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A NEW COMPUTING MODEL

Algorithms that learn from examples

MACHINE LEARNING

Car :
TRADITIONAL APPROACH Vehicle
’ Requires domain experts ’
Time-consuming experimentation
Custom algorithms Coupe

Not scalable to new problems
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A NEW COMPUTING MODEL

Algorithms that learn from examples

MACHINE LEARNING

TRADITIONAL APPROACH - -

Requires domain experts

Time-consuming experimentation
Custom algorithms

Not scalable to new problems

DEEP LEARNING

DEEP NEURAL NETWORKS
Learn from data

Easily to extend

Accelerated with GPUs
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THEORY BEHIND

Neural Network
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Backfed Input Cell
Input Cell

Noisy Input Cell

Hidden Cell

Probablistic Hidden Cell
Spiking Hidden Cell
Output Cell

Match Input Output Cell
Recurrent Cell

Memory Cell

Different Memory Cell
Kernel

Convolution or Pool

Markov Chain (MC) Hopfield Network (HN)

Deep Convolutional Network (DCN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM)
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Deep Residual Network (DRN)
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Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Echo State Network (ESN)

Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)
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Output: vehicle control

NETWORK MODELS

FC layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
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Normalized
input planes
3@66x200

Input planes
3@66x200

Figure 1: PilotNet architecture.

CNN

Bojarski, Mariusz, et al. "Explaining how a deep neural network trained with end-to-end learning steers a car.”
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NETWORK MODELS
RNN

go Pretty good <ens>

SN NN

RNN Decoder

b
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Cho, Kyunghyun, et al. “Learning phrase representations using RNN encoder-decoder for statistical machine translation.”



NETWORK MODELS

GAN: Network topology
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Radford (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.
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REAL FACE?
StyleGAN
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https://github.com/NVlabs/stylegan
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VIDEO DEMO

Our generator thinks of an image as a
collection of “styles”, where each style
controls the effects at a particular scale
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ENVIRONMENT SIMULATION

vid2vidHD

Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans." Proceedings of 16 <ANVIDIA.
the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



ENVIRONMENT SIMULATION

vid2vidHD

Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans."” Proceedings of 17 <ANVIDIA.
the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



WHAT PROBLEM ARE YOU SOLVING?

Defining the Al/DL Task

BUSINESS EXAMPLE OUTPUTS

INPUTS QUESTION AVDLTASK ——  THCARE  RETAIL  FINANCE

Is l;r ng;f:en—t Detection Cancer Detection Targeted ads Cybersecurity
What iE)LP_S “iet’(’): thing Classification Image Classification Basket Analysis Credit Scoring
Text Data Images

To what extent is Tumor Size/Shape Build 360°
“it” present? Analysis Customer View

What is the likely . Survivability Sentiment & .
Prediction e : " Fraud Detection
outcome? Prediction behavior recognition

Video What will likely Recommendations Therapy Recommendation Algorithmic
satisfy the objective? Recommendation Engine Trading

Segmentation Credit Risk Analysis
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DEEP LEARNING APPLICATION DEVELOPMENT
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Untrained
Neural Network
Model
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DEEP LEARNING APPLICATION DEVELOPMENT

TRAINING

Learning a new capability
from existing data
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Framework DATASET




DEEP LEARNING APPLICATION DEVELOPMENT

TRAINING
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DEEP LEARNING APPLICATION DEVELOPMENT

TRAINING
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DEEP LEARNING APPLICATION DEVELOPMENT

TRAINING INFERENCE

Applying this capability

Learning a new capability N T
0 new data

from existing data
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App or Service

Untrained Deep Learning TRAINING Trained Model
Featuring Capability

Neural Network Framework DATASET New Capability
Model

Trained Model
—TensorRT: Optimized
for Performance
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