaves

□ Being not able to show you very preliminary results, I will often suggest questions, then either nothing or hints for solutions ...

□ Concept of leaves: grape vs. fig

Production of n_c , $p\bar{p}$ final state

HF production at LHCb

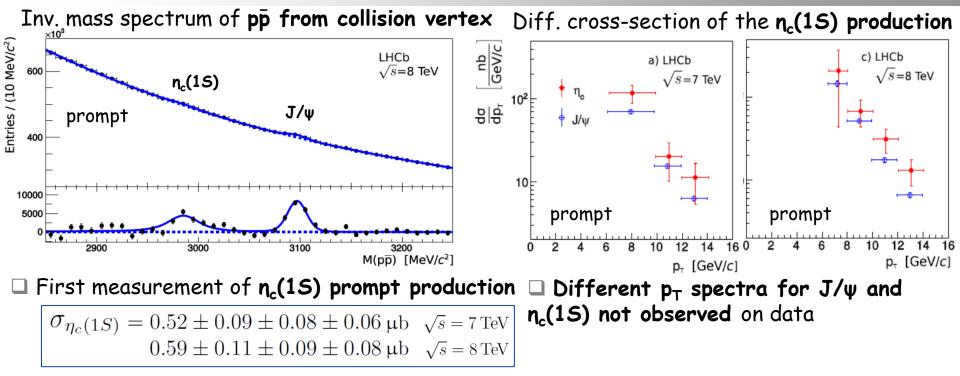

Beauty 2016, Marseille, 2-6.05.16

HISTORICAL: The $n_c(1S)$ production via decays to hadronic final states

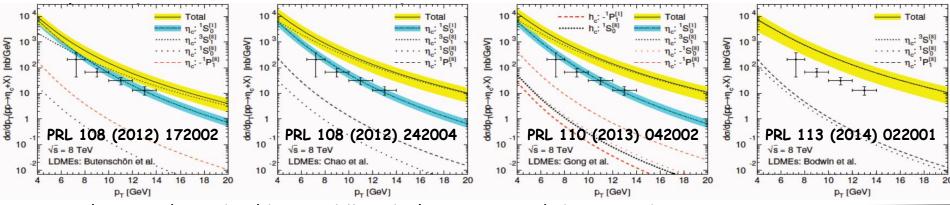
Two good-quality tracks identified as protons, forming a good-quality vertex **EPJC 75 (2015) 311** $\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} \sim 1 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} \sim 2 \text{ fb}^{-1}$

Distinguish prompt production and production in b-decays
Using separation between pp-interaction vertex and charmonium decay vertex

X-feed between samples subtracted

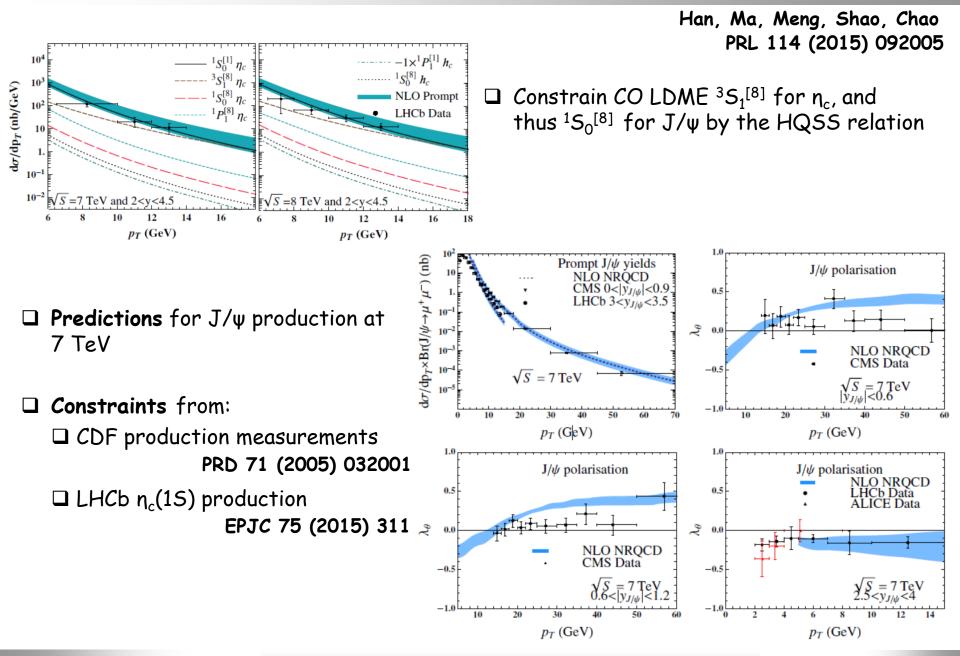

Next:

Measure n_c(1S) prompt production for the first time

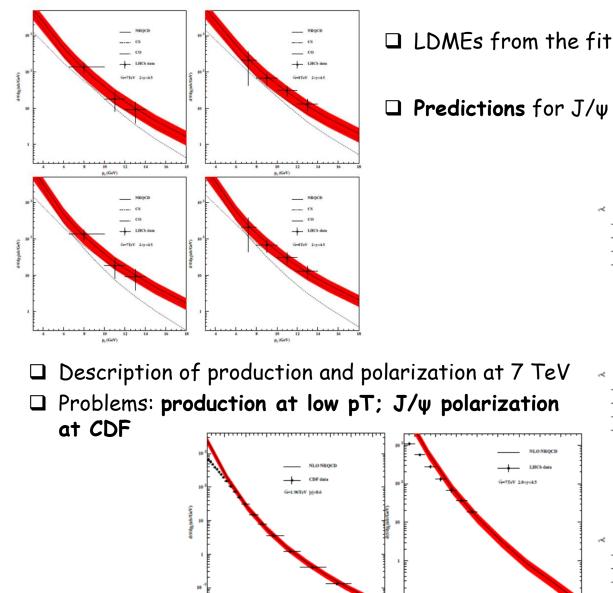

□ Verify NRQCD prediction of different p_T Maltoni, Polosa, PRD 70 (2004) 054014 spectra for J/ψ and $\eta_c(1S)$ Maltoni, Polosa, PRD 70 (2004) 054014 Petrelli et al., Nucl. Phys. B514 (1998) 245 Kuhn, Mirkes, PRD 48 (1993) 179

n_c and Co. at LHCb

HISTORICAL: The $n_c(1S)$ prompt production EPJC 75 (2015) 311

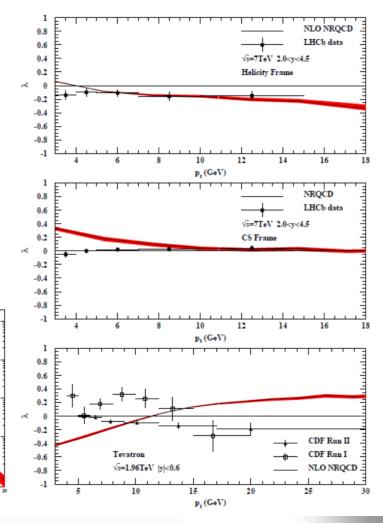


Using J/ψ production and relation between matrix elements, « immediate » reaction Butenschoen, He, Kniehl, **arXiv:1411.5287**


Results are described by CS NLO, below expected CO contribution

THEORY: The $\eta_c(1S)$ AND J/ ψ prompt production

n_c and Co. at LHCb


THEORY: The $n_c(1S)$ AND J/ ψ prompt production

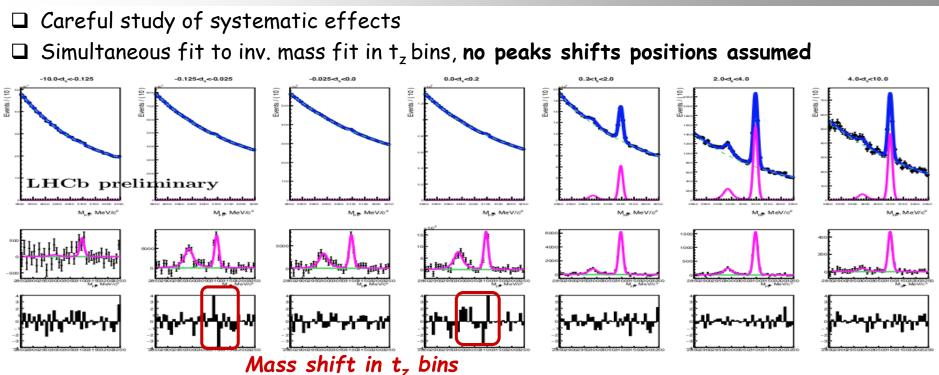
p₁(GeV)

Zhang, Sun, Sang, Li PRL 114 (2015) 092006

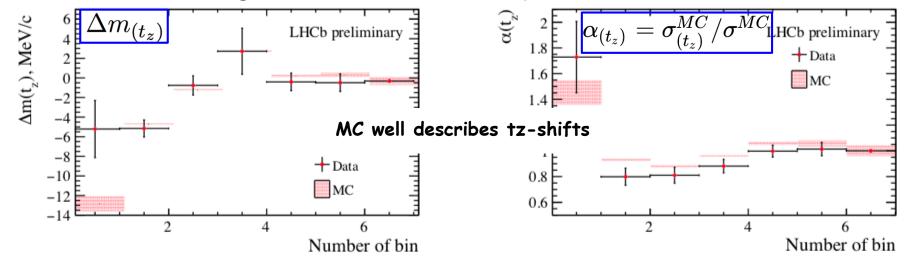
\Box **Predictions** for J/ ψ production

n_c and Co. at LHCb

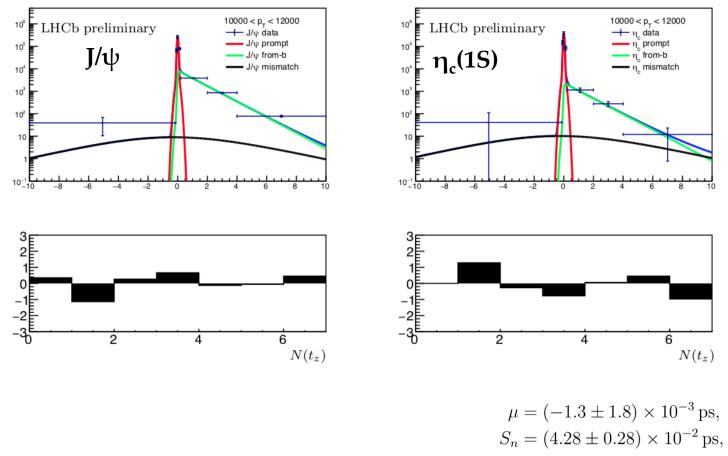
FCPPL Quarkonia workshop, Beijing, 22-23.04.2019


p_t (GeV)

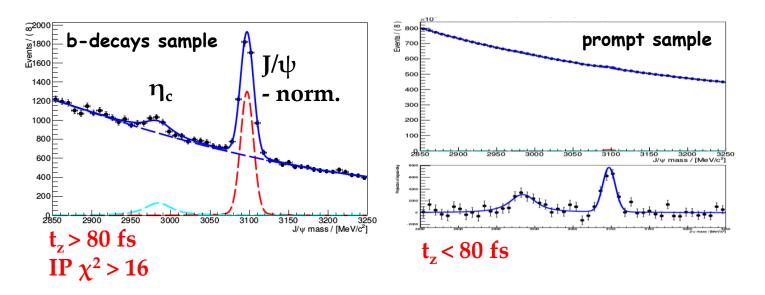
□ Two techniques


Distinguish prompt and b-decay charmonium

1. t_z distribution fit (J/ ψ analysis - like) : separate prompt and from bdecays charmonia: simultaneous integral $\chi^2 t_z$ fit in pT bins


2. t_z and proton IP based selection requirements (run I $\eta_c(1S)$ analysis - like) : simultaneous fits in pT bins

Corrections extracted using simultaneous MC fits for n_c and J/ψ , same mass shifts assumed


 \Box Simultaneous $t_z \chi^2$ fit to η_c and J/ψ yields from mass fit in pT bins

 $\langle \tau_b \rangle = 1.28 \pm 0.02 \, \mathrm{ps.}$

n_c and Co. at LHCb

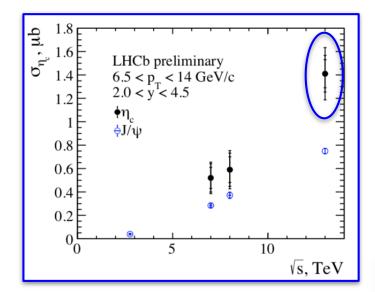
Distinguish prompt and b-decay charmonium using selection and fit them simultaneously in pT bins (Run I - like)

Extract prompt and from b-decays components from measured yields and determined efficiencies and x-feeds

$$egin{aligned} n^p_{\eta_c} &= \epsilon^{P o P} oldsymbol{N^P_{\eta_c}} + \epsilon^{b o P} oldsymbol{N^b_{\eta_c}} \ n^b_{\eta_c} &= \epsilon^{b o b} oldsymbol{N^b_{\eta_c}} + \epsilon^{P o b} oldsymbol{N^P_{\eta_c}}, \end{aligned}$$

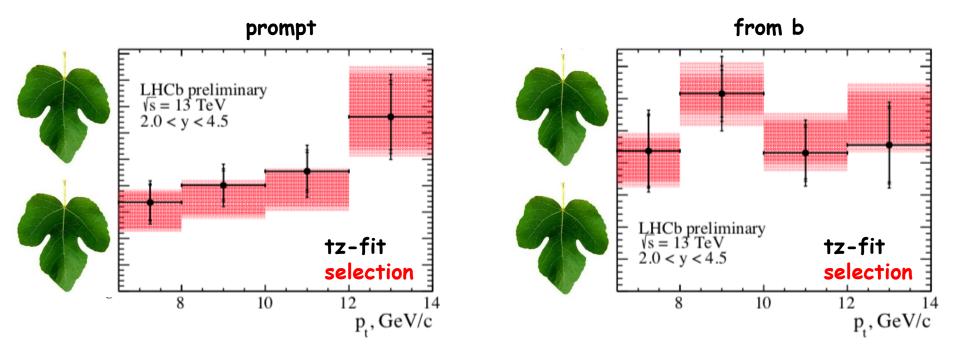
 n_c and Co. at LHCb

□ Integral x-section in LHCb fiducial region:

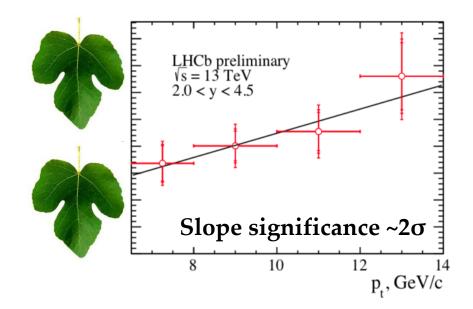

 $\sigma_{\eta c}$ = : $2_{stat} \pm 0.10_{syst} \pm 0.16_{BR} \ \mu b$ 6.5 GeV/c < PT < 14.0 GeV/c 2.0 < y < 4.5

Yu-Feng, Hua-Sheng & Co: $\sigma_{\eta c}$ = 1.56 $^{+0.83}_{-0.49 \text{ scale}}$ $^{+0.38}_{-0.17 \text{ CT14NL0}}$ 6.5 GeV/c < PT < 14.0 GeV/c

2.0 < y < 4.5


Excellent agreement !
 Absolute x-section nicely reproduced.
 (Keeping in mind that 7 and 8 TeV data used to educate predictions)

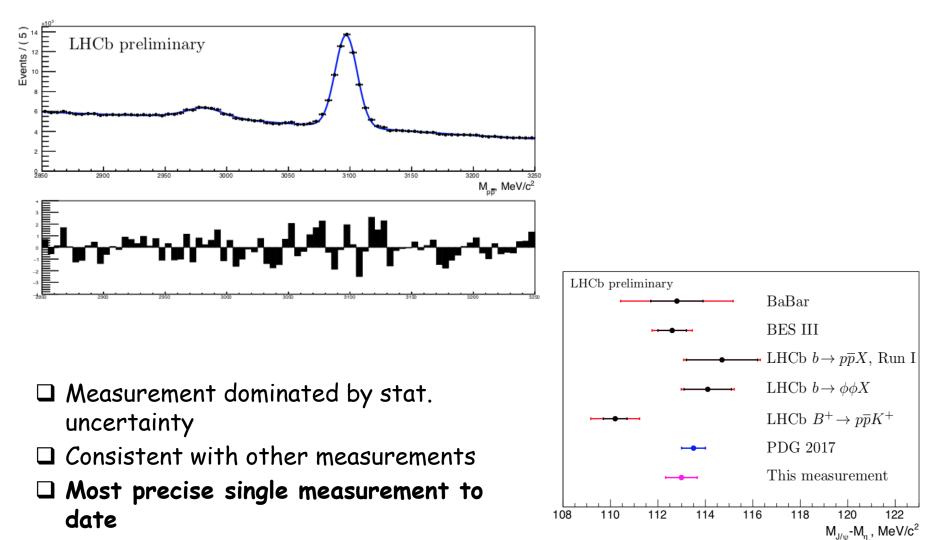
□ Energy dependence of the n_c(1S) production with 2015-2016 data.


n_c and Co. at LHCb

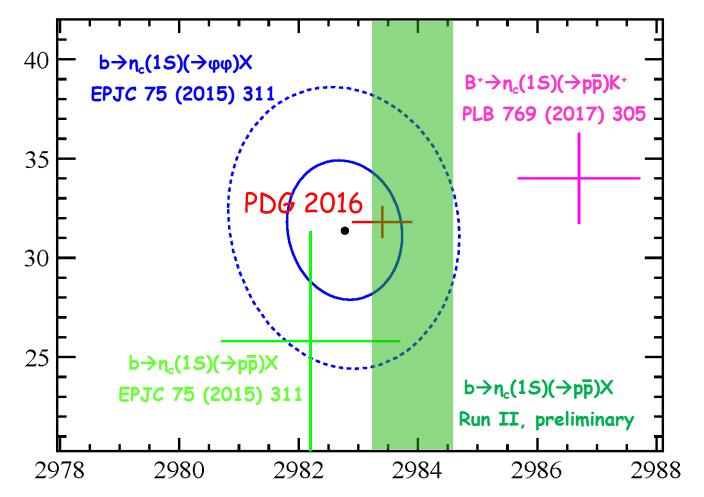
pT-differential prompt production, ratio:

Two techniques consistent and yield similar precision

pT-differential prompt production, ratio:

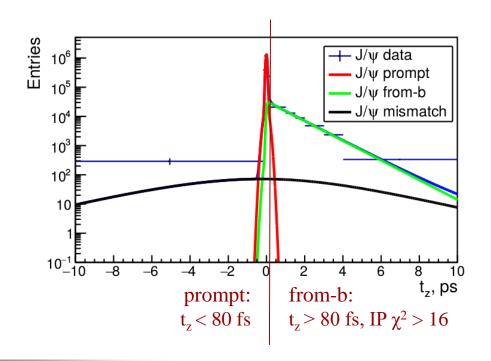

 \Box Finally, a hint of different pT behavior for $\eta_c(1S)$ and J/ψ ... who is steeper ?

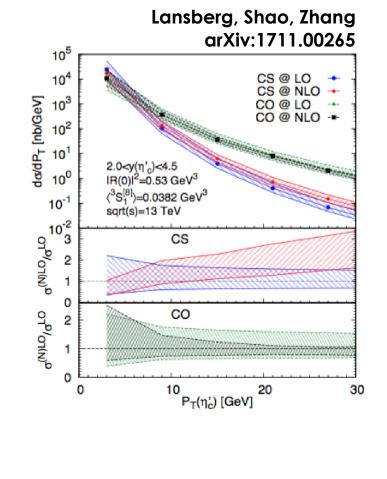
 \Box BR(b \rightarrow n_c(1S) X) is consistent with the result at 7, 8 TeV and gives better stat. precision


n_c and Co. at LHCb

ALMOST PUBLIC: J/ψ and $n_c(1S)$ mass difference

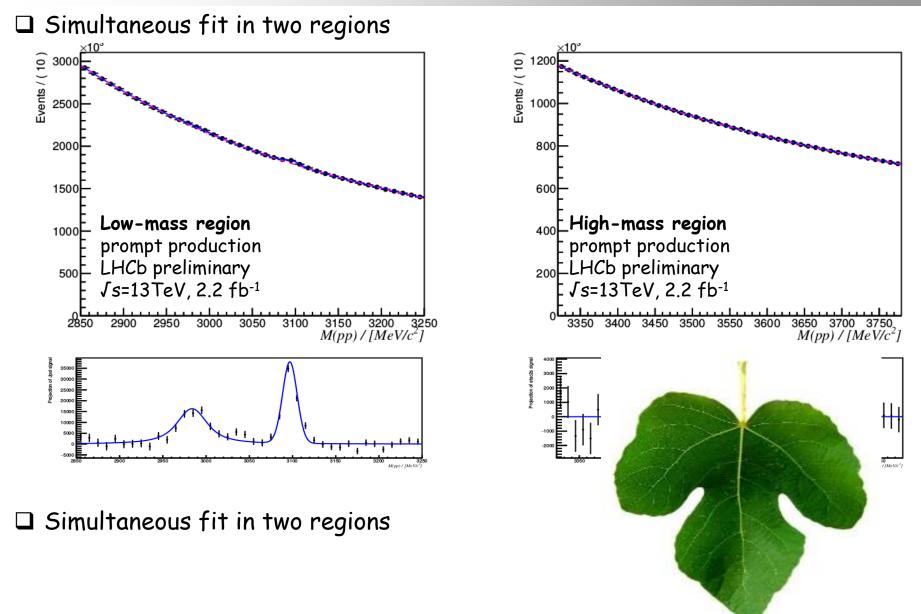
□ Mass measurement using topological triggers


Contour plot for $\eta_c(1S)$

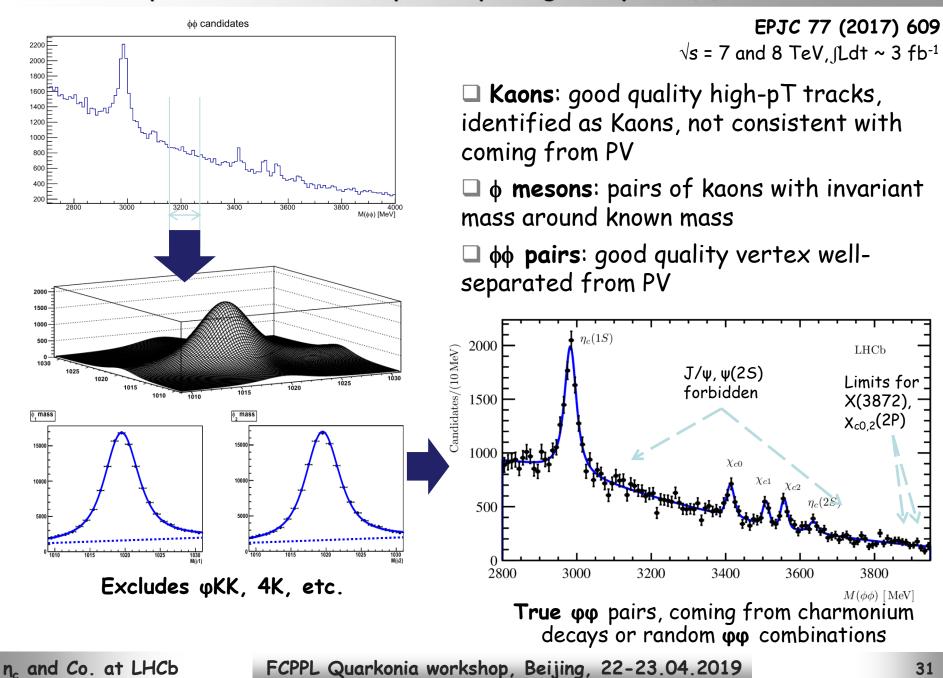


n_c and Co. at LHCb

PREVIEW: $\eta_c(2S)$ ($\rightarrow p\bar{p}$) prompt production at $\int s=13$ TeV


- Motivated by theory calculations
 Dedicated LHCb trigger in 2018
- Prompt and b-decay production distinguished via selection cuts

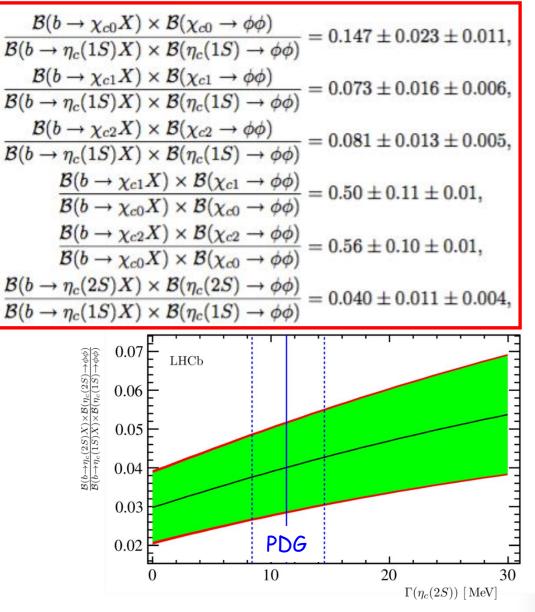
Efficiencies and x-feeds from MC


PREVIEW: $\eta_c(2S)$ ($\rightarrow p\bar{p}$) prompt production at $\int s=13$ TeV

n_c and Co. at LHCb

Production of χ_c and $n_c(25)$ in b-decays, $\varphi\varphi$ final state

Charmonia production in b-decays study using decays to $\phi\phi$ at $\sqrt{s} = 7,8 TeV$



Charmonia production in b-decays study using decays to $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

EPJC 77 (2017) 609

 \sqrt{s} = 7 and 8 TeV, JLdt ~ 3 fb⁻¹

First or most precise double ratios:

Dependence on $\Gamma(\eta_c(2S))$:

n_c and Co. at LHCb

Charmonia production in b-decays study using decays to $\phi\phi$ at $\sqrt{s} = 7,8 TeV$

 $BR(\eta_c(1S) \rightarrow \phi \phi)$, a hint of the problem

Γ (φ¢)/г(<i>к</i> 7	Κπ)						Г7	/Γ ₂₈
VALUE		-	EVTS	DOCUMENT ID		TECN	COMMEN	IT	
0.0240±0.0026 OUR FIT					-				
0.044	+0.012	OUR A	/ERAGE	Almost	2 ti	imes	diffe	rence	_
0.055	± 0.014	± 0.005		AUBERT,B	04 B	BABR	$B^{\pm} \rightarrow$	$\kappa \pm \eta_c$	
0.032	$^{+0.014}_{-0.010}$	± 0.009	7	¹ HUANG	03	BELL	$B^{\pm} \rightarrow$	$K^{\pm}\phi\phi$	

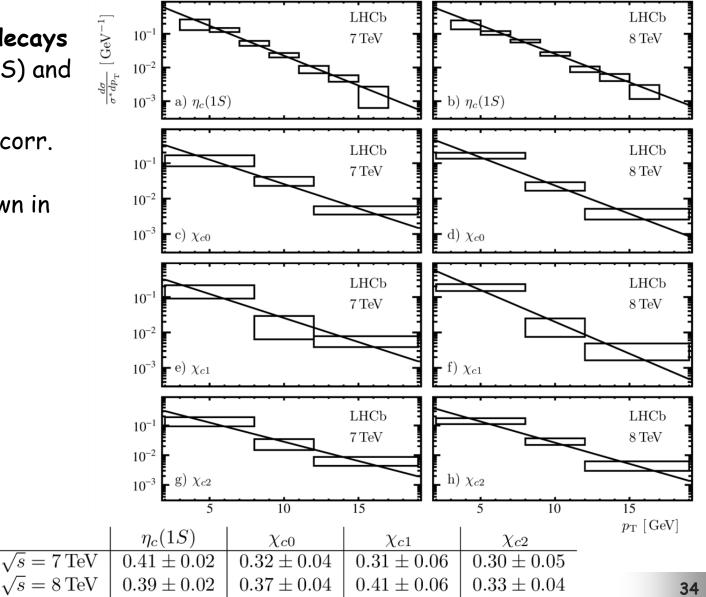
Use B-factories measurements performed (not radiative decays), cf. Claudia Patrignani $BR(\eta_c(1S) \rightarrow \phi \phi) = 3.21 \pm 0.72$

$$\begin{aligned} \frac{\mathcal{B}(b \to \chi_{c0}X)}{\mathcal{B}(b \to \eta_c(1S)X)} &= 0.615 \pm 0.095 \pm 0.047 \pm 0.149, \\ \frac{\mathcal{B}(b \to \chi_{c1}X)}{\mathcal{B}(b \to \eta_c(1S)X)} &= 0.562 \pm 0.119 \pm 0.047 \pm 0.131, \\ \frac{\mathcal{B}(b \to \chi_{c2}X)}{\mathcal{B}(b \to \eta_c(1S)X)} &= 0.234 \pm 0.038 \pm 0.015 \pm 0.057, \\ \end{aligned}$$

$$\begin{aligned} \mathsf{PbG} \ (B^{\pm}/B_0): \ \mathsf{PbG} \ (B^{\pm}/B_0/B_s./b - baryons): \\ \mathsf{B}(b \to \chi_{c1}X) &= (2.76 \pm 0.59 \pm 0.23 \pm 0.89) \times 10^{-3}, \\ \mathcal{B}(b \to \chi_{c2}X) &= (1.15 \pm 0.20 \pm 0.07 \pm 0.36) \times 10^{-3}, \\ \end{aligned}$$

 n_c and Co. at LHCb

FCPPL Quarkonia workshop, Beijing, 22-23.04.2019


EPJC 77 (2017) 609

 \sqrt{s} = 7 and 8 TeV, (Ldt ~ 3 fb⁻¹

 η_c and $\chi_{c0,1,2}$ differential production x-section in b-decays

pT differential production in b-decays measured for $n_c(1S)$ and χ_c states

Statistical and uncorr. systematic uncertainties shown in quadrature

n_c and Co. at LHCb

EPJC 77 (2017) 609

 \sqrt{s} = 7 and 8 TeV, [Ldt ~ 3 fb⁻¹

Search for X(3872), $\chi_{c0,2}(2P)$

EPJC 77 (2017) 609 $\sqrt{s} = 7$ and 8 TeV, $\int Ldt \sim 3 \text{ fb}^{-1}$

Relative yields with respect to resonances with similar quantum numbers
 Proposed by Valery Khoze

	90% CL	95% CL
$\frac{BR(b \to X(3872)X) \cdot BR(X(3872) \to \phi\phi)}{BR(b \to \chi_{c1}X) \cdot BR(\chi_{c1} \to \phi\phi)}$	<0.34	<0.39
$\frac{BR(b \to \chi_{c0}(2P)X) \cdot BR(\chi_{c0}(2P) \to \phi\phi)}{BR(b \to \chi_{c0}X) \cdot BR(\chi_{c0} \to \phi\phi)}$	<0.12	<0.14
$\frac{BR(b \to \chi_{c2}(2P)X) \cdot BR(\chi_{c2}(2P) \to \phi\phi)}{BR(b \to \chi_{c2}X) \cdot BR(\chi_{c2} \to \phi\phi)}$	<0.16	<0.20

	90% CL	95% CL
$BR(b \rightarrow X(3872)X) \cdot BR(X(3872) \rightarrow \phi\phi)$	$< 3.9 imes 10^{-7}$	$< 4.5 imes 10^{-7}$
$BR(b \rightarrow \chi_{c0}(2P)X) \cdot BR(\chi_{c0}(2P) \rightarrow \phi\phi)$	$< 2.7 imes 10^{-7}$	$< 3.1 imes 10^{-7}$
$BR(b \rightarrow \chi_{c2}(2P)X) \cdot BR(\chi_{c2}(2P) \rightarrow \phi\phi)$	$< 2.3 imes 10^{-7}$	$< 2.8 imes 10^{-7}$

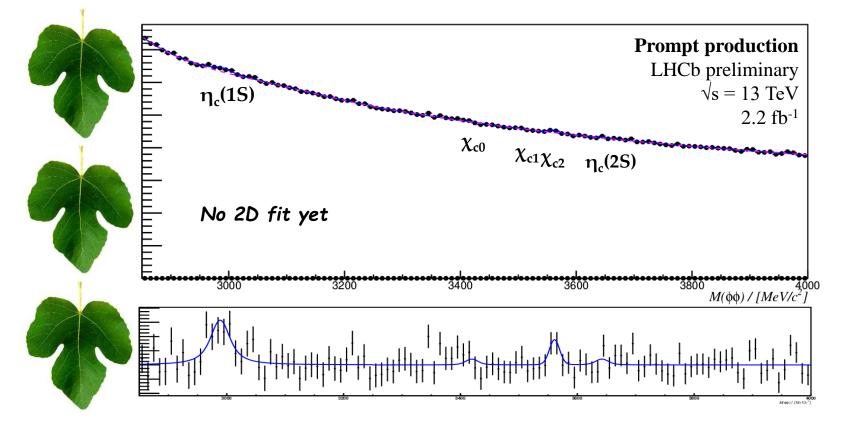
n_c and Co. at LHCb

Extraction of $\eta_c(1S)$ BRs using $B_s \rightarrow \phi \phi$

Using LHCb measurement (JHEP 10 (2015) 053):

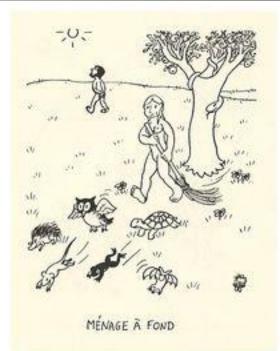
 $BR(B_s \rightarrow \phi \phi) = ((1.84 \pm 0.05 stat \pm 0.07 sys \pm 0.12 norm \pm 0.11 (f_s/f_d)) \times 10^{-5}$

$$\frac{\mathcal{B}(\eta_c(1S) \to \phi\phi)}{\mathcal{B}(\eta_c(1S) \to p\bar{p})} = 1.79 \pm 0.14 \pm 0.09 \pm 0.10 \pm 0.03 \pm 0.29$$


Cf. PDG:
$$\frac{BR(\eta_c(1S) \rightarrow \phi\phi)}{BR(\eta_c(1S) \rightarrow pp)} = 1.17 \pm 0.18$$

\rightarrow New high-impact PDG entry

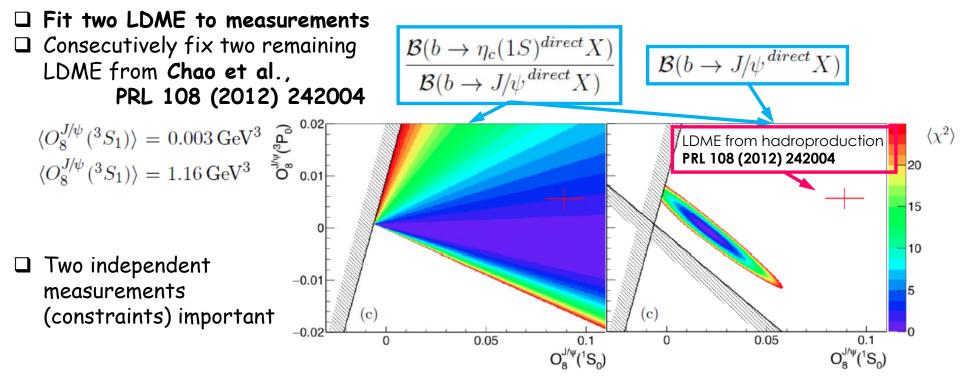
n_c and Co. at LHCb


□ What is next?

□ Update the analysis using 13 TeV data (Run II) \rightarrow improved precision □ Use charmonia decays to $\varphi\varphi$ for studying of hadroproduction

 n_c and Co. at LHCb

(Over-) Constraining LDMEs using different measurements

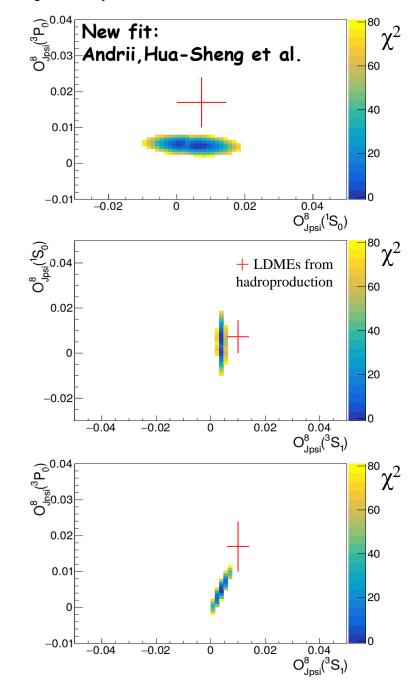


n_c and Co. at LHCb

Simultaneous study of J/ψ and $n_c(1S)$ production in b-decays

- □ From EPJC 75 (2015) 311 and Chin. Phys. C40 (2016) 100001:
- □ Relation between LDME from HQSS:
- Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003

$$\frac{\mathcal{B}(b \to \eta_c(1S)^{direct}X)}{\mathcal{B}(b \to J/\psi^{direct}X)} = 0.691 \pm 0.090 \pm 0.024 \pm 0.103, \\
\langle O_1^{\eta_c}({}^{1}S_0) \rangle = \frac{1}{3} \langle O_1^{J/\psi}({}^{3}S_1) \rangle, \\
\langle O_8^{\eta_c}({}^{1}S_0) \rangle = \frac{1}{3} \langle O_8^{J/\psi}({}^{3}S_1) \rangle, \\
\langle O_8^{\eta_c}({}^{3}S_1) \rangle = \langle O_8^{J/\psi}({}^{1}S_0) \rangle, \\
\langle O_8^{\eta_c}({}^{1}P_1) \rangle = 3 \langle O_8^{J/\psi}({}^{3}P_0) \rangle.$$



Simultaneous study of J/ψ and $\eta_c(15)$ production

- Simultaneous fits to J/ψ and n_c(1S) LDMEs, prompt and b-decay production
- \Box <O(1S₀) is fixed at 1.16 GeV³
- Sequentially fix other LDMEs according to theoretical prediction

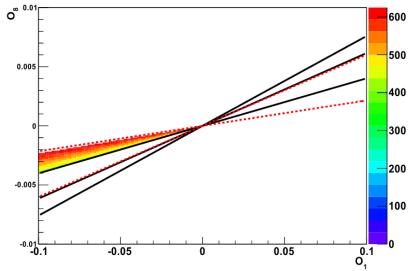
□ Red points from PRL 114 (2015) 092005

❑ Understanding of theoretical uncertainties crucial to make a comparison, plots with included theory uncertainties →

Simultaneous study of χ_c production in inclusive b-decays

From EPJC 77 (2017) 609 and Chin. Phys. C40 (2016) 100001:

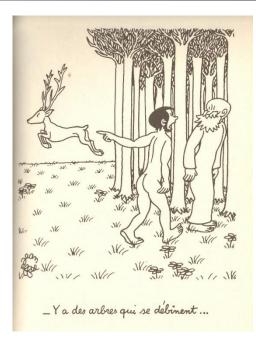
 $\mathcal{B}(b \to \chi_{c0}{}^{direct}X) = (2.74 \pm 0.47 \pm 0.23 \pm 0.94_{\mathcal{B}}) \times 10^{-3}$ $\mathcal{B}(b \to \chi_{c1}{}^{direct}X) = (2.49 \pm 0.59 \pm 0.23 \pm 0.89_{\mathcal{B}}) \times 10^{-3}$ $\mathcal{B}(b \to \chi_{c2}{}^{direct}X) = (0.89 \pm 0.20 \pm 0.07 \pm 0.36_{\mathcal{B}}) \times 10^{-3}$


Usachov, Kou, SB, LAL-17-051

□ Relation between LDME from HQSS:

5:
$$O_{1} \equiv \langle O_{1}^{\chi_{c0}}({}^{3}P_{0}) \rangle / m_{c}^{2},$$
$$O_{8} \equiv \langle O_{8}^{\chi_{c0}}({}^{3}S_{1}) \rangle,$$
$$\langle O_{1}^{\chi_{cJ}}({}^{3}P_{J}) \rangle / m_{c}^{2} = (2J+1)O_{1},$$
$$\langle O_{8}^{\chi_{cJ}}({}^{3}S_{1}) \rangle = (2J+1)O_{8}.$$

Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003


Fit two LDME to three measurements
 Important to revisit theory calculations

n_c and Co. at LHCb

Simultaneous study of charmonia with linked LDMEs

More precision, further calculations and new ideas are needed.

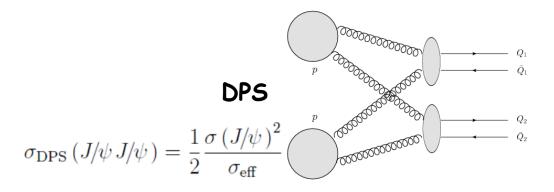
- This technique constrains theory using simultaneously results on charmonia hadroproduction and on charmonia from b-inclusive decays under assumptions of factorization, universality and HQSS, with different charmonium states.
- Alternatively, once hadroproduction and production in b-decays measured for charmonium states with linked LDMEs, the above assumptions can be tested quantitatively.

Other studies of charmonia production

In case I have time ... otherwise goto slide 55.

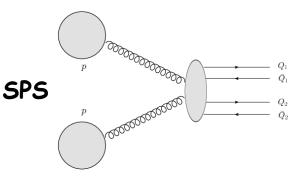
n_c and Co. at LHCb FCPPL Quarkonia workshop, Beijing, 22-23.04.2019

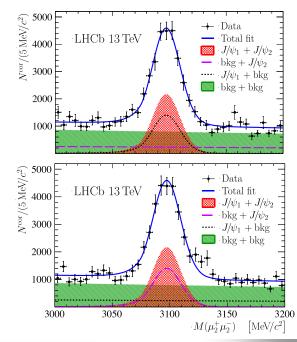
Associated production


n_c and Co. at LHCb FCPPL Quarkonia workshop, Beijing, 22-23.04.2019

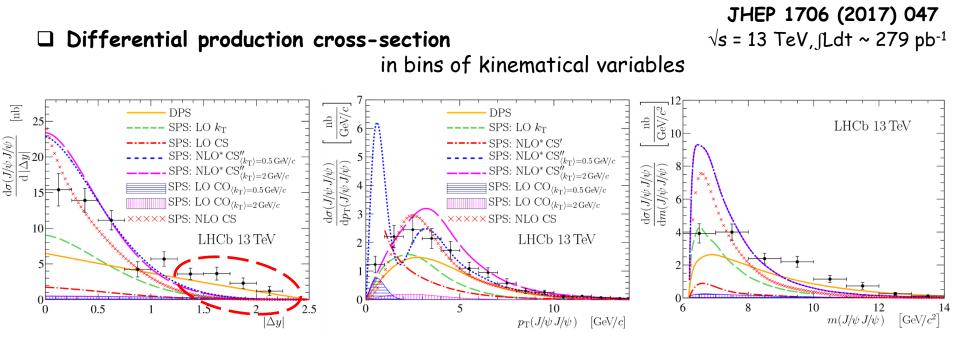
Double J/ψ production at Js=13 TeV

Production via Double Parton Scattering (DPS) or Single Parton Scattering (SPS)


JHEP 1706 (2017) 047 √s = 13 TeV, jLdt ~ 279 pb⁻¹


- DPS: two independent hard scatters that are assumed to factorize
- $\hfill\square$ SPS: gluon splitting expected to dominate $c\bar{c}$ production

- $\hfill\square$ DPS provides important information on gluon correlations and parton p_{T} -distribution
- \Box Each J/ ψ in the fiducial volume: p_T < 10 GeV/c, 2.0 < y < 4.5
- \Box Assumed no J/ψ polarization
- \Box The J/ ψ pair production cross-section


 $\sigma(J\!/\!\psi\,J\!/\!\psi\,) = 15.2\pm1.0\,(\mathrm{stat})\pm0.9\,(\mathrm{syst})\,\mathrm{nb}$

 n_c and Co. at LHCb

Double J/ψ production at $\int s=13 \ TeV$

 \Box Evidence for DPS at high $|\Delta y|$ region

Kom, Kulesza, Stirling, PRL 107 (2011) 082002

- \Box Fit of kinematical distributions to extract DPS fraction and σ_{eff}
- □ Agreement between fits of $|\Delta y|$, $p_T(J/\psi J/\psi)$, $y(J/\psi J/\psi)$, $m(J/\psi J/\psi)$
- \square Using various SPS descriptions, $\sigma_{eff} \sim 10\text{--}12 \text{ mb}$

 $\hfill\square$ σ_{eff} is often compared across different energies, different particles, different rapidities ...

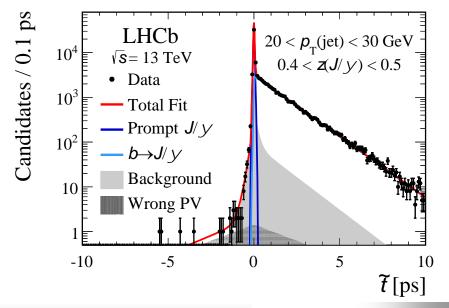
n_c and Co. at LHCb

J/ψ production in jets at $\int s=13 \ TeV$

PRL 118 (2017) 192001 $\sqrt{s} = 13 \text{ TeV}, \int \text{Ldt} \sim 1.4 \text{ fb}^{-1}$

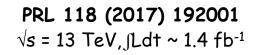
- \Box J/ ψ produced in direct parton scattering or through parton showering
- \Box Significant J/ψ production in showers can explain lack of observed polarization
- \Box Anti- k_T algorithm
- Fiducial region

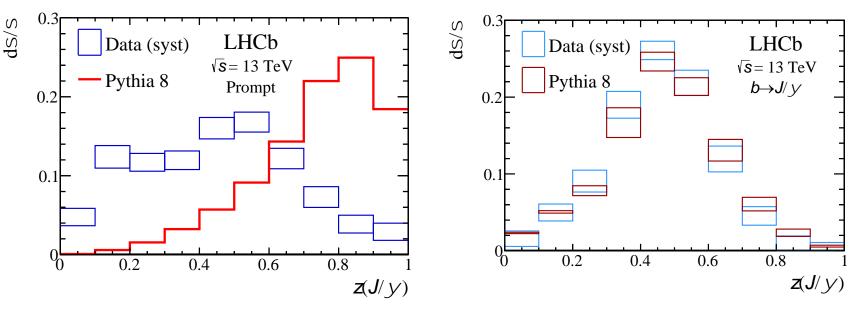

□ Jets: p_T > 20 GeV/c, 2.5 < η < 4.0 □ J/ ψ : 2.0 < η < 4.5


□ Fraction of the jet transverse momentum carried by J/ψ :

 $z(J/\psi) = p_T (J/\psi) / p_T (jet)$

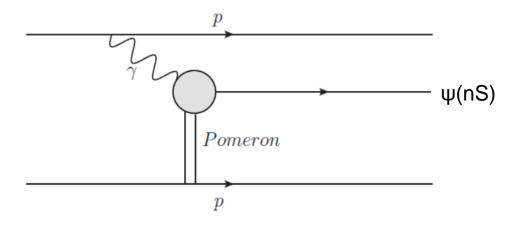
□ Separate prompt J/ψ and J/ψ from b-decays using pseuso-lifetime:


$$\tilde{t} \equiv \lambda m(J/\psi)/p_{\rm L}(J/\psi)$$

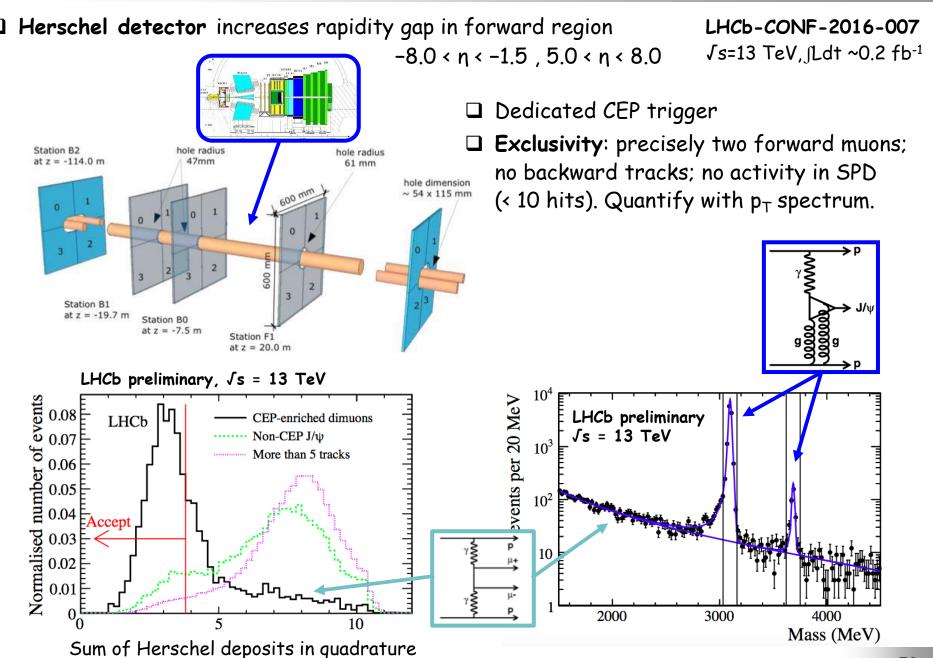


 \Box Fit in bins of $z(J/\psi)$

□ J/ψ yields corrected for detection efficiency by applying percandidate weights (no knowledge of J/ψ polarization required)


 \Box $z(J/\psi)$ distribution for J/ψ produced in b-decays is consistent with the Pythia 8 prediction

- \Box Prompt J/ ψ are less isolated than the prediction of Pythia based on fixed-order NRQCD
- Indication for significant contribution from parton showering

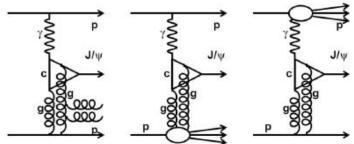

Bain et al., JHEP 1606 (2016) 121 Bain et al., arXiv:1702.02947

n_c and Co. at LHCb

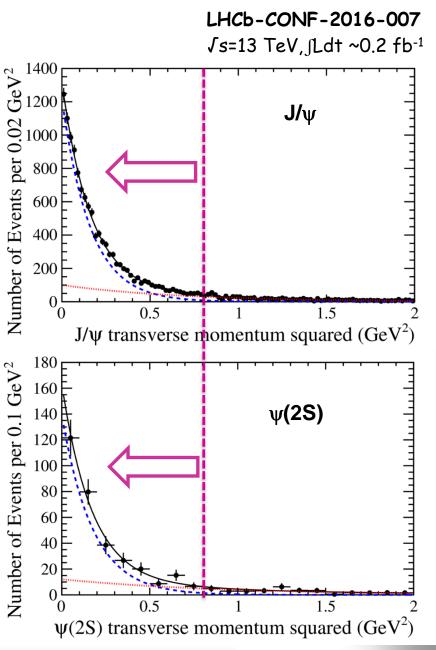
- □ CEP: QCD tests with clean theoretical interpretation
- Only CS production
- \square Sensitivity with cross-sections in the LHCb coverage down to x ~ 1.5 x 10^{-5}

Central Exclusive Production of J/ψ and $\psi(2S)$

Central Exclusive Production of J/ψ and $\psi(25)$

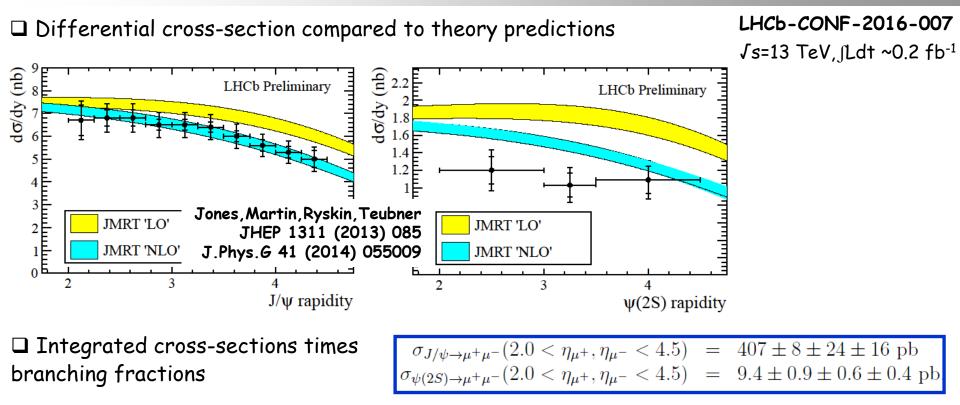

Signal shape

D Estimated from Superchic using $exp(-b p_T^2)$


Slope b estimated from HERA data. Agreement to the fit of LHCb data

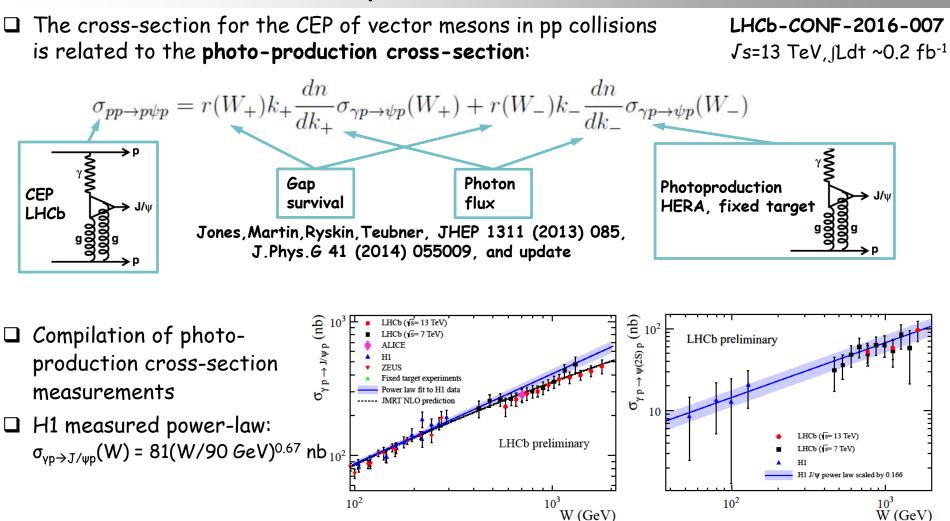
Inelastic backgrounds

- One/two protons dissociate(s) or additional gluon radiations.
 Extra particles are undetected.
- □ P_T shape estimated from data, cross checked with PYTHIA, LPAIR



Feed-down $\psi(2S) \rightarrow J/\psi\pi\pi: 2.5 \pm 0.2\%$ $\chi_c \rightarrow J/\psi\gamma \ 7.6 \pm 0.9\%$ $X(3872) \rightarrow \psi(2S)\gamma \ 2.0 \pm 2.0\%$

 n_c and Co. at LHCb


J/ψ and $\psi(2S)$ differential cross-sections

□ Good agreement with NLO predictions

□ Confirms a hint of NLO importance from the analysis at 7 TeV

Photo-production cross-section

 \Box J/ ψ photo-production cross-section: deviation from a pure power-law extrapolation of HERA data; agreement to theory prediction

 n_c and Co. at LHCb

(Instead of) Summary

- □ Impressive progress in both theory and experiment ... and great ambitions, which are far from being achieved.
- Comprehensive model describing charmonium hadroproduction and production in b-decays, in the entire pT and rapidity ranges, at all available energies, still to be developed and tested on variety of available charmonia.
- □ This requires
 - From theory: calculations to higher orders both for hadroproduction and for b-decays, and new bright ideas, ...
 - From experiment: more dedication to key measurements (e.g. trigger, but also MC), precision measurements of « service » branching fractions, ...

□ Do we want to know the entire answer now ?

